Skip to main content

2018 | OriginalPaper | Buchkapitel

8. Sparsity Constrained Estimation in Image Processing and Computer Vision

verfasst von : Vishal Monga, Hojjat Seyed Mousavi, Umamahesh Srinivas

Erschienen in: Handbook of Convex Optimization Methods in Imaging Science

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Over the past decade, sparsity has emerged as a dominant theme in signal processing and big data applications. In this chapter, we formulate and solve new flavors of sparsity-constrained optimization problems built on the family of spike-and-slab priors. First, we develop an efficient Iterative Convex Refinement solution to the hard non-convex problem of Bayesian signal recovery under sparsity-inducing spike-and-slab priors. We also offer a Bayesian perspective on sparse representation-based classification via the introduction of class-specific priors. This formulation represents a consummation of ideas developed for model-based compressive sensing into a general framework for sparse model-based classification.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
The Matlab code for ICR is available online at http://​signal.​ee.​psu.​edu/​ICR/​ICRpage.​htm
 
Literatur
1.
Zurück zum Zitat Tikhonov AN, Arsenin VY (1977) Solution of Ill-posed Problems. Winston, New YorkMATH Tikhonov AN, Arsenin VY (1977) Solution of Ill-posed Problems. Winston, New YorkMATH
2.
Zurück zum Zitat Candès EJ, Romberg JK, Tao T (2006) Stable signal recovery from incomplete and inaccurate measurements. Comm Pure Appl Math 59(8):1207–1223MathSciNetMATHCrossRef Candès EJ, Romberg JK, Tao T (2006) Stable signal recovery from incomplete and inaccurate measurements. Comm Pure Appl Math 59(8):1207–1223MathSciNetMATHCrossRef
4.
Zurück zum Zitat Fodor IK, Kamath C (2003) Denoising through wavelet shrinkage: An empirical study. J Elec Imag 12(1):151–160CrossRef Fodor IK, Kamath C (2003) Denoising through wavelet shrinkage: An empirical study. J Elec Imag 12(1):151–160CrossRef
5.
Zurück zum Zitat Coifman RR, Donoho DL (1995) Translation-invariant de-noising. In: Wavelets and statistics. Lecture Notes in Statistics Series, vol 103. Springer, pp 125–150 Coifman RR, Donoho DL (1995) Translation-invariant de-noising. In: Wavelets and statistics. Lecture Notes in Statistics Series, vol 103. Springer, pp 125–150
6.
Zurück zum Zitat Simoncelli EP (1999) Bayesian denoising of visual images in the wavelet domain. In: Bayesian inference in wavelet-based models. pp 291–308, Springer Simoncelli EP (1999) Bayesian denoising of visual images in the wavelet domain. In: Bayesian inference in wavelet-based models. pp 291–308, Springer
7.
Zurück zum Zitat Deledalle C-A, Denis L, Tupin F (2009) Iterative weighted maximum likelihood denoising with probabilistic patch-based weights. IEEE Trans Image Process 18(12):2661–2672MathSciNetMATHCrossRef Deledalle C-A, Denis L, Tupin F (2009) Iterative weighted maximum likelihood denoising with probabilistic patch-based weights. IEEE Trans Image Process 18(12):2661–2672MathSciNetMATHCrossRef
8.
Zurück zum Zitat Romberg JK, Choi H, Baraniuk RG (2001) Bayesian tree-structured image modeling using wavelet-domain hidden Markov models. IEEE Trans Image Process 10(7):1056–1068CrossRef Romberg JK, Choi H, Baraniuk RG (2001) Bayesian tree-structured image modeling using wavelet-domain hidden Markov models. IEEE Trans Image Process 10(7):1056–1068CrossRef
9.
Zurück zum Zitat Elad M, Aharon M (2006) Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans Image Process 15(12):3736–3745MathSciNetCrossRef Elad M, Aharon M (2006) Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans Image Process 15(12):3736–3745MathSciNetCrossRef
10.
Zurück zum Zitat Dong W, Li X, Zhang L, Shi G (2011) Sparsity-based image denoising via dictionary learning and structural clustering. In: Proc IEEE Int Conf Comput Vision Pattern Recogn, pp 457–464 Dong W, Li X, Zhang L, Shi G (2011) Sparsity-based image denoising via dictionary learning and structural clustering. In: Proc IEEE Int Conf Comput Vision Pattern Recogn, pp 457–464
11.
Zurück zum Zitat Guillemot C, Le Meur O (2014) Image inpainting: Overview and recent advances. IEEE Signal Process Mag 31(1):127–144CrossRef Guillemot C, Le Meur O (2014) Image inpainting: Overview and recent advances. IEEE Signal Process Mag 31(1):127–144CrossRef
12.
Zurück zum Zitat Bertalmio M, Sapiro G, Caselles V, Ballester C (2000) Image inpainting. In: Proc ACM Conf Comput Graph Interactive Tech. ACM, pp 417–424 Bertalmio M, Sapiro G, Caselles V, Ballester C (2000) Image inpainting. In: Proc ACM Conf Comput Graph Interactive Tech. ACM, pp 417–424
13.
Zurück zum Zitat Telea A (2004) An image inpainting technique based on the fast marching method. J Graphics Tools 9(1):23–34CrossRef Telea A (2004) An image inpainting technique based on the fast marching method. J Graphics Tools 9(1):23–34CrossRef
14.
Zurück zum Zitat Liang L, Liu C, Xu Y-Q, Guo B, Shum H-Y (2001) Real-time texture synthesis by patch-based sampling. ACM Trans Graph 20(3):127–150CrossRef Liang L, Liu C, Xu Y-Q, Guo B, Shum H-Y (2001) Real-time texture synthesis by patch-based sampling. ACM Trans Graph 20(3):127–150CrossRef
15.
Zurück zum Zitat Guleryuz OG (2006) Nonlinear approximation based image recovery using adaptive sparse reconstructions and iterated denoising-part I: Theory. IEEE Trans Image Process 15(3):539–554CrossRef Guleryuz OG (2006) Nonlinear approximation based image recovery using adaptive sparse reconstructions and iterated denoising-part I: Theory. IEEE Trans Image Process 15(3):539–554CrossRef
16.
Zurück zum Zitat Li X (2011) Image recovery via hybrid sparse representations: A deterministic annealing approach. IEEE J Sel Topics Signal Process 5(5):953–962CrossRef Li X (2011) Image recovery via hybrid sparse representations: A deterministic annealing approach. IEEE J Sel Topics Signal Process 5(5):953–962CrossRef
17.
Zurück zum Zitat Starck J-L, Elad M, Donoho DL (2005) Image decomposition via the combination of sparse representations and a variational approach. IEEE Trans Image Process 14(10):1570–1582MathSciNetMATHCrossRef Starck J-L, Elad M, Donoho DL (2005) Image decomposition via the combination of sparse representations and a variational approach. IEEE Trans Image Process 14(10):1570–1582MathSciNetMATHCrossRef
18.
Zurück zum Zitat Kim SP, Bose NK, Valenzuela HM (1990) Recursive reconstruction of high resolution image from noisy undersampled multiframes. IEEE Trans Acoust, Speech, Signal Process 38(6):1013–1027CrossRef Kim SP, Bose NK, Valenzuela HM (1990) Recursive reconstruction of high resolution image from noisy undersampled multiframes. IEEE Trans Acoust, Speech, Signal Process 38(6):1013–1027CrossRef
19.
Zurück zum Zitat Freeman WT, Jones TR, Pasztor EC (2002) Example-based super-resolution. IEEE Comput Graph Appln 22(2):56–65CrossRef Freeman WT, Jones TR, Pasztor EC (2002) Example-based super-resolution. IEEE Comput Graph Appln 22(2):56–65CrossRef
20.
Zurück zum Zitat Farsiu S, Robinson MD, Elad M, Milanfar P (2004) Fast and robust multiframe super resolution. IEEE Trans Image Process 13(10):1327–1344CrossRef Farsiu S, Robinson MD, Elad M, Milanfar P (2004) Fast and robust multiframe super resolution. IEEE Trans Image Process 13(10):1327–1344CrossRef
21.
Zurück zum Zitat Park SC, Park MK, Kang MG (2003) Super-resolution image reconstruction: A technical overview. IEEE Signal Process Mag 20(3):21–36CrossRef Park SC, Park MK, Kang MG (2003) Super-resolution image reconstruction: A technical overview. IEEE Signal Process Mag 20(3):21–36CrossRef
22.
Zurück zum Zitat Tappen MF, Russell BC, Freeman WT (2003) Exploiting the sparse derivative prior for super-resolution and image demosaicing. In: IEEE Workshop on Statistical and Computational Theories of Vision Tappen MF, Russell BC, Freeman WT (2003) Exploiting the sparse derivative prior for super-resolution and image demosaicing. In: IEEE Workshop on Statistical and Computational Theories of Vision
24.
Zurück zum Zitat Dai S, Han M, Xu W, Wu Y, Gong Y (2007) Soft edge smoothness prior for alpha channel super resolution. In: Proc IEEE Int Conf Comput Vision Pattern Recogn, pp 1–8 Dai S, Han M, Xu W, Wu Y, Gong Y (2007) Soft edge smoothness prior for alpha channel super resolution. In: Proc IEEE Int Conf Comput Vision Pattern Recogn, pp 1–8
25.
Zurück zum Zitat Yang J, Wright J, Huang T, Ma Y (2008) Image super-resolution as sparse representation of raw image patches. In: Proc IEEE Int Conf Comput Vision Pattern Recogn, pp 1–8 Yang J, Wright J, Huang T, Ma Y (2008) Image super-resolution as sparse representation of raw image patches. In: Proc IEEE Int Conf Comput Vision Pattern Recogn, pp 1–8
26.
Zurück zum Zitat Yang J, Wright J, Huang T, Ma Y (2010) Image super-resolution via sparse representation. IEEE Trans Image Process 19(11):2861–2873MathSciNetMATHCrossRef Yang J, Wright J, Huang T, Ma Y (2010) Image super-resolution via sparse representation. IEEE Trans Image Process 19(11):2861–2873MathSciNetMATHCrossRef
27.
Zurück zum Zitat Yang J, Wang Z, Lin Z, Cohen S, Huang T (2012) Coupled dictionary training for image super-resolution. IEEE Trans Image Process 21(8): 3467–3478MathSciNetMATHCrossRef Yang J, Wang Z, Lin Z, Cohen S, Huang T (2012) Coupled dictionary training for image super-resolution. IEEE Trans Image Process 21(8): 3467–3478MathSciNetMATHCrossRef
28.
Zurück zum Zitat Zeyde R, Elad M, Protter M (2012) On single image scale-up using sparse-representations. In: Curves and Surfaces. Springer, pp 711–730MATH Zeyde R, Elad M, Protter M (2012) On single image scale-up using sparse-representations. In: Curves and Surfaces. Springer, pp 711–730MATH
29.
Zurück zum Zitat Timofte R, De Smet V, Van Gool L (2013) Anchored neighborhood regression for fast example-based super-resolution. In: Proc IEEE Int Conf Comput Vision Pattern Recogn, pp 1920–1927 Timofte R, De Smet V, Van Gool L (2013) Anchored neighborhood regression for fast example-based super-resolution. In: Proc IEEE Int Conf Comput Vision Pattern Recogn, pp 1920–1927
30.
Zurück zum Zitat Timofte R, De Smet V, Van Gool L (2014) A+: Adjusted anchored neighborhood regression for fast super-resolution. In: Proc Asian Conf Comput Vision, pp 111–126 Timofte R, De Smet V, Van Gool L (2014) A+: Adjusted anchored neighborhood regression for fast super-resolution. In: Proc Asian Conf Comput Vision, pp 111–126
31.
Zurück zum Zitat Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Machine Intell 31(2):210–227CrossRef Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Machine Intell 31(2):210–227CrossRef
32.
Zurück zum Zitat Taubman DS, Marcellin MW (2001) JPEG 2000: Image Compression Fundamentals, Standards and Practice. Kluwer Academic, Norwell, MA Taubman DS, Marcellin MW (2001) JPEG 2000: Image Compression Fundamentals, Standards and Practice. Kluwer Academic, Norwell, MA
33.
Zurück zum Zitat Olshausen BA, Field DJ (1996) Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381: 607–609CrossRef Olshausen BA, Field DJ (1996) Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381: 607–609CrossRef
34.
Zurück zum Zitat Candès E, Romberg J, Tao T (2006) Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inf Theory 52(2):489–509MathSciNetMATHCrossRef Candès E, Romberg J, Tao T (2006) Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inf Theory 52(2):489–509MathSciNetMATHCrossRef
35.
Zurück zum Zitat Lustig M, Donoho DL, Pauly JL (2007) Sparse MRI: The application of compressed sensing for rapid MR imaging. Magn Reson Med 58: 1182–1195CrossRef Lustig M, Donoho DL, Pauly JL (2007) Sparse MRI: The application of compressed sensing for rapid MR imaging. Magn Reson Med 58: 1182–1195CrossRef
36.
Zurück zum Zitat Kreutz-Delgado K, Murray JF, Rao BD, Engan K, Lee T-W, Sejnowski TJ (2003) Dictionary learning algorithms for sparse representation. Neural Comput 15(2):349–396MATHCrossRef Kreutz-Delgado K, Murray JF, Rao BD, Engan K, Lee T-W, Sejnowski TJ (2003) Dictionary learning algorithms for sparse representation. Neural Comput 15(2):349–396MATHCrossRef
37.
Zurück zum Zitat Sprechmann P, Ramirez I, Sapiro G, Eldar YC (2011) C-HiLasso: A collaborative hierarchical sparse modeling framework. IEEE Trans Signal Process 59(9):4183–4198MathSciNetCrossRef Sprechmann P, Ramirez I, Sapiro G, Eldar YC (2011) C-HiLasso: A collaborative hierarchical sparse modeling framework. IEEE Trans Signal Process 59(9):4183–4198MathSciNetCrossRef
38.
Zurück zum Zitat Srinivas U, Suo Y, Dao M, Monga V, Tran TD (2015) Structured sparse priors for image classification. IEEE Trans Image Process 24(6):1763–1776MathSciNetCrossRef Srinivas U, Suo Y, Dao M, Monga V, Tran TD (2015) Structured sparse priors for image classification. IEEE Trans Image Process 24(6):1763–1776MathSciNetCrossRef
39.
Zurück zum Zitat Mousavi HS, Srinivas U, Monga V, Suo Y, Dao M, Tran TD (2014) Multi-task image classification via collaborative, hierarchical spike-and-slab priors. In: Proc IEEE Int Conf Image Process, pp 4236–4240 Mousavi HS, Srinivas U, Monga V, Suo Y, Dao M, Tran TD (2014) Multi-task image classification via collaborative, hierarchical spike-and-slab priors. In: Proc IEEE Int Conf Image Process, pp 4236–4240
40.
Zurück zum Zitat Suo Y, Dao M, Tran T, Mousavi H, Srinivas U, Monga V (2014) Group structured dirty dictionary learning for classification. In: Proc IEEE Int Conf Image Process, pp 150–154 Suo Y, Dao M, Tran T, Mousavi H, Srinivas U, Monga V (2014) Group structured dirty dictionary learning for classification. In: Proc IEEE Int Conf Image Process, pp 150–154
41.
Zurück zum Zitat Anaraki FP, Hughes SM (2013) Compressive K-SVD. In: Proc IEEE Int Conf Acoust, Speech, Signal Process. pp 5469–5473 Anaraki FP, Hughes SM (2013) Compressive K-SVD. In: Proc IEEE Int Conf Acoust, Speech, Signal Process. pp 5469–5473
42.
Zurück zum Zitat Sadeghi, M Babaie-Zadeh M, Jutten C (2013) Dictionary learning for sparse representation: A novel approach. IEEE Signal Process Lett 20(12): 1195–1198CrossRef Sadeghi, M Babaie-Zadeh M, Jutten C (2013) Dictionary learning for sparse representation: A novel approach. IEEE Signal Process Lett 20(12): 1195–1198CrossRef
43.
Zurück zum Zitat Gorodnitsky IF, Rao BD (1997) Sparse signal reconstruction from limited data using FOCUSS: A re-weighted minimum norm algorithm. IEEE Trans Signal Process 45(3):600–616CrossRef Gorodnitsky IF, Rao BD (1997) Sparse signal reconstruction from limited data using FOCUSS: A re-weighted minimum norm algorithm. IEEE Trans Signal Process 45(3):600–616CrossRef
44.
Zurück zum Zitat Wright SJ, Nowak RD, Figueiredo MA (2009) Sparse reconstruction by separable approximation. IEEE Trans Signal Process 57(7):2479–2493MathSciNetCrossRef Wright SJ, Nowak RD, Figueiredo MA (2009) Sparse reconstruction by separable approximation. IEEE Trans Signal Process 57(7):2479–2493MathSciNetCrossRef
45.
Zurück zum Zitat Tropp JA, Gilbert AC (2007) Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans Inf Theory 53(12):4655–4666MathSciNetMATHCrossRef Tropp JA, Gilbert AC (2007) Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans Inf Theory 53(12):4655–4666MathSciNetMATHCrossRef
46.
Zurück zum Zitat Elad M, Aharon M (2006) Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans Image Process 15(12):3736–3745MathSciNetCrossRef Elad M, Aharon M (2006) Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans Image Process 15(12):3736–3745MathSciNetCrossRef
47.
Zurück zum Zitat Andersen MR, Winther O, Hansen LK (2014) Bayesian inference for structured spike and slab priors. In: Adv Neural Inf Process Syst, pp 1745–1753 Andersen MR, Winther O, Hansen LK (2014) Bayesian inference for structured spike and slab priors. In: Adv Neural Inf Process Syst, pp 1745–1753
48.
Zurück zum Zitat Srinivas U, Mousavi HS, Monga V, Hattel A, Jayarao B (2014) Simultaneous sparsity model for histopathological image representation and classification.” IEEE Trans Med Imag 33(5): 1163–1179 Srinivas U, Mousavi HS, Monga V, Hattel A, Jayarao B (2014) Simultaneous sparsity model for histopathological image representation and classification.” IEEE Trans Med Imag 33(5): 1163–1179
50.
Zurück zum Zitat Tibshirani R (2011) Regression shrinkage and selection via the Lasso: A retrospective. J R Stat Soc Ser B (Methodological) 73(3):273–282MathSciNetCrossRef Tibshirani R (2011) Regression shrinkage and selection via the Lasso: A retrospective. J R Stat Soc Ser B (Methodological) 73(3):273–282MathSciNetCrossRef
51.
Zurück zum Zitat Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc Ser B (Methodological) 58(1):267–288MathSciNetMATH Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc Ser B (Methodological) 58(1):267–288MathSciNetMATH
52.
Zurück zum Zitat Donoho DL (2006) For most large underdetermined systems of linear equations the minimal 1-norm solution is also the sparsest solution. Commun Pure Appl Math 59(6):797–829MathSciNetMATHCrossRef Donoho DL (2006) For most large underdetermined systems of linear equations the minimal 1-norm solution is also the sparsest solution. Commun Pure Appl Math 59(6):797–829MathSciNetMATHCrossRef
53.
Zurück zum Zitat Becker S, Bobin J, Candès EJ (2011) Nesta: A fast and accurate first-order method for sparse recovery. SIAM J Imag Sci 4(1):1–39MathSciNetMATHCrossRef Becker S, Bobin J, Candès EJ (2011) Nesta: A fast and accurate first-order method for sparse recovery. SIAM J Imag Sci 4(1):1–39MathSciNetMATHCrossRef
54.
Zurück zum Zitat Candes EJ, Wakin MB, Boyd SP (2008) Enhancing sparsity by reweighted L1 minimization. J Fourier Anal Appl 14(5–6):877–905MathSciNetMATHCrossRef Candes EJ, Wakin MB, Boyd SP (2008) Enhancing sparsity by reweighted L1 minimization. J Fourier Anal Appl 14(5–6):877–905MathSciNetMATHCrossRef
55.
Zurück zum Zitat Yuan M, Lin Y (2006) Model selection and estimation in regression with grouped variables. J R Stat Soc Ser B (Methodological) 68(1):49–67MathSciNetMATHCrossRef Yuan M, Lin Y (2006) Model selection and estimation in regression with grouped variables. J R Stat Soc Ser B (Methodological) 68(1):49–67MathSciNetMATHCrossRef
56.
Zurück zum Zitat Zou H, Hastie T (2005) Regularization and variable selection via the elastic net. J R Stat Soc Ser B (Methodological) 67(2):301–320MathSciNetMATHCrossRef Zou H, Hastie T (2005) Regularization and variable selection via the elastic net. J R Stat Soc Ser B (Methodological) 67(2):301–320MathSciNetMATHCrossRef
58.
59.
Zurück zum Zitat Tibshirani R, Saunders M, Rosset S, Zhu J, Knight K (2005) Sparsity and smoothness via the fused Lasso. J R Stat Soc Ser B (Methodological) 67(1):91–108MathSciNetMATHCrossRef Tibshirani R, Saunders M, Rosset S, Zhu J, Knight K (2005) Sparsity and smoothness via the fused Lasso. J R Stat Soc Ser B (Methodological) 67(1):91–108MathSciNetMATHCrossRef
61.
62.
63.
Zurück zum Zitat Candes EJ, Tao T (2010) The power of convex relaxation: Near-optimal matrix completion. IEEE Trans Inf Theory 56(5):2053–2080MathSciNetMATHCrossRef Candes EJ, Tao T (2010) The power of convex relaxation: Near-optimal matrix completion. IEEE Trans Inf Theory 56(5):2053–2080MathSciNetMATHCrossRef
64.
Zurück zum Zitat Mazumder R, Hastie T, Tibshirani R (2010) Spectral regularization algorithms for learning large incomplete matrices. J Mach Learn Res 11(Aug): 2287–2322MathSciNetMATH Mazumder R, Hastie T, Tibshirani R (2010) Spectral regularization algorithms for learning large incomplete matrices. J Mach Learn Res 11(Aug): 2287–2322MathSciNetMATH
65.
Zurück zum Zitat Mousavi A, Maleki A, RG Baraniuk (2013) Asymptotic analysis of LASSOs solution path with implications for approximate message passing. arXiv preprint arXiv:1309.5979 Mousavi A, Maleki A, RG Baraniuk (2013) Asymptotic analysis of LASSOs solution path with implications for approximate message passing. arXiv preprint arXiv:1309.5979
66.
Zurück zum Zitat Mohimani H, Babaie-Zadeh M, Jutten C (2009) A fast approach for overcomplete sparse decomposition based on smoothed norm. IEEE Trans Signal Process 57(1):289–301MathSciNetMATHCrossRef Mohimani H, Babaie-Zadeh M, Jutten C (2009) A fast approach for overcomplete sparse decomposition based on smoothed norm. IEEE Trans Signal Process 57(1):289–301MathSciNetMATHCrossRef
68.
69.
Zurück zum Zitat Lu X, Wang Y, Yuan Y (2013) Sparse coding from a Bayesian perspective. IEEE Trans Neur Netw Learn Sys 24(6):929–939CrossRef Lu X, Wang Y, Yuan Y (2013) Sparse coding from a Bayesian perspective. IEEE Trans Neur Netw Learn Sys 24(6):929–939CrossRef
70.
Zurück zum Zitat Dobigeon N, Hero AO, Tourneret J-Y (2009) Hierarchical bayesian sparse image reconstruction with application to MRFM. IEEE Trans Image Process 18(9):2059–2070MathSciNetMATHCrossRef Dobigeon N, Hero AO, Tourneret J-Y (2009) Hierarchical bayesian sparse image reconstruction with application to MRFM. IEEE Trans Image Process 18(9):2059–2070MathSciNetMATHCrossRef
71.
Zurück zum Zitat Boyd S, Parikh N, Chu E, Peleato B, Eckstein J (2011) Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning 3(1):1–122MATHCrossRef Boyd S, Parikh N, Chu E, Peleato B, Eckstein J (2011) Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning 3(1):1–122MATHCrossRef
72.
Zurück zum Zitat Beck A, Teboulle M (2009) A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J Imag Sci 2(1):183–202MathSciNetMATHCrossRef Beck A, Teboulle M (2009) A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J Imag Sci 2(1):183–202MathSciNetMATHCrossRef
73.
Zurück zum Zitat Tropp JA (2006) Algorithms for simultaneous sparse approximation. Part II: Convex relaxation. Signal Processing 86(3):589–602MathSciNetMATHCrossRef Tropp JA (2006) Algorithms for simultaneous sparse approximation. Part II: Convex relaxation. Signal Processing 86(3):589–602MathSciNetMATHCrossRef
74.
Zurück zum Zitat Baraniuk RG, Cevher V, Duarte MF, Hegde C (2010) Model-based compressive sensing. IEEE Trans Image Process 56(4):1982–2001MathSciNetMATH Baraniuk RG, Cevher V, Duarte MF, Hegde C (2010) Model-based compressive sensing. IEEE Trans Image Process 56(4):1982–2001MathSciNetMATH
75.
Zurück zum Zitat He L, Carin L (2009) Exploiting structure in wavelet-based Bayesian compressive sensing. IEEE Trans Signal Process 57(9):3488–3497MathSciNetCrossRef He L, Carin L (2009) Exploiting structure in wavelet-based Bayesian compressive sensing. IEEE Trans Signal Process 57(9):3488–3497MathSciNetCrossRef
76.
Zurück zum Zitat Babacan S, Molina R, Katsaggelos A (2010) Bayesian compressive sensing using Laplace priors. IEEE Trans Image Process 19(1):53–63MathSciNetMATHCrossRef Babacan S, Molina R, Katsaggelos A (2010) Bayesian compressive sensing using Laplace priors. IEEE Trans Image Process 19(1):53–63MathSciNetMATHCrossRef
77.
Zurück zum Zitat Suo Y, Dao M, Tran T, Srinivas U, Monga V (2013) Hierarchical sparse modeling using spike and slab priors. In: Proc IEEE Int Conf Acoust, speech, Signal Process. pp 3103–3107 Suo Y, Dao M, Tran T, Srinivas U, Monga V (2013) Hierarchical sparse modeling using spike and slab priors. In: Proc IEEE Int Conf Acoust, speech, Signal Process. pp 3103–3107
78.
Zurück zum Zitat Srinivas U, Suo Y, Dao M, Monga V, Tran TD (2013) Structured sparse priors for image classification. In: Proc IEEE Int Conf Image Process, pp 3211–3215 Srinivas U, Suo Y, Dao M, Monga V, Tran TD (2013) Structured sparse priors for image classification. In: Proc IEEE Int Conf Image Process, pp 3211–3215
79.
Zurück zum Zitat Jenatton R, Audibert J-Y, Bach F (2011) Structured variable selection with sparsity-inducing norms. J Mach Learn Res 12:2777–2824MathSciNetMATH Jenatton R, Audibert J-Y, Bach F (2011) Structured variable selection with sparsity-inducing norms. J Mach Learn Res 12:2777–2824MathSciNetMATH
80.
Zurück zum Zitat Huang J, Zhang T, Metaxas D (2011) Learning with structured sparsity. J Mach Learn Res 12: 3371–3412MathSciNetMATH Huang J, Zhang T, Metaxas D (2011) Learning with structured sparsity. J Mach Learn Res 12: 3371–3412MathSciNetMATH
82.
Zurück zum Zitat Cotter SF, Rao BD, Engan K, Kreutz-Delgado K (2005) Sparse solutions to linear inverse problems with multiple measurement vectors. IEEE Trans Signal Process 53(7):2477–2488MathSciNetMATHCrossRef Cotter SF, Rao BD, Engan K, Kreutz-Delgado K (2005) Sparse solutions to linear inverse problems with multiple measurement vectors. IEEE Trans Signal Process 53(7):2477–2488MathSciNetMATHCrossRef
83.
Zurück zum Zitat Eldar YC, Rauhut H (2010) Average case analysis of multichannel sparse recovery using convex relaxation. IEEE Trans Inf Theory 56(1):505–519MathSciNetMATHCrossRef Eldar YC, Rauhut H (2010) Average case analysis of multichannel sparse recovery using convex relaxation. IEEE Trans Inf Theory 56(1):505–519MathSciNetMATHCrossRef
84.
Zurück zum Zitat Yen T-J (2011) A majorization–minimization approach to variable selection using spike and slab priors. Ann Stat 39(3):1748–1775MathSciNetMATHCrossRef Yen T-J (2011) A majorization–minimization approach to variable selection using spike and slab priors. Ann Stat 39(3):1748–1775MathSciNetMATHCrossRef
85.
Zurück zum Zitat Cevher V, Indyk P, Carin L, Baraniuk RG (2010) Sparse signal recovery and acquisition with graphical models. IEEE Signal Process Mag 27(6):92–103 Cevher V, Indyk P, Carin L, Baraniuk RG (2010) Sparse signal recovery and acquisition with graphical models. IEEE Signal Process Mag 27(6):92–103
86.
Zurück zum Zitat Cevher V (2009) Learning with compressible priors. In: Adv Neural Inf Process Syst, pp 261–269 Cevher V (2009) Learning with compressible priors. In: Adv Neural Inf Process Syst, pp 261–269
87.
Zurück zum Zitat Cevher V, Indyk P, Carin L, Baraniuk RG (2010) Sparse signal recovery and acquisition with graphical models. IEEE Signal Process Mag 27(6):92–103 Cevher V, Indyk P, Carin L, Baraniuk RG (2010) Sparse signal recovery and acquisition with graphical models. IEEE Signal Process Mag 27(6):92–103
88.
89.
Zurück zum Zitat George EI, McCulloch RE (1993) Variable selection via Gibbs sampling. J Amer Stat Assoc 88(423):881–889CrossRef George EI, McCulloch RE (1993) Variable selection via Gibbs sampling. J Amer Stat Assoc 88(423):881–889CrossRef
90.
Zurück zum Zitat Ishwaran H, Rao JS (2005) Spike and slab variable selection: Frequentist and Bayesian strategies. Ann Stat 730–773 Ishwaran H, Rao JS (2005) Spike and slab variable selection: Frequentist and Bayesian strategies. Ann Stat 730–773
91.
Zurück zum Zitat Carvalho CM, Chang J, Lucas JE, Nevins JR, Wang Q, West M (2008) High-dimensional sparse factor modeling: Applications in gene expression genomics. J Amer Stat Assoc 103(484): 1438–1456MathSciNetMATHCrossRef Carvalho CM, Chang J, Lucas JE, Nevins JR, Wang Q, West M (2008) High-dimensional sparse factor modeling: Applications in gene expression genomics. J Amer Stat Assoc 103(484): 1438–1456MathSciNetMATHCrossRef
92.
Zurück zum Zitat Titsias MK, Lázaro-Gredilla M (2011) Spike and slab variational inference for multi-task and multiple kernel learning. In: Adv Neural Inf Process Syst, pp 2339–2347 Titsias MK, Lázaro-Gredilla M (2011) Spike and slab variational inference for multi-task and multiple kernel learning. In: Adv Neural Inf Process Syst, pp 2339–2347
93.
Zurück zum Zitat Hernández-Lobato JM, Hernández-Lobato D, Suárez A (2014) Expectation propagation in linear regression models with spike-and-slab priors. Machine Learning pp 1–51 Hernández-Lobato JM, Hernández-Lobato D, Suárez A (2014) Expectation propagation in linear regression models with spike-and-slab priors. Machine Learning pp 1–51
94.
Zurück zum Zitat Hernández-Lobato D, Hernández-Lobato JM, Dupont P (2013) Generalized spike-and-slab priors for bayesian group feature selection using expectation propagation. J Mach Learn Res 14(1):1891–1945MathSciNetMATH Hernández-Lobato D, Hernández-Lobato JM, Dupont P (2013) Generalized spike-and-slab priors for bayesian group feature selection using expectation propagation. J Mach Learn Res 14(1):1891–1945MathSciNetMATH
96.
Zurück zum Zitat Vila J, Schniter P (2011) Expectation-maximization Bernoulli-Gaussian approximate message passing. In: Proc IEEE Asilomar Conf Signal, Syst, Comput, pp 799–803 Vila J, Schniter P (2011) Expectation-maximization Bernoulli-Gaussian approximate message passing. In: Proc IEEE Asilomar Conf Signal, Syst, Comput, pp 799–803
97.
Zurück zum Zitat Mousavi, HS, Monga V, Tran TD (2015) Iterative convex refinement for sparse recovery. IEEE Signal Process Lett 22(11):1903–1907CrossRef Mousavi, HS, Monga V, Tran TD (2015) Iterative convex refinement for sparse recovery. IEEE Signal Process Lett 22(11):1903–1907CrossRef
98.
Zurück zum Zitat Chouzenoux E, Jezierska A, Pesquet J-C, Talbot H (2013) A majorize-minimize subspace approach for ℓ 2 − ℓ 0 image regularization. SIAM J Imag Sci 6(1):563–591MathSciNetMATHCrossRef Chouzenoux E, Jezierska A, Pesquet J-C, Talbot H (2013) A majorize-minimize subspace approach for 2 0 image regularization. SIAM J Imag Sci 6(1):563–591MathSciNetMATHCrossRef
99.
Zurück zum Zitat Chaari L, Batatia H, Dobigeon N, Tourneret J-Y (2014) A hierarchical sparsity-smoothness bayesian model for ℓ 0 + ℓ 1 + ℓ 2 regularization. In: Proc IEEE Int Conf Acoust, Speech, Signal Process, pp 1901–1905 Chaari L, Batatia H, Dobigeon N, Tourneret J-Y (2014) A hierarchical sparsity-smoothness bayesian model for 0 + 1 + 2 regularization. In: Proc IEEE Int Conf Acoust, Speech, Signal Process, pp 1901–1905
100.
Zurück zum Zitat Mohammadi M, Fatemizadeh E, Mahoor M (2014) PCA-based dictionary building for accurate facial expression recognition via sparse representation. J Vis Commun Image Represent 25(5):1082–1092CrossRef Mohammadi M, Fatemizadeh E, Mahoor M (2014) PCA-based dictionary building for accurate facial expression recognition via sparse representation. J Vis Commun Image Represent 25(5):1082–1092CrossRef
105.
Zurück zum Zitat Afonso MV, Bioucas-Dias JM, Figueiredo MA (2010) Fast image recovery using variable splitting and constrained optimization. IEEE Trans Image Process 19(9):2345–2356MathSciNetMATHCrossRef Afonso MV, Bioucas-Dias JM, Figueiredo MA (2010) Fast image recovery using variable splitting and constrained optimization. IEEE Trans Image Process 19(9):2345–2356MathSciNetMATHCrossRef
106.
Zurück zum Zitat Chambolle A (2004) An algorithm for total variation minimization and applications. J Math Imaging Vis 20(1–2):89–97MathSciNetMATH Chambolle A (2004) An algorithm for total variation minimization and applications. J Math Imaging Vis 20(1–2):89–97MathSciNetMATH
107.
Zurück zum Zitat Pillai JK, Patel VM, Chellappa R, Ratha NK (2011) Secure and robust iris recognition using random projections and sparse representations. IEEE Trans Pattern Anal Machine Intell 33(9):1877–1893CrossRef Pillai JK, Patel VM, Chellappa R, Ratha NK (2011) Secure and robust iris recognition using random projections and sparse representations. IEEE Trans Pattern Anal Machine Intell 33(9):1877–1893CrossRef
108.
Zurück zum Zitat Majumdar A, Ward RK (2009) Classification via group sparsity promoting regularization. In: Proc IEEE Int Conf Acoust, Speech, Signal Process, pp 861–864 Majumdar A, Ward RK (2009) Classification via group sparsity promoting regularization. In: Proc IEEE Int Conf Acoust, Speech, Signal Process, pp 861–864
109.
Zurück zum Zitat Zhao W, Chellappa R, Phillips PJ, Rosenfeld A (2003) Face recognition: A literature survey. ACM Comput Surv 35(4):399–458CrossRef Zhao W, Chellappa R, Phillips PJ, Rosenfeld A (2003) Face recognition: A literature survey. ACM Comput Surv 35(4):399–458CrossRef
110.
Zurück zum Zitat Zhang X, Gao Y (2009) Face recognition across pose: A review. Pattern Recognition 42(11): 2876–2896CrossRef Zhang X, Gao Y (2009) Face recognition across pose: A review. Pattern Recognition 42(11): 2876–2896CrossRef
111.
Zurück zum Zitat Li SZ, Jain AK (eds) (2011) Handbook of Face Recognition, 2nd edn. Springer Li SZ, Jain AK (eds) (2011) Handbook of Face Recognition, 2nd edn. Springer
112.
Zurück zum Zitat Georghiades AS, Belhumeur PN, Kriegman DJ (2001) From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE Trans Pattern Anal Machine Intell 23(6):643–660CrossRef Georghiades AS, Belhumeur PN, Kriegman DJ (2001) From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE Trans Pattern Anal Machine Intell 23(6):643–660CrossRef
113.
Zurück zum Zitat Martinez AM, Benavente R (1998) The AR face database. CVC Technical Report, 24 Martinez AM, Benavente R (1998) The AR face database. CVC Technical Report, 24
114.
Zurück zum Zitat Yang M, Zhang L, Yang J, Zhang D (2011) Robust sparse coding for face recognition. In: Proc IEEE Conf Comput Vision Pattern Recogn, pp 625–632 Yang M, Zhang L, Yang J, Zhang D (2011) Robust sparse coding for face recognition. In: Proc IEEE Conf Comput Vision Pattern Recogn, pp 625–632
115.
Zurück zum Zitat M. Turk and A. Pentland (1991) Eigenfaces for recognition. J Cogn Neurosci 3(1):71–86CrossRef M. Turk and A. Pentland (1991) Eigenfaces for recognition. J Cogn Neurosci 3(1):71–86CrossRef
116.
Zurück zum Zitat Ho J, Yang M, Lim J, Lee K, Kriegman D (2003) Clustering appearances of objects under varying illumination conditions. In: Proc IEEE Int Conf Comput Vision Pattern Recogn, pp 11–18 Ho J, Yang M, Lim J, Lee K, Kriegman D (2003) Clustering appearances of objects under varying illumination conditions. In: Proc IEEE Int Conf Comput Vision Pattern Recogn, pp 11–18
117.
118.
Zurück zum Zitat Belhumeur PN, Hespanha JP, Kriegman DJ (1997) Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE Trans Pattern Anal Machine Intell 19(7): 711–720CrossRef Belhumeur PN, Hespanha JP, Kriegman DJ (1997) Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE Trans Pattern Anal Machine Intell 19(7): 711–720CrossRef
119.
Zurück zum Zitat Huang J, Huang X, Metaxas D (2008) Simultaneous image transformation and sparse representation recovery. In: Proc IEEE Int Conf Comput Vision Pattern Recogn, pp 1–8 Huang J, Huang X, Metaxas D (2008) Simultaneous image transformation and sparse representation recovery. In: Proc IEEE Int Conf Comput Vision Pattern Recogn, pp 1–8
120.
Zurück zum Zitat Wagner A, Wright J, Ganesh A, Zhou Z, Mobahi H, Ma Y (2012) Towards a practical face recognition system: Robust alignment and illumination by sparse representation. IEEE Trans Pattern Anal Machine Intell 34(2):372–386CrossRef Wagner A, Wright J, Ganesh A, Zhou Z, Mobahi H, Ma Y (2012) Towards a practical face recognition system: Robust alignment and illumination by sparse representation. IEEE Trans Pattern Anal Machine Intell 34(2):372–386CrossRef
121.
Zurück zum Zitat Fei-Fei L, Fergus R, Perona P (2004) Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories. In: Proc IEEE Int Conf Comput Vision Pattern Recogn, pp 59–70 Fei-Fei L, Fergus R, Perona P (2004) Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories. In: Proc IEEE Int Conf Comput Vision Pattern Recogn, pp 59–70
122.
Zurück zum Zitat Lazebnik S, Schmid C, Ponce J (2006) Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In: Proc IEEE Int Conf Comput Vision Pattern Recogn, pp 2169–2178 Lazebnik S, Schmid C, Ponce J (2006) Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In: Proc IEEE Int Conf Comput Vision Pattern Recogn, pp 2169–2178
123.
Zurück zum Zitat Zhang H, Berg A, Maire M, Malik J (2006) SVM-KNN: Discriminative nearest neighbor classification for visual category recognition. In: Proc IEEE Int Conf Comput Vision Pattern Recogn, pp 2126–2136 Zhang H, Berg A, Maire M, Malik J (2006) SVM-KNN: Discriminative nearest neighbor classification for visual category recognition. In: Proc IEEE Int Conf Comput Vision Pattern Recogn, pp 2126–2136
124.
Zurück zum Zitat Wang J, Yang J, Yu K, Lv F, Huang T, Gong Y (2010) Locality-constrained linear coding for image classification. In: Proc IEEE Int Conf Comput Vision Pattern Recogn, pp 3360–3367 Wang J, Yang J, Yu K, Lv F, Huang T, Gong Y (2010) Locality-constrained linear coding for image classification. In: Proc IEEE Int Conf Comput Vision Pattern Recogn, pp 3360–3367
Metadaten
Titel
Sparsity Constrained Estimation in Image Processing and Computer Vision
verfasst von
Vishal Monga
Hojjat Seyed Mousavi
Umamahesh Srinivas
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-61609-4_8