Skip to main content
Erschienen in:

01.08.2023

Spatiotemporal linear stability of viscoelastic subdiffusive channel flows: a fractional calculus framework

verfasst von: Tanisha Chauhan, Diksha Bansal, Sarthok Sircar

Erschienen in: Journal of Engineering Mathematics | Ausgabe 1/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Der Artikel untersucht die räumlich-zeitliche lineare Stabilität viskoelastischer subdiffuser Kanalströme und nutzt dabei ein Fragment-Kalkulationsgerüst. Es untersucht die kritischen Bedingungen für Instabilität und die lineare räumlich-zeitliche Reaktion der Strömung bei kritischen Materialparametern. Die Studie differenziert sich durch die Analyse der Stabilität zweier spezifischer Fälle von Monomerdiffusion in Rouse-Kettenschmelzen und Zimm-Kettenlösungen. Die Autoren heben auch die Beziehung zwischen der subdiffusen Zeitskala des Machtgesetzes und der Bruchreihenfolge der Zeitderivate im Kontinuum hervor. Die Arbeit wird durch Vergleiche mit klassischen Oldroyd-B-Flüssigkeitsstabilitätsanalysen validiert und enthüllt neue Einsichten in die Strömungsdynamik viskoelastischer subdiffuser Flüssigkeiten.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Goychuk I, Pöschel T (2020) Hydrodynamic memory can boost enormously driven nonlinear diffusion and transport. Phys Rev E 102(1):012139MathSciNetCrossRef Goychuk I, Pöschel T (2020) Hydrodynamic memory can boost enormously driven nonlinear diffusion and transport. Phys Rev E 102(1):012139MathSciNetCrossRef
2.
Zurück zum Zitat Goychuk I, Pöschel T (2021) Fingerprints of viscoelastic subdiffusion in random environments: revisiting some experimental data and their interpretations. Phys Rev E 104(3):034125CrossRef Goychuk I, Pöschel T (2021) Fingerprints of viscoelastic subdiffusion in random environments: revisiting some experimental data and their interpretations. Phys Rev E 104(3):034125CrossRef
4.
Zurück zum Zitat Coffey WT, Kalmykov PY, Waldron J (2004) The Langevin equation: with applications to stochastic problems in Physics, Chemistry and Electrical Engineering, 3rd edn. World Scientific Series in Contemporary Chemical Physics, vol. 27. World Scientific, Singapore Coffey WT, Kalmykov PY, Waldron J (2004) The Langevin equation: with applications to stochastic problems in Physics, Chemistry and Electrical Engineering, 3rd edn. World Scientific Series in Contemporary Chemical Physics, vol. 27. World Scientific, Singapore
5.
Zurück zum Zitat Rubenstein M, Colby RH (2003) Polymer Physics. Oxford University Press, New York Rubenstein M, Colby RH (2003) Polymer Physics. Oxford University Press, New York
6.
Zurück zum Zitat Sircar S, Wang Q (2009) Dynamics and rheology of biaxial liquid crystal polymers in shear flows. J Rheol 53(4):819–858CrossRef Sircar S, Wang Q (2009) Dynamics and rheology of biaxial liquid crystal polymers in shear flows. J Rheol 53(4):819–858CrossRef
7.
Zurück zum Zitat Kremer K, Grest GS (1990) Dynamics of entangled linear polymer melts: a molecular-dynamics simulation. J Chem Phys 92(8):5057–5086CrossRef Kremer K, Grest GS (1990) Dynamics of entangled linear polymer melts: a molecular-dynamics simulation. J Chem Phys 92(8):5057–5086CrossRef
8.
Zurück zum Zitat Kou SC, Xie XS (2004) Generalized Langevin equation with fractional Gaussian noise: subdiffusion within a single protein molecule. Phys Rev Lett 93(18):180603CrossRef Kou SC, Xie XS (2004) Generalized Langevin equation with fractional Gaussian noise: subdiffusion within a single protein molecule. Phys Rev Lett 93(18):180603CrossRef
9.
Zurück zum Zitat Morgado R, Oliveira FA, Batrouni GG, Hansen A (2002) Relation between anomalous and normal diffusion in systems with memory. Phys Rev Lett 89(10):100601CrossRef Morgado R, Oliveira FA, Batrouni GG, Hansen A (2002) Relation between anomalous and normal diffusion in systems with memory. Phys Rev Lett 89(10):100601CrossRef
10.
Zurück zum Zitat Vainstein MH, Lapas LC, Oliveira FA (2008) Anomalous diffusion. Technical Report Vainstein MH, Lapas LC, Oliveira FA (2008) Anomalous diffusion. Technical Report
11.
12.
Zurück zum Zitat Gemant A (1938) XLV. On fractional differentials. Lond Edinb Dublin Philos Mag J Sci 25(168):540–549MATHCrossRef Gemant A (1938) XLV. On fractional differentials. Lond Edinb Dublin Philos Mag J Sci 25(168):540–549MATHCrossRef
13.
Zurück zum Zitat Scott-Blair GW (1944) Analytical and integrative aspects of the stress-strain-time problem. J Sci Instr 21(5):80–84CrossRef Scott-Blair GW (1944) Analytical and integrative aspects of the stress-strain-time problem. J Sci Instr 21(5):80–84CrossRef
14.
Zurück zum Zitat Scott-Blair GW (1947) The role of psychophysics in rheology. J Coll Sci 2(1):21–32CrossRef Scott-Blair GW (1947) The role of psychophysics in rheology. J Coll Sci 2(1):21–32CrossRef
15.
Zurück zum Zitat Caputo M (1967) Linear models of dissipation whose Q is almost frequency independent-II. Geophys J Int 13(5):529–539CrossRef Caputo M (1967) Linear models of dissipation whose Q is almost frequency independent-II. Geophys J Int 13(5):529–539CrossRef
16.
Zurück zum Zitat Bagley RL, Torvik PJ (1983) A theoretical basis for the application of fractional calculus to viscoelasticity. J Rheol 27(3):201–210MATHCrossRef Bagley RL, Torvik PJ (1983) A theoretical basis for the application of fractional calculus to viscoelasticity. J Rheol 27(3):201–210MATHCrossRef
17.
Zurück zum Zitat Rouse PE (1953) A theory of the linear viscoelastic properties of dilute solutions of coiling polymers. J Chem Phys 21(7):1272–1280CrossRef Rouse PE (1953) A theory of the linear viscoelastic properties of dilute solutions of coiling polymers. J Chem Phys 21(7):1272–1280CrossRef
18.
Zurück zum Zitat Tan W, Xu M (2002) Plane surface suddenly set in motion in a viscoelastic fluid with fractional Maxwell model. Acta Mech 18(4):342–349MathSciNetCrossRef Tan W, Xu M (2002) Plane surface suddenly set in motion in a viscoelastic fluid with fractional Maxwell model. Acta Mech 18(4):342–349MathSciNetCrossRef
19.
Zurück zum Zitat Qi M, Xu M (2009) Some unsteady unidirectional flows of a generalized oldroyd-b fluid with fractional derivative. Appl Math Model 33:4184–4191MathSciNetMATHCrossRef Qi M, Xu M (2009) Some unsteady unidirectional flows of a generalized oldroyd-b fluid with fractional derivative. Appl Math Model 33:4184–4191MathSciNetMATHCrossRef
20.
Zurück zum Zitat Fetecau C, Fetecau C, Kamran M, Vieru D (2009) Exact solutions for the flow of a generalized oldroyd-b fluid induced by a constantly accelerating plate between two side walls perpendicular to the plate. J Non-Newt Fluid Mech 189–201 Fetecau C, Fetecau C, Kamran M, Vieru D (2009) Exact solutions for the flow of a generalized oldroyd-b fluid induced by a constantly accelerating plate between two side walls perpendicular to the plate. J Non-Newt Fluid Mech 189–201
21.
Zurück zum Zitat Zheng L, Liu Y, Zhang X (2012) Slip effects on mhd flow of a generalized oldroyd-b fluid with fractional derivative. Nonlinear Anal RWA 13:513–523MathSciNetMATHCrossRef Zheng L, Liu Y, Zhang X (2012) Slip effects on mhd flow of a generalized oldroyd-b fluid with fractional derivative. Nonlinear Anal RWA 13:513–523MathSciNetMATHCrossRef
22.
Zurück zum Zitat Zhao J, Zheng L, Zhang X, Liu F (2016) Unsteady natural convection boundary layer heat transfer of fractional Maxwell viscoelastic fluid over a vertical plate. Int J Heat Mass Transfer 47:760–766CrossRef Zhao J, Zheng L, Zhang X, Liu F (2016) Unsteady natural convection boundary layer heat transfer of fractional Maxwell viscoelastic fluid over a vertical plate. Int J Heat Mass Transfer 47:760–766CrossRef
23.
Zurück zum Zitat Ancey C (2020) Bedload transport: a walk between randomness and determinism. Part 1. The state of the art. J Hydraul Res 58:1–17CrossRef Ancey C (2020) Bedload transport: a walk between randomness and determinism. Part 1. The state of the art. J Hydraul Res 58:1–17CrossRef
24.
Zurück zum Zitat Zaks MA, Nepomnyashchy A (2018) Subdiffusive and superdiffusive transport in plane steady viscous flows. Proc Natl Acad Sci 116(37):18245–18250MathSciNetMATHCrossRef Zaks MA, Nepomnyashchy A (2018) Subdiffusive and superdiffusive transport in plane steady viscous flows. Proc Natl Acad Sci 116(37):18245–18250MathSciNetMATHCrossRef
25.
Zurück zum Zitat Khalid M, Chaudhary I, Garg P, Shankar V, Subramanian G (2021) The centre-mode instability of viscoelastic plane Poiseuille flow. J Fluid Mech 915:A43MathSciNetMATHCrossRef Khalid M, Chaudhary I, Garg P, Shankar V, Subramanian G (2021) The centre-mode instability of viscoelastic plane Poiseuille flow. J Fluid Mech 915:A43MathSciNetMATHCrossRef
26.
Zurück zum Zitat Mason TG, Weitz DA (1995) Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids. Phys Rev Lett 74(7):1250–1253CrossRef Mason TG, Weitz DA (1995) Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids. Phys Rev Lett 74(7):1250–1253CrossRef
27.
Zurück zum Zitat Mason TG, Gang H, Weitz DA (1996) Rheology of complex fluids measured by dynamic light scattering. J Mol Struct 383:81–90CrossRef Mason TG, Gang H, Weitz DA (1996) Rheology of complex fluids measured by dynamic light scattering. J Mol Struct 383:81–90CrossRef
28.
Zurück zum Zitat Zimm BH (1956) Dynamics of polymer molecules in dilute solution: viscoelasticity, flow birefringence and dielectric loss. J Chem Phys 24(2):269–278MathSciNetCrossRef Zimm BH (1956) Dynamics of polymer molecules in dilute solution: viscoelasticity, flow birefringence and dielectric loss. J Chem Phys 24(2):269–278MathSciNetCrossRef
29.
Zurück zum Zitat Kirkwood JG (1954) The general theory of irreversible processes in solutions of macromolecules. J Polym Sci 12(1):1–14CrossRef Kirkwood JG (1954) The general theory of irreversible processes in solutions of macromolecules. J Polym Sci 12(1):1–14CrossRef
30.
Zurück zum Zitat Schiessel H, Metzler R, Blumen A, Nonnenmacher TF (1995) Generalized viscoelastic models: their fractional equations with solutions. J Phys A 28:6567–6584MATHCrossRef Schiessel H, Metzler R, Blumen A, Nonnenmacher TF (1995) Generalized viscoelastic models: their fractional equations with solutions. J Phys A 28:6567–6584MATHCrossRef
31.
Zurück zum Zitat Brader JM (2010) Nonlinear rheology of colloidal dispersions. J Phys 22:363101 Brader JM (2010) Nonlinear rheology of colloidal dispersions. J Phys 22:363101
32.
Zurück zum Zitat McKinley S, Yao L, Forest MG (2009) Transient anomalous diffusion of tracer particles in soft matter. J Rheol 53(6):1487–1506CrossRef McKinley S, Yao L, Forest MG (2009) Transient anomalous diffusion of tracer particles in soft matter. J Rheol 53(6):1487–1506CrossRef
33.
Zurück zum Zitat Sircar S, Wang Q (2008) Shear-induced mesostructures in biaxial liquid crystals. Phys Rev E 78(6):061702CrossRef Sircar S, Wang Q (2008) Shear-induced mesostructures in biaxial liquid crystals. Phys Rev E 78(6):061702CrossRef
34.
Zurück zum Zitat Sircar S, Wang Q (2010) Transient rheological responses in sheared biaxial liquid crystals. Rheologica Acta 49(7):699–717CrossRef Sircar S, Wang Q (2010) Transient rheological responses in sheared biaxial liquid crystals. Rheologica Acta 49(7):699–717CrossRef
35.
Zurück zum Zitat Li J, Sircar S, Wang Q (2010) A note on the kinematics of rigid molecules in linear flow fields and kinetic theory for biaxial liquid crystal polymers. e-LC Commun Li J, Sircar S, Wang Q (2010) A note on the kinematics of rigid molecules in linear flow fields and kinetic theory for biaxial liquid crystal polymers. e-LC Commun
36.
Zurück zum Zitat Sircar S, Li J, Wang Q (2010) Biaxial phases of bent-core liquid crystal polymers in shear flows. Commun Math Sci 8(3):697–720MathSciNetMATHCrossRef Sircar S, Li J, Wang Q (2010) Biaxial phases of bent-core liquid crystal polymers in shear flows. Commun Math Sci 8(3):697–720MathSciNetMATHCrossRef
37.
Zurück zum Zitat Sircar S (2010) A hydrodynamical kinetic theory for self-propelled ellipsoidal suspensions. Int J Emerg Multidiscp Fluid Sci 2(4) Sircar S (2010) A hydrodynamical kinetic theory for self-propelled ellipsoidal suspensions. Int J Emerg Multidiscp Fluid Sci 2(4)
39.
Zurück zum Zitat Sircar S, Aisenbrey E, Bryant SJ, Bortz DM (2015) Determining equilibrium osmolarity in poly (ethylene glycol)/chondrotin sulfate gels mimicking articular cartilage. J Theoret Biol 364:397–406MATHCrossRef Sircar S, Aisenbrey E, Bryant SJ, Bortz DM (2015) Determining equilibrium osmolarity in poly (ethylene glycol)/chondrotin sulfate gels mimicking articular cartilage. J Theoret Biol 364:397–406MATHCrossRef
40.
Zurück zum Zitat Sircar S, Roberts AJ (2016) Surface deformation and shear flow in ligand mediated cell adhesion. J Math Biol 73(4):1035–1052MathSciNetMATHCrossRef Sircar S, Roberts AJ (2016) Surface deformation and shear flow in ligand mediated cell adhesion. J Math Biol 73(4):1035–1052MathSciNetMATHCrossRef
41.
Zurück zum Zitat Sircar S, Nguyen G, Kotousov A, Roberts AJ (2016) Ligand-mediated adhesive mechanics of two static, deformed spheres. Eur Phys J E 39(10):1–9CrossRef Sircar S, Nguyen G, Kotousov A, Roberts AJ (2016) Ligand-mediated adhesive mechanics of two static, deformed spheres. Eur Phys J E 39(10):1–9CrossRef
42.
Zurück zum Zitat Sircar S, Bansal D (2019) Spatiotemporal linear stability of viscoelastic free shear flows: dilute regime. Phys Fluids 31(8):084104CrossRef Sircar S, Bansal D (2019) Spatiotemporal linear stability of viscoelastic free shear flows: dilute regime. Phys Fluids 31(8):084104CrossRef
43.
Zurück zum Zitat Singh S, Bansal D, Kaur G, Sircar S (2020) Implicit-explicit-compact methods for advection diffusion reaction equations. Comput Fluids 212:104709MathSciNetMATHCrossRef Singh S, Bansal D, Kaur G, Sircar S (2020) Implicit-explicit-compact methods for advection diffusion reaction equations. Comput Fluids 212:104709MathSciNetMATHCrossRef
44.
Zurück zum Zitat Bansal D, Chauhan T, Sircar S (2022) Spatiotemporal linear stability of viscoelastic Saffman–Taylor flows. Phys Fluids 34(10) Bansal D, Chauhan T, Sircar S (2022) Spatiotemporal linear stability of viscoelastic Saffman–Taylor flows. Phys Fluids 34(10)
45.
Zurück zum Zitat Bansal D, Ghosh D, Sircar S (2023) Selection mechanism in non-Newtonian Saffman-Taylor fingers. SIAM J Appl Math 83(2):329–353MathSciNetMATHCrossRef Bansal D, Ghosh D, Sircar S (2023) Selection mechanism in non-Newtonian Saffman-Taylor fingers. SIAM J Appl Math 83(2):329–353MathSciNetMATHCrossRef
46.
Zurück zum Zitat Glockle WG, Nonnenmacher TF (1991) Fractional integral operators and Fox functions in the theory of viscoelasticity. Macromolecules 24:6426–6434CrossRef Glockle WG, Nonnenmacher TF (1991) Fractional integral operators and Fox functions in the theory of viscoelasticity. Macromolecules 24:6426–6434CrossRef
47.
Zurück zum Zitat Glockle WG, Nonnenmacher TF (1994) Fractional relaxation and the time-temperature superposition principle. Rheologica Acta 33:337–343CrossRef Glockle WG, Nonnenmacher TF (1994) Fractional relaxation and the time-temperature superposition principle. Rheologica Acta 33:337–343CrossRef
48.
Zurück zum Zitat Prodanov D (2018) Fractional velocity as a tool for the study of non-linear problems. Fractal Fract 2(1):2–23CrossRef Prodanov D (2018) Fractional velocity as a tool for the study of non-linear problems. Fractal Fract 2(1):2–23CrossRef
49.
Zurück zum Zitat Prodanov D (2017) Conditions for continuity of fractional velocity and existence of fractional Taylor expansions. Chaos Solitons Fractals 102:236–244MathSciNetMATHCrossRef Prodanov D (2017) Conditions for continuity of fractional velocity and existence of fractional Taylor expansions. Chaos Solitons Fractals 102:236–244MathSciNetMATHCrossRef
50.
Zurück zum Zitat Macosko CW (1994) Rheology: principles, measurements, and applications, 1st edn. Wiley, New York Macosko CW (1994) Rheology: principles, measurements, and applications, 1st edn. Wiley, New York
51.
Zurück zum Zitat Spagnolie SE (2015) Complex fluids in biological systems: experiment, theory, and computation. Springer, New YorkMATHCrossRef Spagnolie SE (2015) Complex fluids in biological systems: experiment, theory, and computation. Springer, New YorkMATHCrossRef
52.
Zurück zum Zitat Jiménez AH, Santiago AMGJH, Gonzáles JS (2002) Relaxation modulus in PMMA and PTFE fitting by fractional Maxwell model. Polym Test 21:325–331CrossRef Jiménez AH, Santiago AMGJH, Gonzáles JS (2002) Relaxation modulus in PMMA and PTFE fitting by fractional Maxwell model. Polym Test 21:325–331CrossRef
53.
Zurück zum Zitat Bansal D, Ghosh D, Sircar S (2021) Spatiotemporal linear stability of viscoelastic free shear flows: nonaffine response regime. Phys Fluids 33:054106CrossRef Bansal D, Ghosh D, Sircar S (2021) Spatiotemporal linear stability of viscoelastic free shear flows: nonaffine response regime. Phys Fluids 33:054106CrossRef
54.
Zurück zum Zitat Jaishankar A, McKinley GH (2014) A fractional k-bkz constitutive formulation for describing the nonlinear rheology of multiscale complex fluids. J Rheol 58(6):1751–1788CrossRef Jaishankar A, McKinley GH (2014) A fractional k-bkz constitutive formulation for describing the nonlinear rheology of multiscale complex fluids. J Rheol 58(6):1751–1788CrossRef
55.
56.
Zurück zum Zitat Briggs RJ (1964) Electron-stream interaction with plasmas. MIT Press, CambridgeCrossRef Briggs RJ (1964) Electron-stream interaction with plasmas. MIT Press, CambridgeCrossRef
57.
Zurück zum Zitat Kupfer K, Bers A, Ram AK (1987) The cusp map in the complex-frequency plane for absolute instability. Phys Fluids 30(10):3075–3082MathSciNetCrossRef Kupfer K, Bers A, Ram AK (1987) The cusp map in the complex-frequency plane for absolute instability. Phys Fluids 30(10):3075–3082MathSciNetCrossRef
58.
Zurück zum Zitat Atalik K, Keunings R (2002) Non-linear temporal stability analysis of viscoelastic plane channel flows using a fully-spectral method. J Non-Newt Fluid Mech 102:299–319MATHCrossRef Atalik K, Keunings R (2002) Non-linear temporal stability analysis of viscoelastic plane channel flows using a fully-spectral method. J Non-Newt Fluid Mech 102:299–319MATHCrossRef
59.
Zurück zum Zitat Rabaud M, Couder Y, Gerard N (1988) Dynamics and stability of anomalous Saffman-Taylor fingers. Phys Rev A 37:935–947CrossRef Rabaud M, Couder Y, Gerard N (1988) Dynamics and stability of anomalous Saffman-Taylor fingers. Phys Rev A 37:935–947CrossRef
60.
61.
Zurück zum Zitat Riley JJ, Hak MG, Metcalfe RW (1988) Complaint coatings. Annu Rev Fluid Mech 20:393–420CrossRef Riley JJ, Hak MG, Metcalfe RW (1988) Complaint coatings. Annu Rev Fluid Mech 20:393–420CrossRef
62.
Zurück zum Zitat Nandagopalan P, John J, Baek SW, Miglani A, Ardhianto K (2018) Shear-flow rheology and viscoelastic instabilities of ethanol gel fuels. Exp Thermal Fluid Sci 99:181–189CrossRef Nandagopalan P, John J, Baek SW, Miglani A, Ardhianto K (2018) Shear-flow rheology and viscoelastic instabilities of ethanol gel fuels. Exp Thermal Fluid Sci 99:181–189CrossRef
63.
Zurück zum Zitat Zarabadi M (2019) Development of a robust microfluidic electrochemical cell for biofilm study in controlled hydrodynamic conditions. PhD thesis, Univ. Laval Zarabadi M (2019) Development of a robust microfluidic electrochemical cell for biofilm study in controlled hydrodynamic conditions. PhD thesis, Univ. Laval
64.
Zurück zum Zitat Zarabadi MP, Charette SJ, Greener J (2018) Flow-based deacidification of geobacter sulfurreducens biofilms depends on nutrient conditions: a microfluidic bioelectrochemical study. Chem Electrochem 5(23):3645–3653 Zarabadi MP, Charette SJ, Greener J (2018) Flow-based deacidification of geobacter sulfurreducens biofilms depends on nutrient conditions: a microfluidic bioelectrochemical study. Chem Electrochem 5(23):3645–3653
Metadaten
Titel
Spatiotemporal linear stability of viscoelastic subdiffusive channel flows: a fractional calculus framework
verfasst von
Tanisha Chauhan
Diksha Bansal
Sarthok Sircar
Publikationsdatum
01.08.2023
Verlag
Springer Netherlands
Erschienen in
Journal of Engineering Mathematics / Ausgabe 1/2023
Print ISSN: 0022-0833
Elektronische ISSN: 1573-2703
DOI
https://doi.org/10.1007/s10665-023-10282-7

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.