Skip to main content

2014 | OriginalPaper | Buchkapitel

9. Specific Intermolecular Interactions and Energies of Amino Acids and Esters

verfasst von : Alexei K. Baev

Erschienen in: Specific Intermolecular Interactions of Nitrogenated and Bioorganic Compounds

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The thermodynamic properties of important proteins amino acids have been studied a little in recent decades and the enthalpy and entropy values of the vaporization processes are still known for only a few (Table 9.1). These properties, along with the melting temperature carry important information because the process of phase transformation, with its chemical nature [1–3], is interconnected with the number of severe bonds and their energies. Therefore, even the melting temperature reflects the depth of the transformation of the crystal structure and its difference from the structure of the liquid condition [1–3]. On the basis of these ideas we have reasons to discuss the increase of the melting temperature of alanine at 2° in comparison with the same property of glycine amino acetic acid connected with stabilization of the same type of specific interaction. This stabilization is caused by the contribution to the structure of alanine of the methyl group, implementing the functional properties of the isostructural group, participating in the redistribution of the electron density in the molecule. Further replacement of the methyl group by the fragment СН3(СН)СН– in the molecule of l-valine and СН3(СН)СН–СН2– in the molecule of d-(l)-leucine is accompanied by stabilization of the specific interaction, formed by these fragments with the oxygen atom of the hydroxyl group of the glycine fragment D–O → CH3(CH3)CH– < D–O → CH3(CH3)CH–CH2–. Such a sharp reduction of the melting temperature of isoleucine points to the implementation of theethyl ligand with regard the functional properties of the isostructural group. Reduced melting temperatures of diacids l-ashartic and l-glutamic acids reflect the reduction of the energies of the hydrogen bonds with an increasing number of carboxyl groups and the significant change in the difference in the charges at the oxygen and hydrogen atomsof the hydroxyl groups. The hydrogen bonds introduced in a new type at asparagine and glutamine with reduced energy values, formed by the amide group D–O•••H–N > D–N•••H–N, and methylene groups, fringed by the amide groups, are responsible for the reduction of the melting temperature. In turn, the increasing number of methylene groups, fringed by the same amide groups, causes the reduction of the melting temperatures of the mentioned diacids in the sequence asparagine – glutamine. Similar changes in the energies of the specific interactions formed of crystalline and liquid dl-threonine, l-cysteine, l-arginine, and other compounds reflect the melting temperature of important protein amino acids. The insolubility of α-amino acids in hydrocarbons and ethers points to the high stability of the hydrogen bonds formed and the water solubility of most acids in this range indicates the comparability of the energies of the hydrogen bonds with a similar bond with water molecules (10.99 kJ mol−1) [6].

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Baev AK (1969) Problems of chemical nature of phase transformation. In: General and applied chemistry, vol 1. Vysheischaia Educating, Minsk, pp 197–206 Baev AK (1969) Problems of chemical nature of phase transformation. In: General and applied chemistry, vol 1. Vysheischaia Educating, Minsk, pp 197–206
2.
Zurück zum Zitat Baev AK (1969) Phase condition and complex formation ability of halogenide metals. In: General and applied chemistry, vol 1. Vysheischaia Educating, Minsk, pp 207–218 Baev AK (1969) Phase condition and complex formation ability of halogenide metals. In: General and applied chemistry, vol 1. Vysheischaia Educating, Minsk, pp 207–218
3.
Zurück zum Zitat Baev AK (1972) Complex formation ability halogenides of second – six groups periodical system. In: General and applied chemistry, vol 5. Vysheischaia Educating, Minsk, pp 35–51 Baev AK (1972) Complex formation ability halogenides of second – six groups periodical system. In: General and applied chemistry, vol 5. Vysheischaia Educating, Minsk, pp 35–51
4.
Zurück zum Zitat Nesmeyanov AN, Nesmeyanov NA (1974) Beginning of organic chemistry, vol 2. Chemistry, Moscow, p 744 Nesmeyanov AN, Nesmeyanov NA (1974) Beginning of organic chemistry, vol 2. Chemistry, Moscow, p 744
5.
Zurück zum Zitat Chickos JS, Acree WE Jr (2003) Enthalpies of sublimation of organic and organometallic compounds, 1910–2001. J Phys Chem Rev Data 32:537–698CrossRef Chickos JS, Acree WE Jr (2003) Enthalpies of sublimation of organic and organometallic compounds, 1910–2001. J Phys Chem Rev Data 32:537–698CrossRef
6.
Zurück zum Zitat Baev AK (2012) Specific intermolecular interactions of organic compounds. Springer, Hiedelberg/Dordrecht/London/New York, 434p Baev AK (2012) Specific intermolecular interactions of organic compounds. Springer, Hiedelberg/Dordrecht/London/New York, 434p
7.
Zurück zum Zitat Karlson TA (1981) Photoelectron and OGE- spectroscopy. Leningrad, Mech. Eng. Russia. Leningrad. 15:431 p Karlson TA (1981) Photoelectron and OGE- spectroscopy. Leningrad, Mech. Eng. Russia. Leningrad. 15:431 p
8.
Zurück zum Zitat Nefedov VI (1981) Infra red – spectroscopy of chemical compounds. Chemistry, Moscow, p 255 Nefedov VI (1981) Infra red – spectroscopy of chemical compounds. Chemistry, Moscow, p 255
9.
Zurück zum Zitat Nefedov VI, Vovna VI (1989) Electronic structure of organic and elementorganic compounds. Nauka, Moscow, p 199 Nefedov VI, Vovna VI (1989) Electronic structure of organic and elementorganic compounds. Nauka, Moscow, p 199
10.
Zurück zum Zitat Armitage JW, Gray P (1962) Temperature coefficient vaporization heats and curvature lines of vapor pressure formic acid, acetates acid and another compounds formed dissociated vapor. Trans Faraday Soc 58:1746CrossRef Armitage JW, Gray P (1962) Temperature coefficient vaporization heats and curvature lines of vapor pressure formic acid, acetates acid and another compounds formed dissociated vapor. Trans Faraday Soc 58:1746CrossRef
11.
Zurück zum Zitat de Kruif CG, Sonk HA (1973) The determination of enthalpies of sublimation by mean of thermal conductivity manometer. J Chem Ing Technol 45:455CrossRef de Kruif CG, Sonk HA (1973) The determination of enthalpies of sublimation by mean of thermal conductivity manometer. J Chem Ing Technol 45:455CrossRef
12.
Zurück zum Zitat Stull DR, Westrum EF Jr, Sinke GC (1969) The chemical thermodynamic of organic compounds. Wiley, New York Stull DR, Westrum EF Jr, Sinke GC (1969) The chemical thermodynamic of organic compounds. Wiley, New York
13.
Zurück zum Zitat de Kruif CG (1980) Enthalpies of sublimation and vapour pressures of 11 polycyclic hydrocarbons. J Chem Thermodyn 12:243CrossRef de Kruif CG (1980) Enthalpies of sublimation and vapour pressures of 11 polycyclic hydrocarbons. J Chem Thermodyn 12:243CrossRef
14.
Zurück zum Zitat de Kruif CG, Kuipers T, van Miltenburg JC, Schaake RCF, Stevens G (1981) The vapour pressure of solid and liquid naphthalene. J Chem Thermodyn 13:1081CrossRef de Kruif CG, Kuipers T, van Miltenburg JC, Schaake RCF, Stevens G (1981) The vapour pressure of solid and liquid naphthalene. J Chem Thermodyn 13:1081CrossRef
15.
Zurück zum Zitat de Kruif CG, Schaake RCF, van Miltenburg JC, van der Klauw K, Blok JQ (1982) Thermodynamic properties of the normal alkanoic acids III. Enthalpies of vaporization and vapour pressures of 13 normal alkanoic acids. J Chem Thermodyn 14:791–798CrossRef de Kruif CG, Schaake RCF, van Miltenburg JC, van der Klauw K, Blok JQ (1982) Thermodynamic properties of the normal alkanoic acids III. Enthalpies of vaporization and vapour pressures of 13 normal alkanoic acids. J Chem Thermodyn 14:791–798CrossRef
16.
Zurück zum Zitat Galis-van Ginkel CHD, Galis GHM, Timmermans CWM, de Kruif CG, Oonk HA (1978) Enthalpies of sublimation and dimerization in the vapour phase of formic, acetic, propanoic and butanoic acids. J Chem Thermodyn 10:1083CrossRef Galis-van Ginkel CHD, Galis GHM, Timmermans CWM, de Kruif CG, Oonk HA (1978) Enthalpies of sublimation and dimerization in the vapour phase of formic, acetic, propanoic and butanoic acids. J Chem Thermodyn 10:1083CrossRef
17.
Zurück zum Zitat Malaspina L, Gigli R, Bardi G (1973) Microcalorimetric determination of the enthalpy of sublimation of benzoic acid and anthracene. J Chem Phys 59:387CrossRef Malaspina L, Gigli R, Bardi G (1973) Microcalorimetric determination of the enthalpy of sublimation of benzoic acid and anthracene. J Chem Phys 59:387CrossRef
18.
Zurück zum Zitat Colomina LM, Laynez JL, Peres-Ossorio R, Turrion C (1972) Enthalpies of combustion and formation of six methyl esters of benzene carboxylic acids. J Chem Thermodyn Data 4:499–506CrossRef Colomina LM, Laynez JL, Peres-Ossorio R, Turrion C (1972) Enthalpies of combustion and formation of six methyl esters of benzene carboxylic acids. J Chem Thermodyn Data 4:499–506CrossRef
19.
Zurück zum Zitat van Ginkel CHD, de Kruif CG, de Waal FEB (1975) The need for temperature control in effusion experiments (and application to heat of sublimation determination). J Phys E Sci Instrum 8:490CrossRef van Ginkel CHD, de Kruif CG, de Waal FEB (1975) The need for temperature control in effusion experiments (and application to heat of sublimation determination). J Phys E Sci Instrum 8:490CrossRef
20.
Zurück zum Zitat Colomina LM, Jimi P, Turrion C (1982) Thermodynamic properties of benzoic acid derivatives. X. Enthalpies of combustion and formation of 2.3-, 2.4-, 2.6-, 3.4- and 3.5-dimetoxybenzoic acid. Academic press. Inc. 1982. Colomina LM, Jimi P, Turrion C (1982) Thermodynamic properties of benzoic acid derivatives. X. Enthalpies of combustion and formation of 2.3-, 2.4-, 2.6-, 3.4- and 3.5-dimetoxybenzoic acid. Academic press. Inc. 1982.
21.
Zurück zum Zitat Maraweiz E (1972) Vaporization enthalpy n-alkanes from C10 till C20. J Chem Thermodyn Data 4:139–144CrossRef Maraweiz E (1972) Vaporization enthalpy n-alkanes from C10 till C20. J Chem Thermodyn Data 4:139–144CrossRef
22.
Zurück zum Zitat Cox JD (1964) The calorimetry of combustions and related reactions: organic compounds. Pure Appl Chem 8:143–156CrossRef Cox JD (1964) The calorimetry of combustions and related reactions: organic compounds. Pure Appl Chem 8:143–156CrossRef
23.
Zurück zum Zitat Cox JD (1982) Notation for states and processes, significance of the word standard in chemical thermodynamics, and remarks on commonly tabulated forms of thermodynamic functions. Pure Appl Chem 54:1239–1250CrossRef Cox JD (1982) Notation for states and processes, significance of the word standard in chemical thermodynamics, and remarks on commonly tabulated forms of thermodynamic functions. Pure Appl Chem 54:1239–1250CrossRef
24.
Zurück zum Zitat Murata S, Sakiym M, Seki S (1982) Enthalpy of sublimation of benzoic acid and dimerization in the vapor phase in the temperature range from 320–370 K. J Chem Thermodyn Data 14:723–731CrossRef Murata S, Sakiym M, Seki S (1982) Enthalpy of sublimation of benzoic acid and dimerization in the vapor phase in the temperature range from 320–370 K. J Chem Thermodyn Data 14:723–731CrossRef
25.
Zurück zum Zitat Monte MJS, Hillesheim DM (2001) Thermodynamic study of the sublimation of six aminomethyl benzoic acids. J Chem Thermodyn 38:745–754CrossRef Monte MJS, Hillesheim DM (2001) Thermodynamic study of the sublimation of six aminomethyl benzoic acids. J Chem Thermodyn 38:745–754CrossRef
26.
Zurück zum Zitat Baev AK (1987) Chemistry of gas-heterogenic systems of elementorganic compounds. Science and Technology, Minsk, p 174 Baev AK (1987) Chemistry of gas-heterogenic systems of elementorganic compounds. Science and Technology, Minsk, p 174
27.
Zurück zum Zitat Chickos JS, Acree WE Jr (2002) Enthalpies of vaporization of organic and organometallic compounds, 1880–2002. J Phys Chem Rev Data 31:519–879 Chickos JS, Acree WE Jr (2002) Enthalpies of vaporization of organic and organometallic compounds, 1880–2002. J Phys Chem Rev Data 31:519–879
28.
Zurück zum Zitat Kalinin FL, Lobov VP, Zidkov VA (1971) Reference book on biology. Naukiva Dumka, Kiev, p 1012 Kalinin FL, Lobov VP, Zidkov VA (1971) Reference book on biology. Naukiva Dumka, Kiev, p 1012
Metadaten
Titel
Specific Intermolecular Interactions and Energies of Amino Acids and Esters
verfasst von
Alexei K. Baev
Copyright-Jahr
2014
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-37472-2_9