Skip to main content

2016 | OriginalPaper | Buchkapitel

5. Spectral Analysis of Deterministic Discrete-Time Signals

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this chapter we will describe the spectral representation of a discrete-time deterministic signal. Even if intrinsically the signal has infinite length, we can only observe it through a window of finite width, and we cannot compute its DTFT, provided it exists, but only the DFT of the segment framed by the window. The consequences of these limitations are investigated through examples using sinusoidal signals, and the issues of leakage and loss of resolution are examined. A description of the main windows used in spectral analysis follows. We then move to more conceptual topics. Deterministic bounded signals can be energy signals or power signals. For energy signals we can use the squared magnitude of the DTFT to define the energy spectrum, describing how the energy of the signal distributes over frequency. The energy spectrum can equivalently be defined as the DTFT of the autocovariance (AC) sequence, quantifying the signal’s self-similarity. On the other hand, the spectral representation of power signals, i.e., signals with infinite energy but finite average power, necessarily passes through the transform of the AC sequence of the power signal, provided that the AC has finite energy.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
\(20\log _{10}a=10\log _{10}a^2\) is the square of a expressed in dB.
 
2
Often, the Von Hann window is called hanning, with the initial letter in lower case.
 
3
The name of this theorem refers to Norbert Wiener (1894–1964) and Aleksandr Khinchin (1894–1959). Norbert Wiener proved this theorem for the case of a deterministic function in 1930 (Wiener 1930); Aleksandr Khinchin later formulated an analogous result for stationary stochastic processes and published it in 1934 (Khinchin 1934). Albert Einstein explained, without proofs, the idea in a brief two-page memo in 1914 (see Jerison et al. 1997). Note that the name of the second author of the theorem, a Russian mathematician, is sometimes transliterated from the Cyrillic alphabet as “Khintchine”.
 
4
Note that the reality of \(P_{xx}(\mathrm{{e}}^{\mathrm {j}\omega })\) suggests the possibility of denoting PSD simply by \(P_{xx}(\omega )\), rather than by \(P_{xx}(\mathrm{{e}}^{\mathrm {j}\omega })\).
 
5
For complex sequences, \(r_{xy}[l]\) is the linear convolution of the first sequence with the folded- and complex-conjugated version of the second sequence. We consider real signals in order to simplify the notation; if we considered complex signals, all the formulas for correlation should contain a conjugation sign, e.g., \(r_{xy}[l]=\sum _{n=-\infty }^{+\infty } x[n] y^*[n-l]\). This is necessary, for instance, if we are dealing with a complex exponential signal.
 
Literatur
Zurück zum Zitat Harris, F.J.: On the use of windows for harmonic analysis with the discrete fourier transform. Proc. IEEE 66(1), 51–83 (1978)CrossRef Harris, F.J.: On the use of windows for harmonic analysis with the discrete fourier transform. Proc. IEEE 66(1), 51–83 (1978)CrossRef
Zurück zum Zitat Jerison, D., Singer, I.M., Stroock, D.W.: The Legacy of Norbert Wiener: a Centennial Symposium. In: Proceedings of Symposia in Pure Mathematics. American Mathematical Society (SIAM) (1997) Jerison, D., Singer, I.M., Stroock, D.W.: The Legacy of Norbert Wiener: a Centennial Symposium. In: Proceedings of Symposia in Pure Mathematics. American Mathematical Society (SIAM) (1997)
Zurück zum Zitat Kaiser, J.F.: Digital filters, Chap. 7. In: Kuo, F.F., Kaiser, J.K. (eds.) System Analysis by Digital Computer. Wiley, New York (1966) Kaiser, J.F.: Digital filters, Chap. 7. In: Kuo, F.F., Kaiser, J.K. (eds.) System Analysis by Digital Computer. Wiley, New York (1966)
Zurück zum Zitat Kaiser, J.F.: Nonrecursive digital filter design using the \(I_0\)-sinh Window Function. In: Proceedings 1974 IEEE International Symposium on Circuits and Systems, San Francisco, pp. 20–23 (1974) Kaiser, J.F.: Nonrecursive digital filter design using the \(I_0\)-sinh Window Function. In: Proceedings 1974 IEEE International Symposium on Circuits and Systems, San Francisco, pp. 20–23 (1974)
Zurück zum Zitat Kaiser, J.F., Schafer, R.W.: On the use of the \(I_0\)–sinh window for spectrum analysis. IEEE Trans. Acoust. Speech Signal Process. ASSP-28(1), 105–107 (1980) Kaiser, J.F., Schafer, R.W.: On the use of the \(I_0\)–sinh window for spectrum analysis. IEEE Trans. Acoust. Speech Signal Process. ASSP-28(1), 105–107 (1980)
Zurück zum Zitat Khinchin, A.Y.: Korrelationstheorie der stationären stocastischen Prozesse. Math. Annalen 109, 604–615 (1934)MathSciNetCrossRef Khinchin, A.Y.: Korrelationstheorie der stationären stocastischen Prozesse. Math. Annalen 109, 604–615 (1934)MathSciNetCrossRef
Zurück zum Zitat Nuttall, A.H.: Some windows with very good sidelobe behavior. IEEE Trans. Acoust. Speech Signal Process. 29(1), 84–91 (1981) Nuttall, A.H.: Some windows with very good sidelobe behavior. IEEE Trans. Acoust. Speech Signal Process. 29(1), 84–91 (1981)
Zurück zum Zitat Oppenheim, A.V., Schafer, R.W.: Discrete-time Signal Processing. Prentice Hall, Englewood Cliffs (2009)MATH Oppenheim, A.V., Schafer, R.W.: Discrete-time Signal Processing. Prentice Hall, Englewood Cliffs (2009)MATH
Zurück zum Zitat Riley, K.F., Hobson, M.P., Bence, S.J.: Mathematical Methods for Physics and Engineering. Cambridge University Press, Cambridge (2006) Riley, K.F., Hobson, M.P., Bence, S.J.: Mathematical Methods for Physics and Engineering. Cambridge University Press, Cambridge (2006)
Metadaten
Titel
Spectral Analysis of Deterministic Discrete-Time Signals
verfasst von
Silvia Maria Alessio
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-25468-5_5

Neuer Inhalt