Skip to main content

2017 | OriginalPaper | Buchkapitel

Spectrum Estimates and Applications to Geometry

verfasst von : G. Pacelli Bessa, L. Jorge, L. Mari, J. Fábio Montenegro

Erschienen in: Topics in Modern Differential Geometry

Verlag: Atlantis Press

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In 1867, E. Beltrami (Ann Mat Pura Appl 1(2):329–366, 1867, [12]) introduced a second order elliptic operator on Riemannian manifolds, defined by \(\Delta ={\mathrm{{div}\,}}\circ {{\mathrm {grad}\,}}\), extending the Laplace operator on \(\mathbb {R}^{n}\), called the Laplace–Beltrami operator. The Laplace–Beltrami operator became one of the most important operators in Mathematics and Physics, playing a fundamental role in differential geometry, geometric analysis, partial differential equations, probability, potential theory, stochastic process, just to mention a few. It is in important in various differential equations that describe physical phenomena such as the diffusion equation for the heat and fluid flow, wave propagation, Laplace equation and minimal surfaces.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1

\(c(M)>0\) if M is compact with non-empty boundary.

 
2

Piecewise smooth boundary here means that there is a closed set \(Q\subset \partial M\) of \((n-1)\)-Hausdorff measure zero such that for each point \(q \in \partial M\setminus Q\) there is a neighborhood of q in \(\partial M\) that is a graph of a smooth function over the tangent space \(T_{q}\partial M\), see Whitney [115] pages 99–100.

 
3

Sometimes the mean curvature vector is defined as \(H(q) = \sum _{i=1}^{k}\mathcal S^\mathcal F(q)(e_{i}, e_{i})\).

 
4

In fact, a gradient is basic if and only if it is horizontal.

 
5

A continuous embedding \(\gamma :\mathbb {S}^{1} \rightarrow \mathbb {R}^{3}\).

 
6

Here, \(\sigma (M)\) for incomplete M is defined as the spectrum of the Friedrichs extension of \((-\Delta , C^\infty _c(M))\).

 
7
We say that the volume grows uniformly subexponentially if for each \(\varepsilon >0\) there exists \(C_\varepsilon >0\) such that
$$ \mathrm {vol}\big (B_r(x)\big ) \le C_\varepsilon e^{\varepsilon r}\mathrm {vol}\big (B_1(x)\big ) \qquad \forall \, x \in M. $$
 
8

Denoting with \(\Delta _2\) the Laplace operator on \(L^2\), the semigroup \(e^{t\Delta _2}\) extends to a strongly continuous contraction semigroup \(T_p\) on \(L^p(M)\) for all \(p \in [1,+\infty )\). By definition, the \(L^p\)-spectrum is the spectrum of the generator \(\Delta _p\) of \(T_p\), and \(\Delta _\infty \) is the adjoint of \(\Delta _1\).

 
9

The volume condition was absent in the original formulation of the conjecture in [30], but was pointed out to us by the authors themselves after they discovered J. Lott’s paper.

 
10

Whether \(\Omega =\mathbb {D} \) or \(\Omega =\mathbb {A}(1/c,c))\).

 
Literatur
  1. A. Alarcón, Compact complete minimal immersions in \( \mathbb{R}^3\). Trans. Am. Math. Soc. 362, 4063–4076 (2010)MathSciNetView ArticleMATH
  2. A. Alarcón, F.J. López, Null curves in \(\mathbb{C}^{3}\) and Calabi-Yau conjectures. Math. Ann. 355(2), 429–455 (2013)MathSciNetView ArticleMATH
  3. A. Alarcón, L. Ferrer, F. Martin, Density theorems for complete minimal surfaces in \(\mathbb{R}^{3}\). Geom. Funct. Anal. 18(1), 1–49 (2008)MathSciNetView ArticleMATH
  4. M.T. Anderson, Complete minimal varieties in hyperbolic space. Invent. Math. 69(3), 477–494 (1982)MathSciNetView ArticleMATH
  5. M.T. Anderson, The Compactification of a Minimal Submanifold in Euclidean Space by the Gauss Map. I.H.E.S. Preprint (1984), http://​www.​math.​sunysb.​edu/​~anderson/​compactif.​pdf
  6. P. Andrade, A wild minimal plane in \(\mathbb{R}^3\). Proc. Am. Math. Soc. 128(5), 1451–1457 (2000)MathSciNetView ArticleMATH
  7. A. Baider, Noncompact Riemannian manifolds with discrete spectra. J. Differ. Geom. 14, 41–57 (1979)MathSciNetMATH
  8. R. Bañuelos, T. Carroll, Brownnian motion and the fundamental frequence of a drum. Duke Math. J. 75, 575–602 (1994)MathSciNetView ArticleMATH
  9. J.L. Barbosa, K. Kenmotsu, O. Oshikiri, Foliations by hypersurfaces with constant mean curvature. Math. Z. 207, 97–108 (1991)MathSciNetView ArticleMATH
  10. J.L. Barbosa, G.P. Bessa, J.F. Montenegro, On Bernstein-Heinz-Chern-Flanders inequalities. Math. Proc. Camb. Philos. Soc. 144, 457–464 (2008)MathSciNetView ArticleMATH
  11. J. Barta, Sur la vibration fundamentale d’une membrane. C. R. Acad. Sci. 204, 472–473 (1937)MATH
  12. E. Beltrami, Delle variabili complesse sopra una superficie qualunque. Ann. Mat. Pura Appl. 1(2), 329–366 (1867)View Article
  13. M. Berger, P. Gauduchon, E. Mazet, Le spectre d’une varit riemannienne (French). Lecture Notes in Mathematics, vol. 194 (Springer, Berlin 1971), vii+251 pp
  14. G.P. Bessa, S.M. Costa, On submanifolds with tamed second fundamental form. Glasg. Math. J. 51(3), 669–680 (2009)MathSciNetView ArticleMATH
  15. G.P. Bessa, J.F. Montenegro, Eigenvalue estimates for submanifolds with locally bounded mean curvature. Ann. Global Anal. Geom. 24, 279–290 (2003)MathSciNetView ArticleMATH
  16. G.P. Bessa, J.F. Montenegro, An extension of Barta’s Theorem and geometric applications. Ann. Global Anal. Geom. 31, 345–362 (2007)MathSciNetView ArticleMATH
  17. G.P. Bessa, J.F. Montenegro, On Cheng’s eigenvalue comparison theorem. Math. Proc. Camb. Philos. Soc. 144, 673–682 (2008)MathSciNetView ArticleMATH
  18. G.P. Bessa, J.F. Montenegro, Mean time exit and isoperimetric inequalities for minimal submanifolds of \(N\times \mathbb{R}\). Bull. Lond. Math. Soc. 41, 242–252 (2009)MathSciNetView ArticleMATH
  19. G.P. Bessa, L.P. Jorge, G. Oliveira-Filho, Half-space theorems for minimal surfaces with bounded curvature. J. Differ. Geom. 57, 493–508 (2001)MathSciNetMATH
  20. G.P. Bessa, L.P. Jorge, J.F. Montenegro, Complete submanifolds of \(R^n\) with finite topology. Communi. Anal. Geom. 15(4), 725–732 (2007)MathSciNetView ArticleMATH
  21. G.P. Bessa, L.P. Jorge, J.F. Montenegro, The spectrum of the Martin-Morales-Nadirashvili minimal surfaces is discrete. J. Geom. Anal. 20, 63–71 (2010)MathSciNetView ArticleMATH
  22. G.P. Bessa, J.F. Montenegro, P. Piccione, Riemannian submersions with discrete spectrum. J. Geom. Anal. 22(2), 603–620 (2012)MathSciNetView ArticleMATH
  23. G.P. Bessa, L.P. Jorge, L. Mari, On the spectrum of bounded immersions. J. Differ. Geom. 99(2), 215–253 (2015)MathSciNetMATH
  24. B. Bianchini, L. Mari, M. Rigoli, On some aspects of oscillation theory and geometry. Mem. Am. Math. Soc. 255(1056), vi+195 (2013)
  25. R.L. Bishop, R.J. Crittenden, Geometry of Manifolds. Pure and Applied Mathematics, vol. XV (Academic Press, New York, 1964), ix+273 pp
  26. M. Bordoni, Spectral estimates for submersions with fibers of basic mean curvature. An. Univ. Vest Timiş. Ser. Mat.-Inform. 44(1), 23–36 (2006)
  27. R. Brooks, A relation between growth and the spectrum of the Laplacian. Math. Z. 178(4), 501–508 (1981)MathSciNetView ArticleMATH
  28. E. Calabi, Problems in differential geometry, in Proceedings of the United States-Japan Seminar in Differential Geometry, Kyoto, Japan, 1965, ed. by S. Kobayashi, J. Eells, Jr. (Nippon Hyoronsha Co. Ltd., Tokyo, 1966), p. 170
  29. P. Castillon, Spectral properties of constant mean curvature submanifolds in hyperbolic space. Ann. Global Anal. Geom. 17(6), 563–580 (1999)MathSciNetView ArticleMATH
  30. N. Charalambous, Z. Lu, On the spectrum of the Laplacian. Math. Ann. 359(1–2), 211–238 (2014)MathSciNetView ArticleMATH
  31. I. Chavel, Eigenvalues in Riemannian geometry, in Including a Chapter by Burton Randol. With an Appendix by Jozef Dodziuk. Pure and Applied Mathematics, vol. 115 (Academic Press, Inc., Orlando, 1984), xiv+362 pp. ISBN: 0-12-170640-0
  32. J. Cheeger, A lower bound for the smallest eigenvalue of the Laplacian, Problems in Analysis. (Papers dedicated to Salomon Bochner, 1969) (Princeton University Press, Princeton, 1970), pp. 195–199
  33. J. Cheeger, D. Ebin, Comparison theorems in Riemannian geometry, North-Holland Mathematical Library, vol. 9 (North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1975), viii+174 pp
  34. Q. Chen, On the area growth of minimal surfaces in \(H^n\). Geom. Dedicata 75(3), 263–273 (1999)MathSciNetView ArticleMATH
  35. Q. Chen, Y. Cheng, Chern-Osserman inequality for minimal surfaces in \(H^n\). Proc. Am. Math. Soc. 128(8), 2445–2450 (2000)MathSciNetView ArticleMATH
  36. S.Y. Cheng, Eigenfunctions and eigenvalues of the Laplacian. Am. Math. Soc. Proc. Symp. Pure Math. 27, 185–193 (1975)
  37. S.Y. Cheng, Eigenvalue comparison theorems and its geometric applications. Math. Z. 143, 289–297 (1975)MathSciNetView ArticleMATH
  38. S.Y. Cheng, S.T. Yau, Differential equations on Riemannian manifolds and their geometric applications. Commun. Pure Appl. Math. 27, 333–354 (1975)MathSciNetView ArticleMATH
  39. S.Y. Cheng, P. Li, S.T. Yau, Heat equations on minimal submanifolds and their applications. Am. J. Math. 106, 1033–1065 (1984)MathSciNetView ArticleMATH
  40. S.S. Chern, The geometry of G-structures. Bull. Am. Math. Soc. 72, 167–219 (1966)MathSciNetView ArticleMATH
  41. S.S. Chern, R. Osserman, Complete minimal surface in \(E^n\). J. d’Analyse Math. 19, 15–34 (1967)MathSciNetView ArticleMATH
  42. S.S. Chern, R. Osserman, Complete Minimal Surfaces in Euclidean Space (Academic Press, New York, 1984)MATH
  43. L.-F. Cheung, P.-F. Leung, Eigenvalue estimates for submanifolds with bounded mean curvature in the hyperbolic space. Math. Z. 236(3), 525–530 (2001)MathSciNetView ArticleMATH
  44. E.B. Davies, Heat kernels and spectral theory, in Cambridge Tracts in Mathematics, vol. 92 (Cambridge University Press, Cambridge, 1989), x+197 pp. ISBN: 0-521-36136-2
  45. E.B. Davies, Spectral theory and differential operators, in Cambridge Studies in Advanced Mathematics, vol. 42 (Cambridge University Press, Cambridge, 1995), x+182 pp. ISBN: 0-521-47250-4
  46. H. Donnelly, On the essential spectrum of a complete Riemannian manifold. Topology 20(1), 1–14 (1981)MathSciNetView ArticleMATH
  47. H. Donnelly, Negative curvature and embedded eigenvalues. Math. Z. 203, 301–308 (1990)MathSciNetView ArticleMATH
  48. H. Donnelly, Exhaustion functions and the spectrum of Riemannian manifolds. Indiana Univ. Math. J. 46(2), 505–527 (1997)MathSciNetView ArticleMATH
  49. H. Donnelly, N. Garofalo, Riemannian manifolds whose Laplacian have purely continuous spectrum. Math. Ann. 293, 143–161 (1992); MR1162679. Zbl 0735, 58033 (1992)
  50. H. Donnelly, P. Li, Pure point spectrum and negative curvature for non-compact manifolds. Duke Math. J. 46, 497–503 (1979)MathSciNetView ArticleMATH
  51. K.D. Elworthy, F.-Y. Wang, Essential spectrum on Riemannian manifolds, in Recent Developments in Stochastic Analysis and Related Topics (World Scientific Publisher, Hackensack, 2004), pp. 151–165View ArticleMATH
  52. J.F. Escobar, On the spectrum of the Laplacian on complete Riemannian manifolds. Commun. Partial Differ. Equs. 11, 63–85 (1985)MathSciNetView ArticleMATH
  53. J.F. Escobar, A. Freire, The spectrum of the Laplacian on manifolds of positive curvature. Duke Math. J. 65, 1–21 (1992)MathSciNetView ArticleMATH
  54. L. Ferrer, F. Martin, W. Meeks III, Existence of proper minimal surfaces of arbitrary topological type. Adv. Math. 231(1), 378–413 (2012)MathSciNetView ArticleMATH
  55. P. Freitas, J. Mao, I. Salavessa, Spherical symmetrization and the first eigenvalue of geodesic disks on manifolds. Calc. Var. Partial Differ. Equs. 51(3–4), 701–724 (2014)MathSciNetView ArticleMATH
  56. M.P. Gaffney, A special Stokes theorem for complete Riemannian manifolds. Ann. Math. 60, 140–145 (1954)MathSciNetView ArticleMATH
  57. I.M. Glazman, Direct methods of qualitative spectral analysis of singular differential operators. Translated from the Russian by the IPST staff Israel Program for Scientific Translations, Jerusalem, 1965; Daniel Davey & Co., Inc., New York 1966 ix+234 pp
  58. A. Gray, Pseudo-Riemannian almost product manifolds and submersions. J. Math. Mech. 16, 715–737 (1967)MathSciNetMATH
  59. R.E. Greene, H. Wu, Function Theory on Manifolds which Possess a Pole, vol. 699 (Lecture Notes in Mathematics (Springer, Berlin, 1979)MATH
  60. A. Grigorýan, Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds. Bull. Am. Math. Soc. (N.S.) 36(2), 135–249 (1999)
  61. A. Grigorýan, Heat Kernel and Analysis on Manifolds. AMS/IP Studies in Advanced Mathematics, vol. 47 (American Mathematical Society, Providence; International Press, Boston, 2009), xviii+482 pp. ISBN: 978-0-8218-4935-4
  62. M. Gromov, Metric structures for Riemannian and non-Riemannian spaces. Based on the 1981 French original. With appendices by M. Katz, P. Pansu and S. Semmes. Translated from the French by Sean Michael Bates. Reprint of the 2001 English edition. Modern Birkhuser Classics (Birkhuser Boston, Inc., Boston, 2007), xx+585 pp. ISBN: 978-0-8176-4582-3; 0-8176-4582-9
  63. J. Hadamard, Les surfaces à courbures opposées et leurs linges géodésiquese. J. Math. Pures Appl. 4, 27–73 (1898)MATH
  64. M. Harmer, Discreteness of the spectrum of the Laplacian and stochastic incompleteness. J. Geom. Anal. 19, 358–372 (2009)MathSciNetView ArticleMATH
  65. W. Haymann, Some bounds for principal frequency. Appl. Anal. 7, 247–254 (1978)MathSciNetView Article
  66. Y. Higuchi, A remark on exponential growth and the spectrum of the Laplacian. Kodai Math. J. 24, 42–47 (2001)MathSciNetView ArticleMATH
  67. K. Hoffman, Banach Spaces of Analytic Functions. Reprint of the 1962 original (Dover Publications, Inc., New York, 1988), viii+216 pp. ISBN: 0-486-65785-X
  68. L.P. Jorge, D. Koutrofiotis, An estimate for the curvature of bounded submanifolds. Am. J. Math. 103(4), 711–725 (1980)MathSciNetView Article
  69. L.P. Jorge, F. Xavier, A complete minimal surface in \({\mathbb{R}}^{3}\) between two parallel planes. Ann. Math. 112(2), 203–206 (1980)MathSciNetView Article
  70. L.P. Jorge, F. Tomi, The barrier principle for minimal submanifolds of arbitrary codimension. Ann. Global Anal. Geom. 24(3), 261–267 (2003)MathSciNetView ArticleMATH
  71. L. Karp, Noncompact manifolds with purely continuous spectrum. Mich. Math. J. 31, 339–347 (1984)MathSciNetView ArticleMATH
  72. R. Kleine, Discreteness conditions for the Laplacian on complete, noncompact Riemannian manifolds. Math. Z. 198(1), 127–141 (1988)MathSciNetView ArticleMATH
  73. R. Kleine, Warped products with discrete spectra. Results Math. 15(1–2), 81–103 (1989)MathSciNetView ArticleMATH
  74. H. Kumura, On the essential spectrum of the Laplacian on complete manifolds. J. Mat. Soc. Jpn. 49(1), 1–14 (1997)MathSciNetView ArticleMATH
  75. H. Kumura, On the essential spectrum of the Laplacian and vague convergence of the curvature at infinity. Commun. Pure Differ. Equs. 30(10–12), 1555–1565 (2005)MathSciNetView ArticleMATH
  76. J. Li, Spectrum of the Laplacian on a complete Riemannian manifold with non-negative Ricci curvature which possess(es) a pole. J. Math. Soc. Jpn 46, 213–216 (1994)View ArticleMATH
  77. B.P. Lima, L. Mari, J.F. Montenegro, F.B. Vieira, Density and spectrum of minimal submanifolds in space forms. Math. Ann. (Online first) 1–32 (2016)
  78. F. Lopez, F. Martin, S. Morales, Adding handles to Nadirashvili’s surfaces. J. Differ. Geom. 60(1), 155–175 (2002)MathSciNetMATH
  79. F. Lopez, F. Martin, S. Morales, Complete nonorientable minimal surfaces in a ball of \(\mathbb{R}^{3}\). Trans. Am. Math. Soc. 358(9), 3807–3820 (2006)MathSciNetView ArticleMATH
  80. J. Lott, On the spectrum of a finite-volume negatively-curved manifold. Am. J. Math. 123(2), 185–205 (2001)MathSciNetView ArticleMATH
  81. Z. Lu, D. Zhou, On the essential spectrum of complete non-compact manifolds. J. Funct. Anal. 260(11), 3283–3298 (2011)MathSciNetView ArticleMATH
  82. E. Makai, A lower estimation of the principal frequencies of simply connected membranes. Acta Math. Acad. Sci. Hungar. 16, 319–366 (1965)MathSciNetView ArticleMATH
  83. F. Martín, S. Morales, Construction of a complete bounded minimal annulus in \({{\mathbb{R}}^{3}}\). (Spanish) Proceedings of the Meeting of Andalusian Mathematicians, vol. II (Spanish) (Sevilla, 2000), pp. 649–653; Colecc. Abierta, 52, Univ. Sevilla Secr. Publ., Seville, 2001
  84. F. Martín, S. Morales, Complete proper minimal surfaces in convex bodies of \(\mathbb{R}^{3}\). Duke Math. J. 128, 559–593 (2005)MathSciNetView ArticleMATH
  85. F. Martín, S. Morales, Complete proper minimal surfaces in convex bodies of \(\mathbb{R}^{3}\). II. The behavior of the limit set. Comment. Math. Helv. 81, 699–725 (2006)MathSciNetView ArticleMATH
  86. F. Martín, N. Nadirashvili, A Jordan curve spanned by a complete minimal surface. Arch. Ration. Mech. Anal. 184(2), 285–301 (2007)MathSciNetView ArticleMATH
  87. F. Martín, W. Meeks III, N. Nadirashvili, Bounded domains which are universal for minimal surfaces. Am. J. Math. 129(2), 455–461 (2007)MathSciNetView ArticleMATH
  88. R.B. Matos, F.F. Montenegro, Spectrum of the Laplacian on Radial Graphs. arXiv:​1303.​3293
  89. P. Mattila, Geometry of Sets and Measures in Euclidean Spaces. Fractals and Rectifiability. Cambridge Studies in Advanced Mathematics, vol. 44 (Cambridge University Press, Cambridge, 1995), xii+343 pp. ISBN: 0-521-46576-1
  90. H.P. McKean, An upper bound to the spectrum of \(\Delta \) on a manifold of negative curvature. J. Differ. Geom 4, 359–366 (1970)MathSciNetMATH
  91. L.A. Monte, J.F. Montenegro, Essential spectrum of a class of Riemannian manifolds. J. Geom. Anal. 25(4), 2241–2261 (2015)MathSciNetView ArticleMATH
  92. N. Nadirashvili, Hadamard’s and Calabi-Yau’s conjectures on negatively curved and minimal surfaces. Invent. Math. 126, 457–465 (1996)MathSciNetView ArticleMATH
  93. G. Oliveira-Filho, Compactification of minimal submanifolds of hyperbolic space. Commun. Anal. Geom. 1(1), 1–29 (1993)MathSciNetView ArticleMATH
  94. B. O’Neill, The fundamental equations of a submersion. Mich. Math. J. 13, 459–469 (1966)MathSciNetView ArticleMATH
  95. R. Osserman, A note on Hymann’s theorem on the bass note of a drum. Comment. Math. Helv. 52, 545–555 (1977)MathSciNetView ArticleMATH
  96. A. Persson, Bounds for the discrete part of the spectrum of a semi-bounded operator. Math. Scand. 8, 143–153 (1960)MathSciNetView ArticleMATH
  97. P. Petersen, Riemannian Geometry, 2nd edn. Graduate Texts in Mathematics, vol. 171 (Springer, New York, 2006), xvi+401 pp. ISBN: 978-0387-29246-5; 0-387-29246-2
  98. S. Pigola, M. Rigoli, A.G. Setti, Vanishing and finiteness results in geometric analysis. A generalization of the Böchner technique, Progress in Mathematics, vol. 266 (Birkäuser, Basel, 2008)
  99. F. Rellich, Über das asymptotische Verhalten der Lsungen von \(\Delta u+\lambda u=0\) in unendlichen Gebieten. (German) Jber. Deutsch. Math. Verein. 53, 57–65 (1943)
  100. H. Rosenberg, Intersection of minimal surfaces of bounded curvature. Bull. Sci. Math. 125(2), 161–168 (2001)MathSciNetView ArticleMATH
  101. H. Rosenberg, E. Toubiana, A cylindrical type complete minimal surface in the slab of \({\mathbb{R}}^{3}\). Bull. Sci. Math. 111(2–3), 241–245 (1987)MathSciNetMATH
  102. R. Schoen, H. Tran, Complete manifolds with bounded curvature and spectral gaps. arXiv:​1510.​05046
  103. R. Schoen, S.T. Yau, Lectures on differential geometry, in Conference Proceedings and Lecture Notes in Geometry and Topology, vol. I (International Press, Cambridge, 1994), v+235 pp. ISBN: 1-57146-012-8
  104. P. Scott, The geometries of 3-manifolds. Bull. Lond. Math. Soc. 15(5), 401–487 (1983)MathSciNetView ArticleMATH
  105. R.S. Sena, A note on the spectrum of self-shrinkers. Preprint
  106. L. Silvares, On the essential spectrum of the Laplacian and the drifted Laplacian. J. Funct. Anal. 266(6), 3906–3936 (2014)MathSciNetView ArticleMATH
  107. L. Simon, Lectures on geometric measure theory, in Proceedings of the Centre for Mathematical Analysis, Australian National University, vol. 3 (Australian National University, Centre for Mathematical Analysis, Canberra, 1983), vii+272 pp
  108. K.T. Sturm, On the \(L^p\)-spectrum of uniformly elliptic operators on Riemannian manifolds. J. Funct. Anal. 118(2), 442–453 (1993)MathSciNetView ArticleMATH
  109. T. Tayoshi, On the spectrum of the Laplace-Beltrami operator on noncompact surface. Proc. Jpn. Acad. 47, 579–585 (1971)MathSciNetView ArticleMATH
  110. V.G. Tkachev, Finiteness of the number of ends of minimal submanifolds in Euclidean space. Manuscr. Math. 82, 313–330 (1994)MathSciNetView ArticleMATH
  111. M. Tokuomaru, Complete minimal cylinders properly immersed in the unit ball. Kyushu J. Math. 61(2), 373–394 (2007); MR2362891, Zbl 1143.53010
  112. F. Torralbo, Rotationally invariant constant mean curvature surfaces in homogeneus \(3\)-manifolds. Differential Geom. Appl. 28(5), 593–607 (2010)MathSciNetView ArticleMATH
  113. J. Wang, The spectrum of the Laplacian on a manifold of nonnegative Ricci curvature. Math. Res. Lett. 4(4), 473–479 (1997)MathSciNetView ArticleMATH
  114. A. Wetzler, Y. Aflalo, A. Dubrovina, R. Kimmel, The Laplace-beltrami operator: a ubiquitous tool for image and shape processing. Mathematical Morphology and Its Applications to Signal and Image Processing Lecture Notes in Computer Science 7883, 302–316 (2013)View ArticleMATH
  115. H. Whitney, Geometric Integration Theory. Princeton Mathematical Series (Princeton University Press, Princeton, 1957), xv+387 pp
  116. S.T. Yau, Nonlinear analysis in geometry. Monographies de L’Enseignement Mathmatique [Monographs of L’Enseignement Mathatique], 33. Srie des Confrences de l’Union Mathmatique Internationale [Lecture Series of the International Mathematics Union], 8. L’Enseignement Mathmatique, Geneva (1986), 54 pp
  117. S.T. Yau, Review of Geometry and Analysis. Mathematics: Frontier and Perspectives (American Mathematical Society, Providence, 2000), pp. 353–401
  118. S.T. Yau, Review of geometry and analysis. Kodaira’s issue. Asian J. Math. 4, 235–278 (2000)MathSciNetView ArticleMATH
  119. D. Zhou, Essential spectrum of the Laplacian on manifolds of nonnegative curvature. Int. Math. Res. Not. 5, 209 (1994)MathSciNetView ArticleMATH
Metadaten
Titel
Spectrum Estimates and Applications to Geometry
verfasst von
G. Pacelli Bessa
L. Jorge
L. Mari
J. Fábio Montenegro
Copyright-Jahr
2017
DOI
https://doi.org/10.2991/978-94-6239-240-3_7