Skip to main content

2024 | OriginalPaper | Buchkapitel

Speed-of-Sound Mapping for Pulse-Echo Ultrasound Raw Data Using Linked-Autoencoders

verfasst von : Farnaz Khun Jush, Peter M. Dueppenbecker, Andreas Maier

Erschienen in: Machine Learning for Multimodal Healthcare Data

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Recent studies showed the possibility of extracting SoS information from pulse-echo ultrasound raw data (a.k.a. RF data) using deep neural networks that are fully trained on simulated data. These methods take sensor domain data, i.e., RF data, as input and train a network in an end-to-end fashion to learn the implicit mapping between the RF data domain and the SoS domain. However, such networks are prone to overfitting to simulated data which results in poor performance and instability when tested on measured data. We propose a novel method for SoS mapping employing learned representations from two linked autoencoders. We test our approach on simulated and measured data acquired from human breast mimicking phantoms. We show that SoS mapping is possible using the learned representations by linked autoencoders. The proposed method has a Mean Absolute Percentage Error (MAPE) of \(2.39\%\) on the simulated data. On the measured data, the predictions of the proposed method are close to the expected values (MAPE of \(1.1\) \(\%\)). Compared to an end-to-end trained network, the proposed method shows higher stability and reproducibility.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Antun, V., Renna, F., Poon, C., Adcock, B., Hansen, A.C.: On instabilities of deep learning in image reconstruction and the potential costs of AI. Proc. Natl. Acad. Sci. 117(48), 30088–30095 (2020)CrossRef Antun, V., Renna, F., Poon, C., Adcock, B., Hansen, A.C.: On instabilities of deep learning in image reconstruction and the potential costs of AI. Proc. Natl. Acad. Sci. 117(48), 30088–30095 (2020)CrossRef
2.
Zurück zum Zitat Bengio, Y.: Learning Deep Architectures for AI. Now Publishers Inc. (2009) Bengio, Y.: Learning Deep Architectures for AI. Now Publishers Inc. (2009)
3.
Zurück zum Zitat Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)CrossRef Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)CrossRef
4.
Zurück zum Zitat Chen, M., Shi, X., Zhang, Y., Wu, D., Guizani, M.: Deep features learning for medical image analysis with convolutional autoencoder neural network. IEEE Trans. Big Data 7, 750–758 (2017)CrossRef Chen, M., Shi, X., Zhang, Y., Wu, D., Guizani, M.: Deep features learning for medical image analysis with convolutional autoencoder neural network. IEEE Trans. Big Data 7, 750–758 (2017)CrossRef
5.
Zurück zum Zitat Feigin, M., Freedman, D., Anthony, B.W.: A deep learning framework for single-sided sound speed inversion in medical ultrasound. IEEE Trans. Biomed. Eng. 67(4), 1142–1151 (2019)CrossRef Feigin, M., Freedman, D., Anthony, B.W.: A deep learning framework for single-sided sound speed inversion in medical ultrasound. IEEE Trans. Biomed. Eng. 67(4), 1142–1151 (2019)CrossRef
6.
Zurück zum Zitat Feigin, M., Zwecker, M., Freedman, D., Anthony, B.W.: Detecting muscle activation using ultrasound speed of sound inversion with deep learning. In: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 2092–2095. IEEE (2020) Feigin, M., Zwecker, M., Freedman, D., Anthony, B.W.: Detecting muscle activation using ultrasound speed of sound inversion with deep learning. In: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 2092–2095. IEEE (2020)
7.
Zurück zum Zitat Fu, W., Breininger, K., Schaffert, R., Ravikumar, N., Maier, A.: A divide-and-conquer approach towards understanding deep networks. In: Shen, D., et al. (ed.) Medical Image Computing and Computer Assisted Intervention, MICCAI 2019. LNCS, vol. 11764, pp. 183–191. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_21 Fu, W., Breininger, K., Schaffert, R., Ravikumar, N., Maier, A.: A divide-and-conquer approach towards understanding deep networks. In: Shen, D., et al. (ed.) Medical Image Computing and Computer Assisted Intervention, MICCAI 2019. LNCS, vol. 11764, pp. 183–191. Springer, Cham (2019). https://​doi.​org/​10.​1007/​978-3-030-32239-7_​21
9.
Zurück zum Zitat Hager, P.A., Khun Jush, F., Biele, M., Düppenbecker, P.M., Schmidt, O., Benini, L.: LightABVS: a digital ultrasound transducer for multi-modality automated breast volume scanning. In: 2019 IEEE International Ultrasonics Symposium (IUS) (2019) Hager, P.A., Khun Jush, F., Biele, M., Düppenbecker, P.M., Schmidt, O., Benini, L.: LightABVS: a digital ultrasound transducer for multi-modality automated breast volume scanning. In: 2019 IEEE International Ultrasonics Symposium (IUS) (2019)
10.
Zurück zum Zitat Heller, M., Schmitz, G.: Deep learning-based speed-of-sound reconstruction for single-sided pulse-echo ultrasound using a coherency measure as input feature. In: 2021 IEEE International Ultrasonics Symposium (IUS), pp. 1–4. IEEE (2021) Heller, M., Schmitz, G.: Deep learning-based speed-of-sound reconstruction for single-sided pulse-echo ultrasound using a coherency measure as input feature. In: 2021 IEEE International Ultrasonics Symposium (IUS), pp. 1–4. IEEE (2021)
11.
Zurück zum Zitat Hill, C.R., Bamber, J.C., ter Haar, G.R.: Physical Principles of Medical Ultrasonics (2004) Hill, C.R., Bamber, J.C., ter Haar, G.R.: Physical Principles of Medical Ultrasonics (2004)
12.
Zurück zum Zitat Khun Jush, F., Biele, M., Dueppenbecker, P.M., Maier, A.: Deep learning for ultrasound speed-of-sound reconstruction: impacts of training data diversity on stability and robustness. MELBA J. Mach. Learn. Biomed. Imaging 2, 202–236 (2023) Khun Jush, F., Biele, M., Dueppenbecker, P.M., Maier, A.: Deep learning for ultrasound speed-of-sound reconstruction: impacts of training data diversity on stability and robustness. MELBA J. Mach. Learn. Biomed. Imaging 2, 202–236 (2023)
13.
Zurück zum Zitat Khun Jush, F., Biele, M., Dueppenbecker, P.M., Schmidt, O., Maier, A.: DNN-based speed-of-sound reconstruction for automated breast ultrasound. In: 2020 IEEE International Ultrasonics Symposium (IUS), pp. 1–7. IEEE (2020) Khun Jush, F., Biele, M., Dueppenbecker, P.M., Schmidt, O., Maier, A.: DNN-based speed-of-sound reconstruction for automated breast ultrasound. In: 2020 IEEE International Ultrasonics Symposium (IUS), pp. 1–7. IEEE (2020)
14.
Zurück zum Zitat Khun Jush, F., Dueppenbecker, P.M., Maier, A.: Data-driven speed-of-sound reconstruction for medical ultrasound: impacts of training data format and imperfections on convergence. In: Papież, B.W., Yaqub, M., Jiao, J., Namburete, A.I.L., Noble, J.A. (eds.) MIUA 2021. LNCS, vol. 12722, pp. 140–150. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-80432-9_11CrossRef Khun Jush, F., Dueppenbecker, P.M., Maier, A.: Data-driven speed-of-sound reconstruction for medical ultrasound: impacts of training data format and imperfections on convergence. In: Papież, B.W., Yaqub, M., Jiao, J., Namburete, A.I.L., Noble, J.A. (eds.) MIUA 2021. LNCS, vol. 12722, pp. 140–150. Springer, Cham (2021). https://​doi.​org/​10.​1007/​978-3-030-80432-9_​11CrossRef
15.
Zurück zum Zitat Li, C., Duric, N., Littrup, P., Huang, L.: In vivo breast sound-speed imaging with ultrasound tomography. Ultrasound Med. Biol. 35(10), 1615–1628 (2009)CrossRef Li, C., Duric, N., Littrup, P., Huang, L.: In vivo breast sound-speed imaging with ultrasound tomography. Ultrasound Med. Biol. 35(10), 1615–1628 (2009)CrossRef
16.
Zurück zum Zitat Maier, A., Köstler, H., Heisig, M., Krauss, P., Yang, S.H.: Known operator learning and hybrid machine learning in medical imaging - a review of the past, the present, and the future. Prog. Biomed. Eng. 4, 022002 (2022)CrossRef Maier, A., Köstler, H., Heisig, M., Krauss, P., Yang, S.H.: Known operator learning and hybrid machine learning in medical imaging - a review of the past, the present, and the future. Prog. Biomed. Eng. 4, 022002 (2022)CrossRef
17.
Zurück zum Zitat Maier, A., et al.: Precision learning: towards use of known operators in neural networks. In: 2018 24th International Conference on Pattern Recognition (ICPR), pp. 183–188. IEEE (2018) Maier, A., et al.: Precision learning: towards use of known operators in neural networks. In: 2018 24th International Conference on Pattern Recognition (ICPR), pp. 183–188. IEEE (2018)
18.
Zurück zum Zitat Maier, A., Syben, C., Lasser, T., Riess, C.: A gentle introduction to deep learning in medical image processing. Z. Med. Phys. 29(2), 86–101 (2019)CrossRef Maier, A., Syben, C., Lasser, T., Riess, C.: A gentle introduction to deep learning in medical image processing. Z. Med. Phys. 29(2), 86–101 (2019)CrossRef
19.
Zurück zum Zitat Maier, A.K., et al.: Learning with known operators reduces maximum error bounds. Nat. Mach. Intell. 1(8), 373–380 (2019)CrossRef Maier, A.K., et al.: Learning with known operators reduces maximum error bounds. Nat. Mach. Intell. 1(8), 373–380 (2019)CrossRef
22.
Zurück zum Zitat Ruby, L., et al.: Breast cancer assessment with pulse-echo speed of sound ultrasound from intrinsic tissue reflections: proof-of-concept. Invest. Radiol. 54(7), 419–427 (2019)CrossRef Ruby, L., et al.: Breast cancer assessment with pulse-echo speed of sound ultrasound from intrinsic tissue reflections: proof-of-concept. Invest. Radiol. 54(7), 419–427 (2019)CrossRef
23.
Zurück zum Zitat Sak, M., et al.: Using speed of sound imaging to characterize breast density. Ultrasound Med. Biol. 43(1), 91–103 (2017)CrossRef Sak, M., et al.: Using speed of sound imaging to characterize breast density. Ultrasound Med. Biol. 43(1), 91–103 (2017)CrossRef
24.
Zurück zum Zitat Sanabria, S.J., et al.: Breast-density assessment with hand-held ultrasound: a novel biomarker to assess breast cancer risk and to tailor screening? Eur. Radiol. 28(8), 3165–3175 (2018)CrossRef Sanabria, S.J., et al.: Breast-density assessment with hand-held ultrasound: a novel biomarker to assess breast cancer risk and to tailor screening? Eur. Radiol. 28(8), 3165–3175 (2018)CrossRef
25.
Zurück zum Zitat Sanabria, S.J., Rominger, M.B., Goksel, O.: Speed-of-sound imaging based on reflector delineation. IEEE Trans. Biomed. Eng. 66(7), 1949–1962 (2018)CrossRef Sanabria, S.J., Rominger, M.B., Goksel, O.: Speed-of-sound imaging based on reflector delineation. IEEE Trans. Biomed. Eng. 66(7), 1949–1962 (2018)CrossRef
26.
Zurück zum Zitat Schreiman, J., Gisvold, J., Greenleaf, J.F., Bahn, R.: Ultrasound transmission computed tomography of the breast. Radiology 150(2), 523–530 (1984)CrossRef Schreiman, J., Gisvold, J., Greenleaf, J.F., Bahn, R.: Ultrasound transmission computed tomography of the breast. Radiology 150(2), 523–530 (1984)CrossRef
27.
Zurück zum Zitat Stähli, P., Frenz, M., Jaeger, M.: Bayesian approach for a robust speed-of-sound reconstruction using pulse-echo ultrasound. IEEE Trans. Med. Imaging 40(2), 457–467 (2020)CrossRef Stähli, P., Frenz, M., Jaeger, M.: Bayesian approach for a robust speed-of-sound reconstruction using pulse-echo ultrasound. IEEE Trans. Med. Imaging 40(2), 457–467 (2020)CrossRef
28.
Zurück zum Zitat Stähli, P., Kuriakose, M., Frenz, M., Jaeger, M.: Improved forward model for quantitative pulse-echo speed-of-sound imaging. Ultrasonics 108, 106168 (2020)CrossRef Stähli, P., Kuriakose, M., Frenz, M., Jaeger, M.: Improved forward model for quantitative pulse-echo speed-of-sound imaging. Ultrasonics 108, 106168 (2020)CrossRef
29.
Zurück zum Zitat Treeby, B.E., Cox, B.T.: k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields. J. Biomed. Opt. 15(2), 021314 (2010)CrossRef Treeby, B.E., Cox, B.T.: k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields. J. Biomed. Opt. 15(2), 021314 (2010)CrossRef
30.
Zurück zum Zitat Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.A.: Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th International Conference on Machine Learning, pp. 1096–1103 (2008) Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.A.: Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th International Conference on Machine Learning, pp. 1096–1103 (2008)
32.
Zurück zum Zitat Zhu, B., Liu, J.Z., Cauley, S.F., Rosen, B.R., Rosen, M.S.: Image reconstruction by domain-transform manifold learning. Nature 555(7697), 487–492 (2018)CrossRef Zhu, B., Liu, J.Z., Cauley, S.F., Rosen, B.R., Rosen, M.S.: Image reconstruction by domain-transform manifold learning. Nature 555(7697), 487–492 (2018)CrossRef
33.
Zurück zum Zitat Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017) Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)
Metadaten
Titel
Speed-of-Sound Mapping for Pulse-Echo Ultrasound Raw Data Using Linked-Autoencoders
verfasst von
Farnaz Khun Jush
Peter M. Dueppenbecker
Andreas Maier
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-47679-2_8

Premium Partner