Skip to main content
Erschienen in: Medical & Biological Engineering & Computing 8/2018

23.01.2018 | Original Article

Speedup computation of HD-sEMG signals using a motor unit-specific electrical source model

verfasst von: Vincent Carriou, Sofiane Boudaoud, Jeremy Laforet

Erschienen in: Medical & Biological Engineering & Computing | Ausgabe 8/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nowadays, bio-reliable modeling of muscle contraction is becoming more accurate and complex. This increasing complexity induces a significant increase in computation time which prevents the possibility of using this model in certain applications and studies. Accordingly, the aim of this work is to significantly reduce the computation time of high-density surface electromyogram (HD-sEMG) generation. This will be done through a new model of motor unit (MU)-specific electrical source based on the fibers composing the MU. In order to assess the efficiency of this approach, we computed the normalized root mean square error (NRMSE) between several simulations on single generated MU action potential (MUAP) using the usual fiber electrical sources and the MU-specific electrical source. This NRMSE was computed for five different simulation sets wherein hundreds of MUAPs are generated and summed into HD-sEMG signals. The obtained results display less than 2% error on the generated signals compared to the same signals generated with fiber electrical sources. Moreover, the computation time of the HD-sEMG signal generation model is reduced to about 90% compared to the fiber electrical source model. Using this model with MU electrical sources, we can simulate HD-sEMG signals of a physiological muscle (hundreds of MU) in less than an hour on a classical workstation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Farina D, Merletti R (2001) A novel approach for precise simulation of the EMG signal detected by surface electrodes. IEEE Transactions on BioMedical Engineering 48(6):637–646CrossRefPubMed Farina D, Merletti R (2001) A novel approach for precise simulation of the EMG signal detected by surface electrodes. IEEE Transactions on BioMedical Engineering 48(6):637–646CrossRefPubMed
2.
Zurück zum Zitat Farina D, Mesin L, Martina S, Merletti R (2004) A surface EMG generation model with multilayer cylindrical description of the volume conductor. IEEE Trans Biomed Eng 51(3):415–426CrossRefPubMed Farina D, Mesin L, Martina S, Merletti R (2004) A surface EMG generation model with multilayer cylindrical description of the volume conductor. IEEE Trans Biomed Eng 51(3):415–426CrossRefPubMed
3.
Zurück zum Zitat Blok JH, Stegeman DF, Oosterom Av (2002) Three-layer volume conductor model and software package for applications in surface electromyography. Ann Biomed Eng 30(4):566–577CrossRefPubMed Blok JH, Stegeman DF, Oosterom Av (2002) Three-layer volume conductor model and software package for applications in surface electromyography. Ann Biomed Eng 30(4):566–577CrossRefPubMed
4.
Zurück zum Zitat Carriou V, Boudaoud S, Laforet J, Ayachi FS (2016) Fast generation model of high density surface EMG signals in a cylindrical conductor volume. Comput Biol Med 74:54–68CrossRefPubMed Carriou V, Boudaoud S, Laforet J, Ayachi FS (2016) Fast generation model of high density surface EMG signals in a cylindrical conductor volume. Comput Biol Med 74:54–68CrossRefPubMed
5.
6.
Zurück zum Zitat Fuglevand AJ, Winter DA, Patla AE, Stashuk D (1992) Detection of motor unit action potentials with surface electrodes: influence of electrode size and spacing. Biol Cybern 67(2):143–153CrossRefPubMed Fuglevand AJ, Winter DA, Patla AE, Stashuk D (1992) Detection of motor unit action potentials with surface electrodes: influence of electrode size and spacing. Biol Cybern 67(2):143–153CrossRefPubMed
7.
Zurück zum Zitat Gootzen THJM, Stegeman DF, Heringa A (1989) On numerical problems in analytical calculations of extracellular fields in bounded cylindrical volume conductors. J Appl Phys 66(9):4504–4508CrossRef Gootzen THJM, Stegeman DF, Heringa A (1989) On numerical problems in analytical calculations of extracellular fields in bounded cylindrical volume conductors. J Appl Phys 66(9):4504–4508CrossRef
8.
Zurück zum Zitat Roeleveld K, Blok JH, Stegeman DF, van Oosterom A (1997) Volume conduction models for surface EMG: confrontation with measurements. J Electromyogr Kinesiol 7(4):221–232CrossRefPubMed Roeleveld K, Blok JH, Stegeman DF, van Oosterom A (1997) Volume conduction models for surface EMG: confrontation with measurements. J Electromyogr Kinesiol 7(4):221–232CrossRefPubMed
9.
Zurück zum Zitat McGill KC (2004) Surface electromyogram signal modelling. Med Biol Eng Comput 42(4):446–454CrossRefPubMed McGill KC (2004) Surface electromyogram signal modelling. Med Biol Eng Comput 42(4):446–454CrossRefPubMed
10.
Zurück zum Zitat Lowery M, Stoykov N, Taflove A, Kuiken T (2002) A multiple-layer finite-element model of the surface EMG signal. IEEE Trans Biomed Eng 49(5):446–454CrossRefPubMed Lowery M, Stoykov N, Taflove A, Kuiken T (2002) A multiple-layer finite-element model of the surface EMG signal. IEEE Trans Biomed Eng 49(5):446–454CrossRefPubMed
11.
Zurück zum Zitat Dimitrov GV, Dimitrova NA (1998) Precise and fast calculation of the motor unit potentials detected by a point and rectangular plate electrode. Med Eng Phys 20(5):374–381CrossRefPubMed Dimitrov GV, Dimitrova NA (1998) Precise and fast calculation of the motor unit potentials detected by a point and rectangular plate electrode. Med Eng Phys 20(5):374–381CrossRefPubMed
12.
Zurück zum Zitat Fuglevand AJ, Winter DA, Patla AE (1993) Models of recruitment and rate coding organization in motor-unit pools. J Neurophys 70(6):2470–2488CrossRef Fuglevand AJ, Winter DA, Patla AE (1993) Models of recruitment and rate coding organization in motor-unit pools. J Neurophys 70(6):2470–2488CrossRef
13.
Zurück zum Zitat Rosenfalck P (1969) Intra- and extracellular potential fields of active nerve and muscle fibres. a physico-mathematical analysis of different models. Thrombosis Et Diathesis Haemorrhagica Supplementum 321:1–168 Rosenfalck P (1969) Intra- and extracellular potential fields of active nerve and muscle fibres. a physico-mathematical analysis of different models. Thrombosis Et Diathesis Haemorrhagica Supplementum 321:1–168
16.
Zurück zum Zitat Stegeman DF, Blok JH, Hermens HJ, Roeleveld K (2000) Surface EMG models: properties and applications. J Electromyogr Kinesiol 10(5):313–326CrossRefPubMed Stegeman DF, Blok JH, Hermens HJ, Roeleveld K (2000) Surface EMG models: properties and applications. J Electromyogr Kinesiol 10(5):313–326CrossRefPubMed
17.
Zurück zum Zitat Merletti R, Parker PA (2004) Electromyography: physiology, engineering, and non-invasive applications. John Wiley, Hoboken Merletti R, Parker PA (2004) Electromyography: physiology, engineering, and non-invasive applications. John Wiley, Hoboken
18.
Zurück zum Zitat Wallinga W, Meijer SL, Alberink MJ, Vliek M, Wienk ED, Ypey DL (1999) Modelling action potentials and membrane currents of mammalian skeletal muscle fibres in coherence with potassium concentration changes in the T-tubular system. Eur Biophys J EBJ 28(4):317–329CrossRefPubMed Wallinga W, Meijer SL, Alberink MJ, Vliek M, Wienk ED, Ypey DL (1999) Modelling action potentials and membrane currents of mammalian skeletal muscle fibres in coherence with potassium concentration changes in the T-tubular system. Eur Biophys J EBJ 28(4):317–329CrossRefPubMed
19.
Zurück zum Zitat Carriou V, Laforet J, Boudaoud S, Harrach MA (2016) Realistic motor unit placement in a cylindrical HD-sEMG generation model. In: 2016 38th annual international conference of the IEEE engineering in medicine and biology society (EMBC), pp 1704–1707 Carriou V, Laforet J, Boudaoud S, Harrach MA (2016) Realistic motor unit placement in a cylindrical HD-sEMG generation model. In: 2016 38th annual international conference of the IEEE engineering in medicine and biology society (EMBC), pp 1704–1707
20.
Zurück zum Zitat Masuda T, Miyano H, Sadoyama T (1985) The position of innervation zones in the biceps brachii investigated by surface electromyography. IEEE Trans Biomed Eng BME-32(1):36–42CrossRef Masuda T, Miyano H, Sadoyama T (1985) The position of innervation zones in the biceps brachii investigated by surface electromyography. IEEE Trans Biomed Eng BME-32(1):36–42CrossRef
21.
Zurück zum Zitat Ayachi FS, Boudaoud S, Marque C (2014) Evaluation of muscle force classification using shape analysis of the sEMG probability density function: a simulation study. Med Biol Eng Comput 52(8):673–684CrossRefPubMed Ayachi FS, Boudaoud S, Marque C (2014) Evaluation of muscle force classification using shape analysis of the sEMG probability density function: a simulation study. Med Biol Eng Comput 52(8):673–684CrossRefPubMed
22.
Zurück zum Zitat Arabadzhiev TI, Dimitrov VG, Dimitrova NA, Dimitrov GV (2009) Influence of motor unit synchronization on amplitude characteristics of surface and intramuscularly recorded EMG signals. Eur J Appl Physiol 108(2):227–237CrossRefPubMed Arabadzhiev TI, Dimitrov VG, Dimitrova NA, Dimitrov GV (2009) Influence of motor unit synchronization on amplitude characteristics of surface and intramuscularly recorded EMG signals. Eur J Appl Physiol 108(2):227–237CrossRefPubMed
23.
Zurück zum Zitat Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7(4):308–313CrossRef Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7(4):308–313CrossRef
24.
Zurück zum Zitat Brown MB, Forsythe AB (1960) Robust tests for the equality of variances. J Am Stat Assoc 69(346):364–367CrossRef Brown MB, Forsythe AB (1960) Robust tests for the equality of variances. J Am Stat Assoc 69(346):364–367CrossRef
25.
Zurück zum Zitat Klein CS, Marsh GD, Petrella RJ, Rice CL (2003) Muscle fiber number in the biceps brachii muscle of young and old men. Muscle Nerve 28(1):62–68CrossRefPubMed Klein CS, Marsh GD, Petrella RJ, Rice CL (2003) Muscle fiber number in the biceps brachii muscle of young and old men. Muscle Nerve 28(1):62–68CrossRefPubMed
26.
Zurück zum Zitat Farina D, Cescon C, Merletti R (2002) Influence of anatomical, physical, and detection-system parameters on surface EMG. Biol Cybern 86(6):445–456CrossRefPubMed Farina D, Cescon C, Merletti R (2002) Influence of anatomical, physical, and detection-system parameters on surface EMG. Biol Cybern 86(6):445–456CrossRefPubMed
Metadaten
Titel
Speedup computation of HD-sEMG signals using a motor unit-specific electrical source model
verfasst von
Vincent Carriou
Sofiane Boudaoud
Jeremy Laforet
Publikationsdatum
23.01.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Medical & Biological Engineering & Computing / Ausgabe 8/2018
Print ISSN: 0140-0118
Elektronische ISSN: 1741-0444
DOI
https://doi.org/10.1007/s11517-018-1784-5

Weitere Artikel der Ausgabe 8/2018

Medical & Biological Engineering & Computing 8/2018 Zur Ausgabe