Skip to main content

2020 | OriginalPaper | Buchkapitel

40. Spezielle labortechnische Reaktoren: 3D-gedruckte Reaktoren

verfasst von : Eike G. Hübner, Felix Lederle

Erschienen in: Handbuch Chemische Reaktoren

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Zusammenfassung

Kaum eine Technologie hat sich innerhalb der letzten Jahre so öffentlichkeitswirksam verbreitet wie die additive Fertigung. 3D-Drucker sind mittlerweile sowohl im Heimbereich als auch in der industriellen Fertigung anzutreffen. Anhand von zahlreichen Beispielen wird die fortschreitende Entwicklung von 3D-Drucktechniken für chemische Laboratorien dargestellt. Ausgehend von grundlegender Methodenevaluation finden heutzutage komplexe und präparativ nutzbare 3D-gedruckte Reaktoren breite Anwendung sowohl in der Mikro- und Millifluidik als auch in Form kreativ genutzter Batchreaktoren.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Ameloot, R.: Digital fabrication in catalytic technology. In: Sels, B., Van de Voorde, M. (Hrsg.) Nanotechnology in Catalysis: Applications in the Chemical Industry, Energy Development, and Environment Protection, S. 359–381. Wiley-VCH, Weinheim (2017) Ameloot, R.: Digital fabrication in catalytic technology. In: Sels, B., Van de Voorde, M. (Hrsg.) Nanotechnology in Catalysis: Applications in the Chemical Industry, Energy Development, and Environment Protection, S. 359–381. Wiley-VCH, Weinheim (2017)
Zurück zum Zitat Avril, A., Hornung, C.H., Urban, A., Fraser, D., Horne, M., Veder, J.-P., Tsanaktsidis, J., Rodopoulos, T., Henry, C., Gunasegaram, D.R.: Continuous flow hydrogenations using novel catalytic static mixers inside a tubular reactor. React. Chem. Eng. 2, 180–188 (2017) Avril, A., Hornung, C.H., Urban, A., Fraser, D., Horne, M., Veder, J.-P., Tsanaktsidis, J., Rodopoulos, T., Henry, C., Gunasegaram, D.R.: Continuous flow hydrogenations using novel catalytic static mixers inside a tubular reactor. React. Chem. Eng. 2, 180–188 (2017)
Zurück zum Zitat Bertsch, A., Heimgartner, S., Cousseau, P., Renaud, P.: Static micromixers based on large-scale industrial mixer geometry. Lab Chip 1, 56–60 (2001) Bertsch, A., Heimgartner, S., Cousseau, P., Renaud, P.: Static micromixers based on large-scale industrial mixer geometry. Lab Chip 1, 56–60 (2001)
Zurück zum Zitat Bettermann, S., Schroeter, B., Moritz, H.-U., Pauer, W., Fassbender, M., Luinstra, G.A.: Continuous emulsion copolymerization processes at mild conditions in a 3D-printed tubular bended reactor. Chem. Eng. J. 338, 311–322 (2018) Bettermann, S., Schroeter, B., Moritz, H.-U., Pauer, W., Fassbender, M., Luinstra, G.A.: Continuous emulsion copolymerization processes at mild conditions in a 3D-printed tubular bended reactor. Chem. Eng. J. 338, 311–322 (2018)
Zurück zum Zitat Capel, A.J., Edmondson, S., Christie, S.D.R., Goodridge, R.D., Bibb, R.J., Thurstans, M.: Design and additive manufacture for flow chemistry. Lab Chip 13, 4583–4590 (2013) Capel, A.J., Edmondson, S., Christie, S.D.R., Goodridge, R.D., Bibb, R.J., Thurstans, M.: Design and additive manufacture for flow chemistry. Lab Chip 13, 4583–4590 (2013)
Zurück zum Zitat Capel, A.J., Wright, A., Harding, M.J., Weaver, G.W., Li, Y., Harris, R.A., Edmondson, S., Goodridge, R.D., Christie, S.D.R.: 3D printed fluidics with embedded analytic functionality for automated reaction optimisation. Beilstein J. Org. Chem. 13, 111–119 (2017)PubMedPubMedCentral Capel, A.J., Wright, A., Harding, M.J., Weaver, G.W., Li, Y., Harris, R.A., Edmondson, S., Goodridge, R.D., Christie, S.D.R.: 3D printed fluidics with embedded analytic functionality for automated reaction optimisation. Beilstein J. Org. Chem. 13, 111–119 (2017)PubMedPubMedCentral
Zurück zum Zitat Díaz-Marta, A.S., Tubío, C.R., Carbajales, C., Fernández, C., Escalante, L., Sotelo, E., Guitián, F., Barrio, V.L., Gil, A., Coelho, A.: Three-dimensional printing in catalysis: Combining 3D heterogeneous copper and palladium catalysts for multicatalytic multicomponent reactions. ACS Catal. 8, 392–404 (2018) Díaz-Marta, A.S., Tubío, C.R., Carbajales, C., Fernández, C., Escalante, L., Sotelo, E., Guitián, F., Barrio, V.L., Gil, A., Coelho, A.: Three-dimensional printing in catalysis: Combining 3D heterogeneous copper and palladium catalysts for multicatalytic multicomponent reactions. ACS Catal. 8, 392–404 (2018)
Zurück zum Zitat Dragone, V., Sans, V., Rosnes, M.H., Kitson, P.J., Cronin, L.: 3D-printed devices for continuous-flow organic chemistry. Beilstein J. Org. Chem. 9, 951–959 (2013)PubMedPubMedCentral Dragone, V., Sans, V., Rosnes, M.H., Kitson, P.J., Cronin, L.: 3D-printed devices for continuous-flow organic chemistry. Beilstein J. Org. Chem. 9, 951–959 (2013)PubMedPubMedCentral
Zurück zum Zitat Elias, Y., von Rohr, P.R., Bonrath, W., Medlock, J., Buss, A.: A porous structured reactor for hydrogenation reactions. Chem. Eng. Process. Process Intensif. 95, 175–185 (2015) Elias, Y., von Rohr, P.R., Bonrath, W., Medlock, J., Buss, A.: A porous structured reactor for hydrogenation reactions. Chem. Eng. Process. Process Intensif. 95, 175–185 (2015)
Zurück zum Zitat Erkal, J.L., Selimovic, A., Gross, B.C., Lockwood, S.Y., Walton, E.L., McNamara, S., Martin, R.S., Spence, D.M.: 3D printed microfluidic devices with integrated versatile and reusable electrodes. Lab Chip 14, 2023–2032 (2014) Erkal, J.L., Selimovic, A., Gross, B.C., Lockwood, S.Y., Walton, E.L., McNamara, S., Martin, R.S., Spence, D.M.: 3D printed microfluidic devices with integrated versatile and reusable electrodes. Lab Chip 14, 2023–2032 (2014)
Zurück zum Zitat Gelhausen, M.G., Lenz, D., Krull, F., Korkmaz, V., Agar, D.W.: 3D printing for chemical process laboratories II: Measuring liquid-solid mass transfer coefficients. Chem. Eng. Technol. 41, 798–805 (2018) Gelhausen, M.G., Lenz, D., Krull, F., Korkmaz, V., Agar, D.W.: 3D printing for chemical process laboratories II: Measuring liquid-solid mass transfer coefficients. Chem. Eng. Technol. 41, 798–805 (2018)
Zurück zum Zitat Gordeev, E.G., Degtyareva, E.S., Ananikov, V.P.: Analysis of 3D printing possibilities for the development of practical applications in synthetic organic chemistry. Russ. Chem. Bull. Int. Ed. 65, 1637–1643 (2016) Gordeev, E.G., Degtyareva, E.S., Ananikov, V.P.: Analysis of 3D printing possibilities for the development of practical applications in synthetic organic chemistry. Russ. Chem. Bull. Int. Ed. 65, 1637–1643 (2016)
Zurück zum Zitat Gutmann, B., Köckinger, M., Glotz, G., Ciaglia, T., Slama, E., Zadravec, M., Pfanner, S., Maier, M.C., Gruber-Wölfler, H., Kappe, C.O.: Design and 3D printing of a stainless steel reactor for continuous difluoromethylations using fluoroform. React. Chem. Eng. 2, 919–927 (2017) Gutmann, B., Köckinger, M., Glotz, G., Ciaglia, T., Slama, E., Zadravec, M., Pfanner, S., Maier, M.C., Gruber-Wölfler, H., Kappe, C.O.: Design and 3D printing of a stainless steel reactor for continuous difluoromethylations using fluoroform. React. Chem. Eng. 2, 919–927 (2017)
Zurück zum Zitat Hornung, C.H., Nguyen, X., Carafa, A., Gardiner, J., Urban, A., Fraser, D., Horne, M.D., Gunasegaram, D.R., Tsanaktsidis, J.: Use of catalytic static mixers for continuous flow gas-liquid and transfer hydrogenations in organic synthesis. Org. Process. Res. Dev. 21, 1311–1319 (2017) Hornung, C.H., Nguyen, X., Carafa, A., Gardiner, J., Urban, A., Fraser, D., Horne, M.D., Gunasegaram, D.R., Tsanaktsidis, J.: Use of catalytic static mixers for continuous flow gas-liquid and transfer hydrogenations in organic synthesis. Org. Process. Res. Dev. 21, 1311–1319 (2017)
Zurück zum Zitat Kanazawaka, S., Eto, K., Imagawa, W., Akamine, S., Ichiki, R.: 3D-printed atmospheric-pressure plasma reactors. Int. J. Plasma Environ. Sci. Technol. 9, 103–106 (2015) Kanazawaka, S., Eto, K., Imagawa, W., Akamine, S., Ichiki, R.: 3D-printed atmospheric-pressure plasma reactors. Int. J. Plasma Environ. Sci. Technol. 9, 103–106 (2015)
Zurück zum Zitat Kazenwadel, F., Biegert, E., Wohlgemuth, J., Wagner, H., Franzreb, M.: A 3D-printed modular reactor setup including temperature and pH control for the compartmentalized implementation of enzyme cascades. Eng. Life Sci. 16, 560–567 (2016) Kazenwadel, F., Biegert, E., Wohlgemuth, J., Wagner, H., Franzreb, M.: A 3D-printed modular reactor setup including temperature and pH control for the compartmentalized implementation of enzyme cascades. Eng. Life Sci. 16, 560–567 (2016)
Zurück zum Zitat Kise, D.P., Reddish, M.J., Dyer, R.B.: Sandwich-format 3D printed microfluidic mixers: A flexible platform for multi-probe analysis. J. Micromech. Microeng. 25, 124002 (2015)PubMedPubMedCentral Kise, D.P., Reddish, M.J., Dyer, R.B.: Sandwich-format 3D printed microfluidic mixers: A flexible platform for multi-probe analysis. J. Micromech. Microeng. 25, 124002 (2015)PubMedPubMedCentral
Zurück zum Zitat Kitson, P.J., Rosnes, M.H., Sans, V., Dragone, V., Cronin, L.: Configurable 3D-printed millifluidic and microfluidic ‚lab on chip‘ reactionware devices. Lab Chip 12, 3267–3271 (2012) Kitson, P.J., Rosnes, M.H., Sans, V., Dragone, V., Cronin, L.: Configurable 3D-printed millifluidic and microfluidic ‚lab on chip‘ reactionware devices. Lab Chip 12, 3267–3271 (2012)
Zurück zum Zitat Kitson, P.J., Symes, M.D., Dragone, V., Cronin, L.: Combining 3D printing and liquid handling to produce user-friendly reactionware for chemical synthesis and purification. Chem. Sci. 4, 3099–3103 (2013) Kitson, P.J., Symes, M.D., Dragone, V., Cronin, L.: Combining 3D printing and liquid handling to produce user-friendly reactionware for chemical synthesis and purification. Chem. Sci. 4, 3099–3103 (2013)
Zurück zum Zitat Kitson, P.J., Marshall, R.J., Long, D., Forgan, R.S., Cronin, L.: 3D printed high-throughput hydrothermal reactionware for discovery, optimization, and scale-up. Angew. Chem. Int. Ed. 53, 12723–12728 (2014) Kitson, P.J., Marshall, R.J., Long, D., Forgan, R.S., Cronin, L.: 3D printed high-throughput hydrothermal reactionware for discovery, optimization, and scale-up. Angew. Chem. Int. Ed. 53, 12723–12728 (2014)
Zurück zum Zitat Kitson, P.J., Glatzel, S., Cronin, L.: The digital code driven autonomous synthesis of ibuprofen automated in a 3D-printer based robot. Beilstein J. Org. Chem. 12, 2776–2783 (2016)PubMedPubMedCentral Kitson, P.J., Glatzel, S., Cronin, L.: The digital code driven autonomous synthesis of ibuprofen automated in a 3D-printer based robot. Beilstein J. Org. Chem. 12, 2776–2783 (2016)PubMedPubMedCentral
Zurück zum Zitat Kitson, P.J., Marie, G., Francoia, J.-P., Zalesskiy, S.S., Sigerson, R.C., Mathieson, J.S., Cronin, L.: Digitization of multistep organic synthesis in reactionware for on-demand pharmaceuticals. Science 359, 314–319 (2018)PubMed Kitson, P.J., Marie, G., Francoia, J.-P., Zalesskiy, S.S., Sigerson, R.C., Mathieson, J.S., Cronin, L.: Digitization of multistep organic synthesis in reactionware for on-demand pharmaceuticals. Science 359, 314–319 (2018)PubMed
Zurück zum Zitat Knitter, R., Liauw, M.A.: Ceramic microreactors for heterogeneously catalysed gas-phase reactions. Lab Chip 4, 378–383 (2004) Knitter, R., Liauw, M.A.: Ceramic microreactors for heterogeneously catalysed gas-phase reactions. Lab Chip 4, 378–383 (2004)
Zurück zum Zitat Konarova, M., Aslam, W., Ge, L., Ma, Q., Tang, F., Rudolph, V., Beltramini, J.N.: Enabling process intensification by 3D printing of catalytic structures. Chem. Cat. Chem. 9, 4132–4138 (2017) Konarova, M., Aslam, W., Ge, L., Ma, Q., Tang, F., Rudolph, V., Beltramini, J.N.: Enabling process intensification by 3D printing of catalytic structures. Chem. Cat. Chem. 9, 4132–4138 (2017)
Zurück zum Zitat Lederle, F., Kaldun, C., Namyslo, J.C., Hübner, E.G.: 3D-printing inside the glovebox: A versatile tool for inert-gas chemistry combined with spectroscopy. Helv. Chim. Acta. 99, 255–266 (2016a)PubMedPubMedCentral Lederle, F., Kaldun, C., Namyslo, J.C., Hübner, E.G.: 3D-printing inside the glovebox: A versatile tool for inert-gas chemistry combined with spectroscopy. Helv. Chim. Acta. 99, 255–266 (2016a)PubMedPubMedCentral
Zurück zum Zitat Lederle, F., Meyer, F., Brunotte, G.-P., Kaldun, C., Hübner, E.G.: Improved mechanical properties of 3D-printed parts by fused deposition modeling under the exclusion of oxygen. Prog. Addit. Manuf. 1, 3–7 (2016b) Lederle, F., Meyer, F., Brunotte, G.-P., Kaldun, C., Hübner, E.G.: Improved mechanical properties of 3D-printed parts by fused deposition modeling under the exclusion of oxygen. Prog. Addit. Manuf. 1, 3–7 (2016b)
Zurück zum Zitat Lederle, F., Meyer, F., Kaldun, C., Namyslo, J.C., Hübner, E.G.: Sonogashira coupling in 3D-printed NMR cuvettes: Synthesis and properties of arylnaphthylalkynes. New J. Chem. 41, 1925–1932 (2017) Lederle, F., Meyer, F., Kaldun, C., Namyslo, J.C., Hübner, E.G.: Sonogashira coupling in 3D-printed NMR cuvettes: Synthesis and properties of arylnaphthylalkynes. New J. Chem. 41, 1925–1932 (2017)
Zurück zum Zitat Lücking, T.H., Sambale, F., Beutel, S., Scheper, T.: 3D-printed individual labware in biosciences by rapid prototyping: A proof of principle. Eng. Life Sci. 15, 51–56 (2015) Lücking, T.H., Sambale, F., Beutel, S., Scheper, T.: 3D-printed individual labware in biosciences by rapid prototyping: A proof of principle. Eng. Life Sci. 15, 51–56 (2015)
Zurück zum Zitat Manzano, J.S., Weinstein, Z.B., Sadow, A.D., Slowing, I.I.: Direct 3D printing of catalytically active structures. ACS Catal. 7, 7567–7577 (2017) Manzano, J.S., Weinstein, Z.B., Sadow, A.D., Slowing, I.I.: Direct 3D printing of catalytically active structures. ACS Catal. 7, 7567–7577 (2017)
Zurück zum Zitat Marks, P.: 3D printing takes off with the world’s first printed plane. New Sci. 211, 17–18 (2011) Marks, P.: 3D printing takes off with the world’s first printed plane. New Sci. 211, 17–18 (2011)
Zurück zum Zitat Mathieson, J.S., Rosnes, M.H., Sans, V., Kitson, P.J., Cronin, L.: Continuous parallel ESI-MS analysis of reactions carried out in a bespoke 3D printed device. Beilstein J. Nanotechnol. 4, 285–291 (2013)PubMedPubMedCentral Mathieson, J.S., Rosnes, M.H., Sans, V., Kitson, P.J., Cronin, L.: Continuous parallel ESI-MS analysis of reactions carried out in a bespoke 3D printed device. Beilstein J. Nanotechnol. 4, 285–291 (2013)PubMedPubMedCentral
Zurück zum Zitat McDonald, J.C., Chabinyc, M.L., Metallo, S.J., Anderson, J.R., Stroock, A.D., Whitesides, G.M.: Prototyping of microfluidic devices in poly(dimethylsiloxane) using solid-object printing. Anal. Chem. 74, 1537–1545 (2002)PubMed McDonald, J.C., Chabinyc, M.L., Metallo, S.J., Anderson, J.R., Stroock, A.D., Whitesides, G.M.: Prototyping of microfluidic devices in poly(dimethylsiloxane) using solid-object printing. Anal. Chem. 74, 1537–1545 (2002)PubMed
Zurück zum Zitat Michel, F.M., Rimstidt, J.D., Kletetschka, K.: 3D printed mixed flow reactor for geochemical rate measurements. Appl. Geochem. 89, 86–91 (2018) Michel, F.M., Rimstidt, J.D., Kletetschka, K.: 3D printed mixed flow reactor for geochemical rate measurements. Appl. Geochem. 89, 86–91 (2018)
Zurück zum Zitat Mousset, E., Weiqi, V.H., Kai, B.F.Y., Koh, J.S., Tng, J.W., Wang, Z., Lefebvre, O.: A new 3D-printed photoelectrocatalytic reactor combining the benefits of a transparent electrode and the Fenton reaction for advanced wastewater treatment. J. Mater. Chem. A 5, 24951–24964 (2017) Mousset, E., Weiqi, V.H., Kai, B.F.Y., Koh, J.S., Tng, J.W., Wang, Z., Lefebvre, O.: A new 3D-printed photoelectrocatalytic reactor combining the benefits of a transparent electrode and the Fenton reaction for advanced wastewater treatment. J. Mater. Chem. A 5, 24951–24964 (2017)
Zurück zum Zitat Okafor, O., Weilhard, A., Fernandes, J.A., Karjalainen, E., Goodridge, R., Sans, V.: Advanced reactor engineering with 3D printing for the continuous-flow synthesis of silver nanoparticles. React. Chem. Eng. 2, 129–136 (2017) Okafor, O., Weilhard, A., Fernandes, J.A., Karjalainen, E., Goodridge, R., Sans, V.: Advanced reactor engineering with 3D printing for the continuous-flow synthesis of silver nanoparticles. React. Chem. Eng. 2, 129–136 (2017)
Zurück zum Zitat Parra-Cabrera, C., Achille, C., Kuhn, S., Ameloot, R.: 3D printing in chemical engineering and catalytic technology: Structured catalysts, mixers and reactors. Chem. Soc. Rev. 47, 209–230 (2018)PubMed Parra-Cabrera, C., Achille, C., Kuhn, S., Ameloot, R.: 3D printing in chemical engineering and catalytic technology: Structured catalysts, mixers and reactors. Chem. Soc. Rev. 47, 209–230 (2018)PubMed
Zurück zum Zitat Peris, E., Okafor, O., Kulcinskaja, E., Goodridge, R., Luis, S.V., Garcia-Verdugo, E., O’Reilly, E., Sans, V.: Tuneable 3D printed bioreactos for transaminations under continuous-flow. Green Chem. 19, 5345–5349 (2017) Peris, E., Okafor, O., Kulcinskaja, E., Goodridge, R., Luis, S.V., Garcia-Verdugo, E., O’Reilly, E., Sans, V.: Tuneable 3D printed bioreactos for transaminations under continuous-flow. Green Chem. 19, 5345–5349 (2017)
Zurück zum Zitat Rao, Z.X., Patel, B., Monaco, A., Cao, Z.J., Barniol-Xicota, M., Pichon, E., Ladlow, M., Hilton, S.T.: 3D-printed polypropylene continuous-flow column reactors: Exploration of reactor utility in SNAr reactions and the synthesis of bicyclic and tetracyclic heterocycles. Eur. J. Org. Chem. 2017, 6499–6504 (2017) Rao, Z.X., Patel, B., Monaco, A., Cao, Z.J., Barniol-Xicota, M., Pichon, E., Ladlow, M., Hilton, S.T.: 3D-printed polypropylene continuous-flow column reactors: Exploration of reactor utility in SNAr reactions and the synthesis of bicyclic and tetracyclic heterocycles. Eur. J. Org. Chem. 2017, 6499–6504 (2017)
Zurück zum Zitat Rogers, C.I., Qaderi, K., Woolley, A.T., Nordin, G.P.: 3D printed microfluidic devices with integrated valves. Biomicrofluidics 9, 016501 (2015)PubMedPubMedCentral Rogers, C.I., Qaderi, K., Woolley, A.T., Nordin, G.P.: 3D printed microfluidic devices with integrated valves. Biomicrofluidics 9, 016501 (2015)PubMedPubMedCentral
Zurück zum Zitat Rossi, S., Porta, R., Brenna, D., Puglisi, A., Benaglia, M.: Stereoselective catalytic synthesis of active pharmaceutical ingredients in homemade 3D-printed mesoreactors. Angew. Chem. Int. Ed. 56, 4290–4294 (2017) Rossi, S., Porta, R., Brenna, D., Puglisi, A., Benaglia, M.: Stereoselective catalytic synthesis of active pharmaceutical ingredients in homemade 3D-printed mesoreactors. Angew. Chem. Int. Ed. 56, 4290–4294 (2017)
Zurück zum Zitat Sandron, S., Heery, B., Gupta, V., Collins, D.A., Nesterenko, E.P., Nesterenko, P.N., Talebi, M., Beirne, S., Thompson, F., Wallace, G.G., Brabazon, D., Regan, F., Paull, B.: 3D printed metal columns for capillary liquid chromatography. Analyst 139, 6343–6347 (2014)PubMed Sandron, S., Heery, B., Gupta, V., Collins, D.A., Nesterenko, E.P., Nesterenko, P.N., Talebi, M., Beirne, S., Thompson, F., Wallace, G.G., Brabazon, D., Regan, F., Paull, B.: 3D printed metal columns for capillary liquid chromatography. Analyst 139, 6343–6347 (2014)PubMed
Zurück zum Zitat Scotti, G., Nilsson, S.M.E., Haapala, M., Pöhö, P., Af Gennäs, G.B., Yli-Kauhaluoma, J., Kotiaho, T.: A miniaturised 3D printed polypropylene reactor for online reaction analysis by mass spectrometry. React. Chem. Eng. 2, 299–303 (2017) Scotti, G., Nilsson, S.M.E., Haapala, M., Pöhö, P., Af Gennäs, G.B., Yli-Kauhaluoma, J., Kotiaho, T.: A miniaturised 3D printed polypropylene reactor for online reaction analysis by mass spectrometry. React. Chem. Eng. 2, 299–303 (2017)
Zurück zum Zitat Stefanov, B.I., Lebrun, D., Mattsson, A., Granqvist, C.G., Österlund, L.: Demonstrating online monitoring of air pollutant photodegradation in a 3D printed gas-phase photocatalysis reactor. J. Chem. Educ. 92, 678–682 (2015) Stefanov, B.I., Lebrun, D., Mattsson, A., Granqvist, C.G., Österlund, L.: Demonstrating online monitoring of air pollutant photodegradation in a 3D printed gas-phase photocatalysis reactor. J. Chem. Educ. 92, 678–682 (2015)
Zurück zum Zitat Symes, M.D., Kitson, P.J., Yan, J., Richmond, C.J., Cooper, G.J.T., Bowman, R.W., Vilbrandt, T., Cronin, L.: Integrated 3D-printed reactionware for chemical synthesis and analysis. Nat. Chem. 4, 349–354 (2012)PubMed Symes, M.D., Kitson, P.J., Yan, J., Richmond, C.J., Cooper, G.J.T., Bowman, R.W., Vilbrandt, T., Cronin, L.: Integrated 3D-printed reactionware for chemical synthesis and analysis. Nat. Chem. 4, 349–354 (2012)PubMed
Zurück zum Zitat Therriault, D., White, S.R., Lewis, J.A.: Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly. Nat. Mater. 2, 265–271 (2003)PubMed Therriault, D., White, S.R., Lewis, J.A.: Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly. Nat. Mater. 2, 265–271 (2003)PubMed
Zurück zum Zitat Amin, R., Knowlton, S., Hart, A., Yenilmez, B., Ghaderinezhad, F., Katebifar, S., Messina, M., Khademhosseini, A., Tasoglu, S.: 3D-printed microfluidic devices. Biofabrication 8, 022001 (2016)PubMed Amin, R., Knowlton, S., Hart, A., Yenilmez, B., Ghaderinezhad, F., Katebifar, S., Messina, M., Khademhosseini, A., Tasoglu, S.: 3D-printed microfluidic devices. Biofabrication 8, 022001 (2016)PubMed
Zurück zum Zitat Au, A.K., Lee, W., Folch, A.: Mail-order microfluidics: Evaluation of stereolithography for the production of microfluidic devices. Lab Chip 14, 1294–1301 (2014) Au, A.K., Lee, W., Folch, A.: Mail-order microfluidics: Evaluation of stereolithography for the production of microfluidic devices. Lab Chip 14, 1294–1301 (2014)
Zurück zum Zitat Au, A.K., Huynh, W., Horowitz, L.F., Folch, A.: 3D-printed microfluidics. Angew. Chem. Int. Ed. 55, 3862–3881 (2016) Au, A.K., Huynh, W., Horowitz, L.F., Folch, A.: 3D-printed microfluidics. Angew. Chem. Int. Ed. 55, 3862–3881 (2016)
Zurück zum Zitat Bhattacharjee, N., Urrios, A., Kang, S., Folch, A.: The upcoming 3D-printing revolution in microfluidics. Lab Chip 16, 1720–1742 (2016) Bhattacharjee, N., Urrios, A., Kang, S., Folch, A.: The upcoming 3D-printing revolution in microfluidics. Lab Chip 16, 1720–1742 (2016)
Zurück zum Zitat Dizon, J.R.C., Espara Jr., A.H., Chen, Q., Advincula, R.C.: Mechanical characterization of 3D-printed polymers. Addit. Manuf. 20, 44–67 (2018) Dizon, J.R.C., Espara Jr., A.H., Chen, Q., Advincula, R.C.: Mechanical characterization of 3D-printed polymers. Addit. Manuf. 20, 44–67 (2018)
Zurück zum Zitat Fitzpatrick, D.E., Battilocchio, C., Ley, S.V.: Enabling technologies for the future of chemical synthesis. ACS Cent. Sci. 2, 131–138 (2016)PubMedPubMedCentral Fitzpatrick, D.E., Battilocchio, C., Ley, S.V.: Enabling technologies for the future of chemical synthesis. ACS Cent. Sci. 2, 131–138 (2016)PubMedPubMedCentral
Zurück zum Zitat Gelhausen, M.G., Feuerbach, T., Schubert, A., Agar, D.W.: 3D printing for chemical process laboratories I: Materials and connection principles. Chem. Eng. Technol. 41, 618–627 (2018) Gelhausen, M.G., Feuerbach, T., Schubert, A., Agar, D.W.: 3D printing for chemical process laboratories I: Materials and connection principles. Chem. Eng. Technol. 41, 618–627 (2018)
Zurück zum Zitat Gross, B.C., Erkal, J.L., Lockwood, S.Y., Chen, C., Spence, D.M.: Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Anal. Chem. 86, 3240–3253 (2014)PubMed Gross, B.C., Erkal, J.L., Lockwood, S.Y., Chen, C., Spence, D.M.: Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Anal. Chem. 86, 3240–3253 (2014)PubMed
Zurück zum Zitat Gross, B., Lockwood, S.Y., Spence, D.M.: Recent advances in analytical chemistry by 3D printing. Anal. Chem. 89, 57–70 (2017)PubMed Gross, B., Lockwood, S.Y., Spence, D.M.: Recent advances in analytical chemistry by 3D printing. Anal. Chem. 89, 57–70 (2017)PubMed
Zurück zum Zitat He, Y., Wu, Y., Fu, J.-Z., Gao, Q., Qiu, J.-J. Developments of 3D printing microfluidics and applications in chemistry and biology: A review. Electroanalysis 28, 1658–1678 (2016) He, Y., Wu, Y., Fu, J.-Z., Gao, Q., Qiu, J.-J. Developments of 3D printing microfluidics and applications in chemistry and biology: A review. Electroanalysis 28, 1658–1678 (2016)
Zurück zum Zitat Hurt, C., Brandt, M., Priya, S.S., Bhatelia, T., Patel, J., Selvakannan, P.R., Bhargava, S.: Combining additive manufacturing and catalysis: A review. Catal. Sci. Technol. 7, 3421–3439 (2017) Hurt, C., Brandt, M., Priya, S.S., Bhatelia, T., Patel, J., Selvakannan, P.R., Bhargava, S.: Combining additive manufacturing and catalysis: A review. Catal. Sci. Technol. 7, 3421–3439 (2017)
Zurück zum Zitat Ligon, S.C., Liska, R., Stampfl, J., Gurr, M., Mülhaupt, R.: Polymers for 3D printing and customized additive manufacturing. Chem. Rev. 117, 10212–10290 (2017)PubMedPubMedCentral Ligon, S.C., Liska, R., Stampfl, J., Gurr, M., Mülhaupt, R.: Polymers for 3D printing and customized additive manufacturing. Chem. Rev. 117, 10212–10290 (2017)PubMedPubMedCentral
Zurück zum Zitat Macdonald, N.P., Cabot, J.M., Smejkal, P., Guijt, R.M., Paull, B., Breadmore, M.C.: Comparing microfluidic performance of three-dimensional (3D) printing platforms. Anal. Chem. 89, 3858–3866 (2017)PubMed Macdonald, N.P., Cabot, J.M., Smejkal, P., Guijt, R.M., Paull, B., Breadmore, M.C.: Comparing microfluidic performance of three-dimensional (3D) printing platforms. Anal. Chem. 89, 3858–3866 (2017)PubMed
Zurück zum Zitat Rossi, S., Puglisi, A., Benaglia, M.: Additive manufacturing technologies: 3D printing in organic synthesis. ChemCatChem 10, 1512–1525 (2018) Rossi, S., Puglisi, A., Benaglia, M.: Additive manufacturing technologies: 3D printing in organic synthesis. ChemCatChem 10, 1512–1525 (2018)
Zurück zum Zitat Sochol, R.D., Sweet, E., Glick, C.C., Venkatesh, S., Avetisyan, A., Ekman, K.F., Raulinaitis, A., Tsai, A., Wienkers, A., Korner, K., Hanson, K., Long, A., Hightower, B.J., Slatton, G., Burnett, D.C., Massey, T.L., Iwai, K., Lee, L.P., Pister, K.S.J., Lin, L.: 3D printed microfluidic circuitry via multijet-based additive manufacturing. Lab Chip 16, 668–678 (2016) Sochol, R.D., Sweet, E., Glick, C.C., Venkatesh, S., Avetisyan, A., Ekman, K.F., Raulinaitis, A., Tsai, A., Wienkers, A., Korner, K., Hanson, K., Long, A., Hightower, B.J., Slatton, G., Burnett, D.C., Massey, T.L., Iwai, K., Lee, L.P., Pister, K.S.J., Lin, L.: 3D printed microfluidic circuitry via multijet-based additive manufacturing. Lab Chip 16, 668–678 (2016)
Zurück zum Zitat Stark, A.K.: Manufactured chemistry: Rethinking unit operation design in the age of additive manufacturing. AIChE J. 64, 1162–1173 (2018) Stark, A.K.: Manufactured chemistry: Rethinking unit operation design in the age of additive manufacturing. AIChE J. 64, 1162–1173 (2018)
Zurück zum Zitat Waheed, S., Cabot, J.M., Macdonald, N.P., Lewis, T., Guijt, R.M., Paull, B., Breadmore, M.C.: 3D printed microfluidic devices: Enablers and barriers. Lab Chip 16, 1993–2013 (2016) Waheed, S., Cabot, J.M., Macdonald, N.P., Lewis, T., Guijt, R.M., Paull, B., Breadmore, M.C.: 3D printed microfluidic devices: Enablers and barriers. Lab Chip 16, 1993–2013 (2016)
Zurück zum Zitat Yazdi, A.A., Popma, A., Wong, W., Nguyen, T., Pan, Y., Xu, J.: 3D printing: An emerging tool for novel microfluidics and lab-on-a-chip applications. Microfluid. Nanofluid. 20, 50 (2016) Yazdi, A.A., Popma, A., Wong, W., Nguyen, T., Pan, Y., Xu, J.: 3D printing: An emerging tool for novel microfluidics and lab-on-a-chip applications. Microfluid. Nanofluid. 20, 50 (2016)
Zurück zum Zitat Zhou, X., Liu, C.-J.: Three-dimensional printing for catalytic applications: Current status and perspectives. Adv. Funct. Mater. 27, 1701134 (2017) Zhou, X., Liu, C.-J.: Three-dimensional printing for catalytic applications: Current status and perspectives. Adv. Funct. Mater. 27, 1701134 (2017)
Zurück zum Zitat Zwicker, A.P., Bloom, J., Albertson, R., Gershman, S.: The suitability of 3D printed plastic parts for laboratory use. Am. J. Phys. 83, 281–285 (2014) Zwicker, A.P., Bloom, J., Albertson, R., Gershman, S.: The suitability of 3D printed plastic parts for laboratory use. Am. J. Phys. 83, 281–285 (2014)
Metadaten
Titel
Spezielle labortechnische Reaktoren: 3D-gedruckte Reaktoren
verfasst von
Eike G. Hübner
Felix Lederle
Copyright-Jahr
2020
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-56434-9_48