Skip to main content

2018 | OriginalPaper | Buchkapitel

Spike-Field Coherence and Firing Rate Profiles of CA1 Interneurons During an Associative Memory Task

verfasst von : Pamela D. Rivière, Lara M. Rangel

Erschienen in: Advances in the Mathematical Sciences

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Flexible, dynamic activity in the brain is essential to information processing. Neurons in the hippocampus are capable of conveying information about the continually evolving world through changes in their spiking activity. This information can be expressed through changes in firing rate and through the reorganization of spike timing in unique rhythmic profiles. Locally projecting interneurons of the hippocampus are in an ideal position to coordinate task-relevant changes in the spiking activity of the network, as their inhibitory influence allows them to constrain communication between neurons to rhythmic, optimal windows and facilitates selective responses to afferent input. During a context-guided odor–reward association task, interneurons and principal cells in the CA1 subregion of the rat hippocampus demonstrate distinct oscillatory profiles that correspond to correct and incorrect performance, despite similar firing rates during correct and incorrect trials (Rangel et al., eLife 5:e09849, 2016). Principal cells additionally contained information in their firing rates about task dimensions, reflective of highly selective responses to features such as single positions and odors. It remains to be determined whether interneurons also contain information about task dimensions in their firing rates. To address this question, we evaluated the information content for task dimensions in the firing rates of inhibitory neurons. Interneurons contained low, but significant information for task dimensions in their firing rates, with increases in information over the course of a trial that reflected the evolving availability of task dimensions. These results suggest that interneurons are capable of manifesting distinct rhythmic profiles and changes in firing rate that reflect task-relevant processing.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat J. O’Keefe, J. Dostrovsky, The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 34(1), 171–175 (1971) J. O’Keefe, J. Dostrovsky, The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 34(1), 171–175 (1971)
2.
Zurück zum Zitat E.R. Wood, P.A. Dudchenko, H. Eichenbaum, The global record of memory in hippocampal neuronal activity. Nature 397(6720), 613–616 (1999)CrossRef E.R. Wood, P.A. Dudchenko, H. Eichenbaum, The global record of memory in hippocampal neuronal activity. Nature 397(6720), 613–616 (1999)CrossRef
3.
Zurück zum Zitat L.M. Rangel, J.W. Rueckemann, P.D. Rivière, K.R. Keefe, B.S. Porter, I.S. Heimbuch, C.H. Budlong, H. Eichenbaum, Rhythmic coordination of hippocampal neurons during associative memory processing. eLife 5, e09849 (2016)CrossRef L.M. Rangel, J.W. Rueckemann, P.D. Rivière, K.R. Keefe, B.S. Porter, I.S. Heimbuch, C.H. Budlong, H. Eichenbaum, Rhythmic coordination of hippocampal neurons during associative memory processing. eLife 5, e09849 (2016)CrossRef
4.
Zurück zum Zitat R.W. Komorowski, J.R. Manns, H. Eichenbaum, Robust conjunctive item-place coding by hippocampal neurons parallels learning what happens where. J. Neurosci. 29(31), 9918–9929 (2009)CrossRef R.W. Komorowski, J.R. Manns, H. Eichenbaum, Robust conjunctive item-place coding by hippocampal neurons parallels learning what happens where. J. Neurosci. 29(31), 9918–9929 (2009)CrossRef
5.
Zurück zum Zitat K.M. Igarashi, L. Lu, L.L. Colgin, M.-B. Moser, E.I. Moser, Coordination of entorhinal-hippocampal ensemble activity during associative learning. Nature 510(7503), 143–147 (2014)CrossRef K.M. Igarashi, L. Lu, L.L. Colgin, M.-B. Moser, E.I. Moser, Coordination of entorhinal-hippocampal ensemble activity during associative learning. Nature 510(7503), 143–147 (2014)CrossRef
6.
Zurück zum Zitat W. Skaggs, B. McNaughton, K. Gothard, E.J. Markus, An information-theoretic approach to deciphering the hippocampal code. Proc. IEEE 1990, 1030–1037 (1993) W. Skaggs, B. McNaughton, K. Gothard, E.J. Markus, An information-theoretic approach to deciphering the hippocampal code. Proc. IEEE 1990, 1030–1037 (1993)
7.
Zurück zum Zitat E.J. Markus, C.A. Barnes, B.L. McNaughton, V.L. Gladden, W.E. Skaggs, Spatial information content and reliability of hippocampal CA1 neurons: effects of visual input. Hippocampus 4(4), 410–421 (1994)CrossRef E.J. Markus, C.A. Barnes, B.L. McNaughton, V.L. Gladden, W.E. Skaggs, Spatial information content and reliability of hippocampal CA1 neurons: effects of visual input. Hippocampus 4(4), 410–421 (1994)CrossRef
8.
Zurück zum Zitat A.V. Olypher, P. Lánský, R.U. Muller, A.A. Fenton, Quantifying location-specific information in the discharge of rat hippocampal place cells. J. Neurosci. Methods 127(2), 123–135 (2003)CrossRef A.V. Olypher, P. Lánský, R.U. Muller, A.A. Fenton, Quantifying location-specific information in the discharge of rat hippocampal place cells. J. Neurosci. Methods 127(2), 123–135 (2003)CrossRef
9.
Zurück zum Zitat M.A. Wilson, B.L. McNaughton, Dynamics of the hippocampal ensemble code for space. Science 261(5124), 1055–1058 (1993)CrossRef M.A. Wilson, B.L. McNaughton, Dynamics of the hippocampal ensemble code for space. Science 261(5124), 1055–1058 (1993)CrossRef
10.
Zurück zum Zitat K. Harris, J. Csicsvari, H. Hirase, G. Dragoi, G. Buzsáki, Organization of cell assemblies in the hippocampus. Nature 424(July), 552–556 (2003)CrossRef K. Harris, J. Csicsvari, H. Hirase, G. Dragoi, G. Buzsáki, Organization of cell assemblies in the hippocampus. Nature 424(July), 552–556 (2003)CrossRef
11.
Zurück zum Zitat J.F. Guzowski, J.J. Knierim, E.I. Moser, Ensemble dynamics of hippocampal regions CA3 and CA1. Neuron 44(4), 581–584 (2004)CrossRef J.F. Guzowski, J.J. Knierim, E.I. Moser, Ensemble dynamics of hippocampal regions CA3 and CA1. Neuron 44(4), 581–584 (2004)CrossRef
12.
Zurück zum Zitat G. Buzsáki, Neural syntax : cell assemblies, synapsembles, and readers. Neuron 68, 362–385 (2010)CrossRef G. Buzsáki, Neural syntax : cell assemblies, synapsembles, and readers. Neuron 68, 362–385 (2010)CrossRef
13.
Zurück zum Zitat S. McKenzie, A.J. Frank, N.R. Kinsky, B. Porter, P.D. Rivière, H. Eichenbaum, Hippocampal representation of related and opposing memories develop within distinct, hierarchically organized neural schemas. Neuron 83(1), 202–215 (2014)CrossRef S. McKenzie, A.J. Frank, N.R. Kinsky, B. Porter, P.D. Rivière, H. Eichenbaum, Hippocampal representation of related and opposing memories develop within distinct, hierarchically organized neural schemas. Neuron 83(1), 202–215 (2014)CrossRef
14.
Zurück zum Zitat E. Stark, R. Eichler, L. Roux, S. Fujisawa, H.G. Rotstein, G. Buzsáki, Inhibition-induced theta resonance in cortical circuits. Neuron 80(5), 1263–1276 (2013)CrossRef E. Stark, R. Eichler, L. Roux, S. Fujisawa, H.G. Rotstein, G. Buzsáki, Inhibition-induced theta resonance in cortical circuits. Neuron 80(5), 1263–1276 (2013)CrossRef
15.
Zurück zum Zitat J. Csicsvari, B. Jamieson, K.D. Wise, G. Buzsáki, Mechanisms of gamma oscillations in the hippocampus of the behaving rat. Neuron 37(2), 311–322 (2003)CrossRef J. Csicsvari, B. Jamieson, K.D. Wise, G. Buzsáki, Mechanisms of gamma oscillations in the hippocampus of the behaving rat. Neuron 37(2), 311–322 (2003)CrossRef
16.
Zurück zum Zitat P. Barthó, H. Hirase, L. Monconduit, M. Zugaro, K.D. Harris, G. Buzsáki, Characterization of neocortical principal cells and interneurons by network interactions and extracellular features. J. Neurophysiol. 92(1), 600–608 (2004)CrossRef P. Barthó, H. Hirase, L. Monconduit, M. Zugaro, K.D. Harris, G. Buzsáki, Characterization of neocortical principal cells and interneurons by network interactions and extracellular features. J. Neurophysiol. 92(1), 600–608 (2004)CrossRef
17.
Zurück zum Zitat W.B. Wilent, D.A. Nitz, Discrete place fields of hippocampal formation interneurons. J. Neurophysiol. 97(6), 4152–4161 (2007)CrossRef W.B. Wilent, D.A. Nitz, Discrete place fields of hippocampal formation interneurons. J. Neurophysiol. 97(6), 4152–4161 (2007)CrossRef
18.
Zurück zum Zitat F. Pouille, M. Scanziani, Enforcement of temporal fidelity in pyramidal cells by somatic feed-forward inhibition. Science 293(5532), 1159–1163 (2001)CrossRef F. Pouille, M. Scanziani, Enforcement of temporal fidelity in pyramidal cells by somatic feed-forward inhibition. Science 293(5532), 1159–1163 (2001)CrossRef
19.
Zurück zum Zitat F. Pouille, M. Scanziani, Routing of spike series by dynamic circuits in the hippocampus. Nature 429(6993), 717–723 (2004)CrossRef F. Pouille, M. Scanziani, Routing of spike series by dynamic circuits in the hippocampus. Nature 429(6993), 717–723 (2004)CrossRef
20.
Zurück zum Zitat G. Buzsáki, J.J. Chrobak, Temporal structure in spatially organized neuronal ensembles: a role for interneuronal networks. Curr. Opin. Neurobiol. 5(4), 504–510 (1995)CrossRef G. Buzsáki, J.J. Chrobak, Temporal structure in spatially organized neuronal ensembles: a role for interneuronal networks. Curr. Opin. Neurobiol. 5(4), 504–510 (1995)CrossRef
21.
Zurück zum Zitat J. Cannon, M.M. McCarthy, S. Lee, J. Lee, C. Borgers, M.A. Whittington, N. Kopell, Neurosystems: brain rhythms and cognitive processing. Eur. J. Neurol. 39(5), 705–719 (2014) J. Cannon, M.M. McCarthy, S. Lee, J. Lee, C. Borgers, M.A. Whittington, N. Kopell, Neurosystems: brain rhythms and cognitive processing. Eur. J. Neurol. 39(5), 705–719 (2014)
22.
Zurück zum Zitat T.F. Freund, G. Buzsáki, Interneurons of the hippocampus. Hippocampus 6(4), 347–470 (1996)CrossRef T.F. Freund, G. Buzsáki, Interneurons of the hippocampus. Hippocampus 6(4), 347–470 (1996)CrossRef
23.
Zurück zum Zitat A. Sik, M. Penttonen, A. Ylinen, G. Buzsáki, Hippocampal CA1 interneurons: an in vivo intracellular labeling study. J. Neurosci. Off. J. Soc. Neurosci. 15, 6651–6665 (1995)CrossRef A. Sik, M. Penttonen, A. Ylinen, G. Buzsáki, Hippocampal CA1 interneurons: an in vivo intracellular labeling study. J. Neurosci. Off. J. Soc. Neurosci. 15, 6651–6665 (1995)CrossRef
24.
Zurück zum Zitat S. Fox, J. Ranck, Electrophysiological characteristics of hippocampal complex-spike cells and theta cells. Exp. Brain Res. 41(3), 399–410 (1981) S. Fox, J. Ranck, Electrophysiological characteristics of hippocampal complex-spike cells and theta cells. Exp. Brain Res. 41(3), 399–410 (1981)
25.
Zurück zum Zitat M.A. Whittington, R.D. Traub, N. Kopell, B. Ermentrout, E.H. Buhl, Inhibition-based rhythms: experimental and mathematical observations on network dynamics. Int. J. Psychophysiol. 38(3), 315–336 (2000)CrossRef M.A. Whittington, R.D. Traub, N. Kopell, B. Ermentrout, E.H. Buhl, Inhibition-based rhythms: experimental and mathematical observations on network dynamics. Int. J. Psychophysiol. 38(3), 315–336 (2000)CrossRef
26.
Zurück zum Zitat D. Nitz, B. McNaughton, Differential modulation of CA1 and dentate gyrus interneurons during exploration of novel environments. J. Neurophysiol. 91, 863–872 (2004)CrossRef D. Nitz, B. McNaughton, Differential modulation of CA1 and dentate gyrus interneurons during exploration of novel environments. J. Neurophysiol. 91, 863–872 (2004)CrossRef
27.
Zurück zum Zitat S. Royer, B.V. Zemelman, A. Losonczy, J. Kim, F. Chance, J.C. Magee, G. Buzsáki, Control of timing, rate and bursts of hippocampal place cells by dendritic and somatic inhibition. Nat. Neurosci. 15(5), 769–775 (2012)CrossRef S. Royer, B.V. Zemelman, A. Losonczy, J. Kim, F. Chance, J.C. Magee, G. Buzsáki, Control of timing, rate and bursts of hippocampal place cells by dendritic and somatic inhibition. Nat. Neurosci. 15(5), 769–775 (2012)CrossRef
Metadaten
Titel
Spike-Field Coherence and Firing Rate Profiles of CA1 Interneurons During an Associative Memory Task
verfasst von
Pamela D. Rivière
Lara M. Rangel
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-98684-5_10