Skip to main content
Erschienen in: Journal of Computational Neuroscience 3/2011

01.06.2011

Spiking neural network simulation: memory-optimal synaptic event scheduling

verfasst von: Robert D. Stewart, Kevin N. Gurney

Erschienen in: Journal of Computational Neuroscience | Ausgabe 3/2011

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Spiking neural network simulations incorporating variable transmission delays require synaptic events to be scheduled prior to delivery. Conventional methods have memory requirements that scale with the total number of synapses in a network. We introduce novel scheduling algorithms for both discrete and continuous event delivery, where the memory requirement scales instead with the number of neurons. Superior algorithmic performance is demonstrated using large-scale, benchmarking network simulations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Results using MOSES D were first presented at SfN 2005.
 
Literatur
Zurück zum Zitat Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J. M., et al. (2007). Simulation of networks of spiking neurons: A review of tools and strategies. Journal of Computational Neuroscience, 23(3), 349–398.PubMedCrossRef Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J. M., et al. (2007). Simulation of networks of spiking neurons: A review of tools and strategies. Journal of Computational Neuroscience, 23(3), 349–398.PubMedCrossRef
Zurück zum Zitat Brown, R. (1988). Calendar queues: A fast 0(1) priority queue implementation for the simulation event set problem. Communications of the ACM, 31(10), 1220–1227.CrossRef Brown, R. (1988). Calendar queues: A fast 0(1) priority queue implementation for the simulation event set problem. Communications of the ACM, 31(10), 1220–1227.CrossRef
Zurück zum Zitat Claverol, E. T., Brown, A. D., & Chad, J. E. (2002). Discrete simulation of large aggregates of neurons. Neurocomputing, 47(1–4), 277–297.CrossRef Claverol, E. T., Brown, A. D., & Chad, J. E. (2002). Discrete simulation of large aggregates of neurons. Neurocomputing, 47(1–4), 277–297.CrossRef
Zurück zum Zitat Destexhe, A. (2009). Self-sustained asynchronous irregular states and up-down states in thalamic, cortical and thalamocortical networks of nonlinear integrate-and-fire neurons. Journal of Computational Neuroscience, 27(3), 493–506.PubMedCrossRef Destexhe, A. (2009). Self-sustained asynchronous irregular states and up-down states in thalamic, cortical and thalamocortical networks of nonlinear integrate-and-fire neurons. Journal of Computational Neuroscience, 27(3), 493–506.PubMedCrossRef
Zurück zum Zitat Goodman, D. & Brette, R. (2008). Brian: A simulator for spiking neural networks in python. Front Neuroinformatics, 2, 5–5.PubMed Goodman, D. & Brette, R. (2008). Brian: A simulator for spiking neural networks in python. Front Neuroinformatics, 2, 5–5.PubMed
Zurück zum Zitat Humphries, M. D., Wood, R., & Gurney, K. (2009). Dopamine-modulated dynamic cell assemblies generated by the gabaergic striatal microcircuit. Neural Networks, 22(8), 1174–1188.PubMedCrossRef Humphries, M. D., Wood, R., & Gurney, K. (2009). Dopamine-modulated dynamic cell assemblies generated by the gabaergic striatal microcircuit. Neural Networks, 22(8), 1174–1188.PubMedCrossRef
Zurück zum Zitat Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Transactions on Neural Networks, 14(6), 1569–1572.PubMedCrossRef Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Transactions on Neural Networks, 14(6), 1569–1572.PubMedCrossRef
Zurück zum Zitat Izhikevich, E. M. (2007). Dynamical systems in n euroscience: The g eometry of excitability and b ursting. The MIT press. Izhikevich, E. M. (2007). Dynamical systems in n euroscience: The g eometry of excitability and b ursting. The MIT press.
Zurück zum Zitat Izhikevich, E. M., & Edelman, G. M. (2008). Large-scale model of mammalian thalamocortical systems. Proceedings of the National Academy of Sciences of the United States of America, 105(9), 3593–3598.PubMedCrossRef Izhikevich, E. M., & Edelman, G. M. (2008). Large-scale model of mammalian thalamocortical systems. Proceedings of the National Academy of Sciences of the United States of America, 105(9), 3593–3598.PubMedCrossRef
Zurück zum Zitat Mattia, M., & Del Giudice, P. (2000). Efficient event-driven simulation of large networks of spiking neurons and dynamical synapses. Neural Computation, 12(10), 2305–2329.PubMedCrossRef Mattia, M., & Del Giudice, P. (2000). Efficient event-driven simulation of large networks of spiking neurons and dynamical synapses. Neural Computation, 12(10), 2305–2329.PubMedCrossRef
Zurück zum Zitat Morrison, A., Mehring, C., Geisel, T., Aertsen, A. D., & Diesmann, M. (2005). Advancing the boundaries of high-connectivity network simulation with distributed computing. Neural Computation, 17(8), 1776–1801.PubMedCrossRef Morrison, A., Mehring, C., Geisel, T., Aertsen, A. D., & Diesmann, M. (2005). Advancing the boundaries of high-connectivity network simulation with distributed computing. Neural Computation, 17(8), 1776–1801.PubMedCrossRef
Zurück zum Zitat Morrison, A., Straube, S., Plesser, H. E., & Diesmann, M. (2007). Exact subthreshold integration with continuous spike times in discrete-time neural network simulations. Neural Computation, 19(1), 47–79.PubMedCrossRef Morrison, A., Straube, S., Plesser, H. E., & Diesmann, M. (2007). Exact subthreshold integration with continuous spike times in discrete-time neural network simulations. Neural Computation, 19(1), 47–79.PubMedCrossRef
Zurück zum Zitat Nageswaran, J. M., Dutt, N., Krichmar, J. L., Nicolau, A., & Veidenbaum, A. V. (2009). A configurable simulation environment for the efficient simulation of large-scale spiking neural networks on graphics processors. Neural Networks, 22(5–6), 791–800.PubMedCrossRef Nageswaran, J. M., Dutt, N., Krichmar, J. L., Nicolau, A., & Veidenbaum, A. V. (2009). A configurable simulation environment for the efficient simulation of large-scale spiking neural networks on graphics processors. Neural Networks, 22(5–6), 791–800.PubMedCrossRef
Zurück zum Zitat Ros, E., Carrillo, R., Ortigosa, E. M., Barbour, B., & Agís, R. (2006). Event-driven simulation scheme for spiking neural networks using look-up tables to characterize neuronal dynamics. Neural Comput, 18(12), 2959–2993.PubMedCrossRef Ros, E., Carrillo, R., Ortigosa, E. M., Barbour, B., & Agís, R. (2006). Event-driven simulation scheme for spiking neural networks using look-up tables to characterize neuronal dynamics. Neural Comput, 18(12), 2959–2993.PubMedCrossRef
Zurück zum Zitat Rushton, W. A. (1951). A theory of the effects of fibre size in medullated nerve. Journal of Physiology, 115(1), 101–22.PubMed Rushton, W. A. (1951). A theory of the effects of fibre size in medullated nerve. Journal of Physiology, 115(1), 101–22.PubMed
Zurück zum Zitat Stewart, R. D., & Bair, W. (2009). Spiking neural network simulation: Numerical integration with the Parker-Sochacki method. Journal of Computational Neuroscience, 27(1), 115–133.PubMedCrossRef Stewart, R. D., & Bair, W. (2009). Spiking neural network simulation: Numerical integration with the Parker-Sochacki method. Journal of Computational Neuroscience, 27(1), 115–133.PubMedCrossRef
Zurück zum Zitat Vogels, T. P., & Abbott, L. F. (2005). Signal propagation and logic gating in networks of integrate-and-fire neurons. Journal of Neuroscience, 25(46), 10786–10795.PubMedCrossRef Vogels, T. P., & Abbott, L. F. (2005). Signal propagation and logic gating in networks of integrate-and-fire neurons. Journal of Neuroscience, 25(46), 10786–10795.PubMedCrossRef
Metadaten
Titel
Spiking neural network simulation: memory-optimal synaptic event scheduling
verfasst von
Robert D. Stewart
Kevin N. Gurney
Publikationsdatum
01.06.2011
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 3/2011
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-010-0288-6

Weitere Artikel der Ausgabe 3/2011

Journal of Computational Neuroscience 3/2011 Zur Ausgabe