Skip to main content
Erschienen in: Physics of Metals and Metallography 3/2022

01.03.2022 | ELECTRICAL AND MAGNETIC PROPERTIES

Spin Currents and Nonlinear Dynamics of Vortex Spin Torque Nano-Oscillators

verfasst von: K. A. Zvezdin, E. G. Ekomasov

Erschienen in: Physics of Metals and Metallography | Ausgabe 3/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Vortex spin torque nano-oscillators (STNOs) are multilayer spin-valve magnetic nanopillars, in which the magnetic layers (one or both) contain a magnetic vortex, the dynamics of which provides microwave radiation. In vortex STNOs, it was possible to achieve a high microwave signal power (on the order of 1 μW) and a relatively narrow linewidth (several hundreds of kHz). To further increase the power and improve the spectral characteristics of vortex STNOs, the collective dynamics and synchronization conditions in the ensembles of such nanostructures are studied. The subject of this review is the latest achievements in the field of physics and technology of vortex STNOs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat J. Slonczewski, “Current-driven excitation of magnetic multilayers,” J. Magn. Magn. Mater. 159, L1 (1996).CrossRef J. Slonczewski, “Current-driven excitation of magnetic multilayers,” J. Magn. Magn. Mater. 159, L1 (1996).CrossRef
2.
Zurück zum Zitat L. Berger, “Emission of spin waves by a magnetic multilayer traversed by a current,” Phys. Rev. B 54, 9353 (1996).CrossRef L. Berger, “Emission of spin waves by a magnetic multilayer traversed by a current,” Phys. Rev. B 54, 9353 (1996).CrossRef
3.
Zurück zum Zitat M. Tsoi, A. G. M. Jansen, J. Bass, W, Chiang, M. Seck, V. Tsoi, and P. Wyder, “Excitation of a magnetic multilayer by an electric current,” Phys. Rev. Lett. 80, 4281 (1998).CrossRef M. Tsoi, A. G. M. Jansen, J. Bass, W, Chiang, M. Seck, V. Tsoi, and P. Wyder, “Excitation of a magnetic multilayer by an electric current,” Phys. Rev. Lett. 80, 4281 (1998).CrossRef
4.
Zurück zum Zitat E. B. Myers, D, Ralph, J. A. Katine, R. N. Louie, and R. A. Buhrman, “Current-induced switching of domains in magnetic multilayer devices,” Science 285, 867 (1999).CrossRef E. B. Myers, D, Ralph, J. A. Katine, R. N. Louie, and R. A. Buhrman, “Current-induced switching of domains in magnetic multilayer devices,” Science 285, 867 (1999).CrossRef
5.
Zurück zum Zitat A. Katine, F. J. Albert, R. A. Buhrman, E. B. Myers, and D, Ralph, “Current-driven magnetization reversal and spin-wave excitations in Co/Cu/Co pillars,” Phys. Rev. Lett. 84, 3149 (2000).CrossRef A. Katine, F. J. Albert, R. A. Buhrman, E. B. Myers, and D, Ralph, “Current-driven magnetization reversal and spin-wave excitations in Co/Cu/Co pillars,” Phys. Rev. Lett. 84, 3149 (2000).CrossRef
6.
Zurück zum Zitat A. K. Zvezdin, A. V. Khval’kovskii, and K. A. Zvezdin, “The generalized Landau-Lifshitz equation and spin transfer processes in magnetic nanostructures,” Phys. Usp. 51, 412–417 (2008).CrossRef A. K. Zvezdin, A. V. Khval’kovskii, and K. A. Zvezdin, “The generalized Landau-Lifshitz equation and spin transfer processes in magnetic nanostructures,” Phys. Usp. 51, 412–417 (2008).CrossRef
7.
Zurück zum Zitat S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, “Spintronics: A spin-based electronics vision for the future,” Science 294, 1488 (2001).CrossRef S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, “Spintronics: A spin-based electronics vision for the future,” Science 294, 1488 (2001).CrossRef
8.
Zurück zum Zitat A. V. Khvalkovskiy, D. Apalkov, S. Watts, R. Chepulskii, R. S. Beach, A. Ong, X. Tang, A. Driskill-Smith, W. H. Butler, P. B. Visscher, D. Lottis, E. Chen, V. Nikitin, and M. Krounbi, “Basic principles of STT-MRAM cell operation in memory arrays,” J. Phys. D: Appl. Phys. 46, 074001 (2013).CrossRef A. V. Khvalkovskiy, D. Apalkov, S. Watts, R. Chepulskii, R. S. Beach, A. Ong, X. Tang, A. Driskill-Smith, W. H. Butler, P. B. Visscher, D. Lottis, E. Chen, V. Nikitin, and M. Krounbi, “Basic principles of STT-MRAM cell operation in memory arrays,” J. Phys. D: Appl. Phys. 46, 074001 (2013).CrossRef
9.
Zurück zum Zitat D. A. Allwood, G. Xiong, C, Faulkner, D. Atkinson, D. Petit, and R. P. Cowburn, “Magnetic domain-wall logic,” Science 309, 1688 (2005).CrossRef D. A. Allwood, G. Xiong, C, Faulkner, D. Atkinson, D. Petit, and R. P. Cowburn, “Magnetic domain-wall logic,” Science 309, 1688 (2005).CrossRef
10.
Zurück zum Zitat A. Chanthbouala, R. Matsumoto, J. Grollier, V. Cros, A. Anane, A. Fert, A. V. Khvalkovskiy, K. Zvezdin, K. A. Nishimura, Y. Nagamine, H. Maehara, K. Tsunekawa, A. Fukushima, and S. Yuasa, “Vertical-current-induced domain-wall motion in MgO-based magnetic tunnel junctions with low current densities,” Nat. Phys. 7, 626–630 (2011).CrossRef A. Chanthbouala, R. Matsumoto, J. Grollier, V. Cros, A. Anane, A. Fert, A. V. Khvalkovskiy, K. Zvezdin, K. A. Nishimura, Y. Nagamine, H. Maehara, K. Tsunekawa, A. Fukushima, and S. Yuasa, “Vertical-current-induced domain-wall motion in MgO-based magnetic tunnel junctions with low current densities,” Nat. Phys. 7, 626–630 (2011).CrossRef
11.
Zurück zum Zitat S. I. Kiselev, J, Sankey, I. N. Krivorotov, N, Emley, R. J. Schoelkopf, R. A. Buhrman, and D, Ralph, “Microwave oscillations of a nanomagnet driven by a spin-polarized current,” Nature 425, 380–383 (2003).CrossRef S. I. Kiselev, J, Sankey, I. N. Krivorotov, N, Emley, R. J. Schoelkopf, R. A. Buhrman, and D, Ralph, “Microwave oscillations of a nanomagnet driven by a spin-polarized current,” Nature 425, 380–383 (2003).CrossRef
12.
Zurück zum Zitat A. Dussaux, B. Georges, J. Grollier, V. Cros, A. V. Khvalkovskiy, A. Fukushima, M. Konoto, H. Kubota, K. Yakushiji, S. Yuasa, K. A. Zvezdin, K. Ando, and A. Fert, “Large microwave generation from current-driven magnetic vortex oscillators in magnetic tunnel junctions,” Nat. Commun. 1, 8 (2010).CrossRef A. Dussaux, B. Georges, J. Grollier, V. Cros, A. V. Khvalkovskiy, A. Fukushima, M. Konoto, H. Kubota, K. Yakushiji, S. Yuasa, K. A. Zvezdin, K. Ando, and A. Fert, “Large microwave generation from current-driven magnetic vortex oscillators in magnetic tunnel junctions,” Nat. Commun. 1, 8 (2010).CrossRef
13.
Zurück zum Zitat W. H. Rippard, M. R. Pufall, S. Kaka, S. E. Russek, and T. J. Silva, “Direct-current induced dynamics in Co90Fe10/Ni80Fe20 point contacts,” Phys. Rev. Lett. 92, 027201 (2004).CrossRef W. H. Rippard, M. R. Pufall, S. Kaka, S. E. Russek, and T. J. Silva, “Direct-current induced dynamics in Co90Fe10/Ni80Fe20 point contacts,” Phys. Rev. Lett. 92, 027201 (2004).CrossRef
14.
Zurück zum Zitat I. N. Krivorotov, N, Emley, J, Sankey, S. I. Kiselev, D. Ralph, and R. A. Buhrman, “Time-domain measurements of nanomagnet dynamics driven by spin-transfer torques,” Science 307, 228 (2005).CrossRef I. N. Krivorotov, N, Emley, J, Sankey, S. I. Kiselev, D. Ralph, and R. A. Buhrman, “Time-domain measurements of nanomagnet dynamics driven by spin-transfer torques,” Science 307, 228 (2005).CrossRef
15.
Zurück zum Zitat A. Jenkins, R. Lebrun, E. Grimaldi, S. Tsunegi, P. Bortolotti, H. Kubota, K. Yakushiji, A. Fukushima, G. De Loubens, O. Klein, S. Yuasa, and V. Cros, “Spin-torque resonant expulsion of the vortex core for an efficient radiofrequency detection scheme,” Nat. Nanotechnol. 11, 360 (2016).CrossRef A. Jenkins, R. Lebrun, E. Grimaldi, S. Tsunegi, P. Bortolotti, H. Kubota, K. Yakushiji, A. Fukushima, G. De Loubens, O. Klein, S. Yuasa, and V. Cros, “Spin-torque resonant expulsion of the vortex core for an efficient radiofrequency detection scheme,” Nat. Nanotechnol. 11, 360 (2016).CrossRef
16.
Zurück zum Zitat P. Skirdkov, A. Popkov, and K. Zvezdin, “Vortex spin-torque diode: The impact of DC bias,” Appl. Phys. Lett. 113, 242403 (2018).CrossRef P. Skirdkov, A. Popkov, and K. Zvezdin, “Vortex spin-torque diode: The impact of DC bias,” Appl. Phys. Lett. 113, 242403 (2018).CrossRef
17.
Zurück zum Zitat S. Bohlens, B. Kruger, A. Drews, M. Bolte, et al., “Current controlled random-access memory based on magnetic vortex handedness,” Appl. Phys. Lett. 93, 142508 (2008).CrossRef S. Bohlens, B. Kruger, A. Drews, M. Bolte, et al., “Current controlled random-access memory based on magnetic vortex handedness,” Appl. Phys. Lett. 93, 142508 (2008).CrossRef
18.
Zurück zum Zitat K. Nakano, D. Chiba, N. Ohshima, S. Kasai, T. Sato, et al., “All-electrical operation of magnetic vortex core memory cell,” Appl. Phys. Lett. 99, 262505 (2011).CrossRef K. Nakano, D. Chiba, N. Ohshima, S. Kasai, T. Sato, et al., “All-electrical operation of magnetic vortex core memory cell,” Appl. Phys. Lett. 99, 262505 (2011).CrossRef
19.
Zurück zum Zitat J. Grollier, D. Querlioz, K. Y. Camsari, K. Everschor-Sitte, S. Fukami, and M. D. Stiles, “Neuromorphic spintronics,” Nat. Electron. 3, 360–370 (2020).CrossRef J. Grollier, D. Querlioz, K. Y. Camsari, K. Everschor-Sitte, S. Fukami, and M. D. Stiles, “Neuromorphic spintronics,” Nat. Electron. 3, 360–370 (2020).CrossRef
20.
Zurück zum Zitat L. Shen, J. Xia, G. Zhao, X. Zhang, M. Ezawa, O. A. Tretiakov, X. Liu, and Y. Zho, “Spin torque nano-oscillators based on antiferromagnetic skyrmions,” Appl. Phys. Lett. 114, 042402 (2019).CrossRef L. Shen, J. Xia, G. Zhao, X. Zhang, M. Ezawa, O. A. Tretiakov, X. Liu, and Y. Zho, “Spin torque nano-oscillators based on antiferromagnetic skyrmions,” Appl. Phys. Lett. 114, 042402 (2019).CrossRef
21.
Zurück zum Zitat K. Everschor-Sitte, J. Masell, R. M. Reeve, and M. Klaui, “Perspective: Magnetic skyrmions-Overview of recent progress in an active research field,” J. Appl. Phys. 124, 240901 (2018).CrossRef K. Everschor-Sitte, J. Masell, R. M. Reeve, and M. Klaui, “Perspective: Magnetic skyrmions-Overview of recent progress in an active research field,” J. Appl. Phys. 124, 240901 (2018).CrossRef
22.
Zurück zum Zitat S. Wang, A. Qaiumzadeh, and A. Brataas, “Current-driven dynamics of magnetic hopfions,” Phys. Rev. Lett. 123, 147203 (2019).CrossRef S. Wang, A. Qaiumzadeh, and A. Brataas, “Current-driven dynamics of magnetic hopfions,” Phys. Rev. Lett. 123, 147203 (2019).CrossRef
23.
Zurück zum Zitat F. Zheng, F. N. Rybakov, A. B. Borisov, D. Song, et al., “Experimental observation of chiral magnetic bobbers in B20-type FeGe,” Nat. Nanotechnol. 13, 451–455 (2018).CrossRef F. Zheng, F. N. Rybakov, A. B. Borisov, D. Song, et al., “Experimental observation of chiral magnetic bobbers in B20-type FeGe,” Nat. Nanotechnol. 13, 451–455 (2018).CrossRef
24.
Zurück zum Zitat Y. Wen, Z. Feng, B. F. Miao, R. X. Cao, L. Sun, B. You, D. Wu, W. Zhang, Z. S. Jiang, R. Cheng, and H. F. Ding, “Fast and controllable switching the circulation and polarity of magnetic vortices,” J. Met., Mater. Miner. 370, 68–75 (2014). Y. Wen, Z. Feng, B. F. Miao, R. X. Cao, L. Sun, B. You, D. Wu, W. Zhang, Z. S. Jiang, R. Cheng, and H. F. Ding, “Fast and controllable switching the circulation and polarity of magnetic vortices,” J. Met., Mater. Miner. 370, 68–75 (2014).
25.
Zurück zum Zitat R.-C. Peng, J.-M. Hub, T. Yang, X. Cheng, J.-J. Wang, H.-B. Huang, L.-Q. Chen, and C.-W. Nan, “Switching the chirality of a magnetic vortex deterministically with an electric field,” Mater. Res. Lett. 6, No. 12, 669–675 (2018).CrossRef R.-C. Peng, J.-M. Hub, T. Yang, X. Cheng, J.-J. Wang, H.-B. Huang, L.-Q. Chen, and C.-W. Nan, “Switching the chirality of a magnetic vortex deterministically with an electric field,” Mater. Res. Lett. 6, No. 12, 669–675 (2018).CrossRef
26.
Zurück zum Zitat V. A. Orlov, R. Yu. Rudenko, A. V. Kobyakov, A. V. Luk’yanenko, P. D. Kim, V. S. Prokopenko, and I. N. Orlova, “Magnetization dynamics in two-dimensional arrays of square microelements,” J. Exp. Theor. Phys. 126, No. 4, 523–534 (2018).CrossRef V. A. Orlov, R. Yu. Rudenko, A. V. Kobyakov, A. V. Luk’yanenko, P. D. Kim, V. S. Prokopenko, and I. N. Orlova, “Magnetization dynamics in two-dimensional arrays of square microelements,” J. Exp. Theor. Phys. 126, No. 4, 523–534 (2018).CrossRef
27.
Zurück zum Zitat T. Shinjo, T. Okuno, R. Hassdorf, K. Shigeto, and T. Ono, “Magnetic vortex core observation in circular dots of permalloy,” Science 289, No. 5481, 930–932 (2000).CrossRef T. Shinjo, T. Okuno, R. Hassdorf, K. Shigeto, and T. Ono, “Magnetic vortex core observation in circular dots of permalloy,” Science 289, No. 5481, 930–932 (2000).CrossRef
28.
Zurück zum Zitat J. Wu, D. Carlton, J. Park, Y. Meng, et al., “Direct observation of imprinted antiferromagnetic vortex states in CoO/Fe/Ag(001) discs,” Nat. Phys. 7, 303–306 (2011).CrossRef J. Wu, D. Carlton, J. Park, Y. Meng, et al., “Direct observation of imprinted antiferromagnetic vortex states in CoO/Fe/Ag(001) discs,” Nat. Phys. 7, 303–306 (2011).CrossRef
29.
Zurück zum Zitat V. L. Mironov, B. A. Gribkov, A. A. Fraerman, S. A. Gusev, S. N. Vdovichev, I. R. Karetnikova, I. M. Nefedov, and I. A. Shereshevsky, “MFM probe control of magnetic vortex chirality in elliptical Co nanoparticles,” J. Magn. Magn. Mater. 312, 153 (2007).CrossRef V. L. Mironov, B. A. Gribkov, A. A. Fraerman, S. A. Gusev, S. N. Vdovichev, I. R. Karetnikova, I. M. Nefedov, and I. A. Shereshevsky, “MFM probe control of magnetic vortex chirality in elliptical Co nanoparticles,” J. Magn. Magn. Mater. 312, 153 (2007).CrossRef
30.
Zurück zum Zitat K. Yu. Guslienko, X. F. Han, D. J. Keavney, R. Divan, and S. D. Bader, “Magnetic vortex core dynamics in cylindrical ferromagnetic dots,” Phys. Rev. Lett. 96, 067205 (2006).CrossRef K. Yu. Guslienko, X. F. Han, D. J. Keavney, R. Divan, and S. D. Bader, “Magnetic vortex core dynamics in cylindrical ferromagnetic dots,” Phys. Rev. Lett. 96, 067205 (2006).CrossRef
31.
Zurück zum Zitat S. V. Vonsovskii, Magnetism (Nauka, Moscow, 1032) [in Russian]. S. V. Vonsovskii, Magnetism (Nauka, Moscow, 1032) [in Russian].
32.
Zurück zum Zitat L. G. Korzunin and I. M. Izmozherov, “Numerical simulation of the influence of inhomogeneities on the properties of magnetization nanostructures,” Phys. Met. Metallogr. 122, 183 (2021).CrossRef L. G. Korzunin and I. M. Izmozherov, “Numerical simulation of the influence of inhomogeneities on the properties of magnetization nanostructures,” Phys. Met. Metallogr. 122, 183 (2021).CrossRef
33.
Zurück zum Zitat N. A. Usov and S. E. Peschany, “Magnetization curling in a fine cylindrical particle,” J. Magn. Magn. Mater. 118, 290–294 (1993).CrossRef N. A. Usov and S. E. Peschany, “Magnetization curling in a fine cylindrical particle,” J. Magn. Magn. Mater. 118, 290–294 (1993).CrossRef
34.
Zurück zum Zitat R. P. Cowburn and M. E. Welland, “Phase transitions in planar magnetic nanostructures,” Appl. Phys. Lett. 72, 2041 (1998).CrossRef R. P. Cowburn and M. E. Welland, “Phase transitions in planar magnetic nanostructures,” Appl. Phys. Lett. 72, 2041 (1998).CrossRef
35.
Zurück zum Zitat K. Y. Guslienko, “Magnetic vortex state stability, reversal and dynamics in restricted geometries,” J. Nanosci. Nanotechnol. 8, 2745–2760 (2008).CrossRef K. Y. Guslienko, “Magnetic vortex state stability, reversal and dynamics in restricted geometries,” J. Nanosci. Nanotechnol. 8, 2745–2760 (2008).CrossRef
36.
Zurück zum Zitat K. Metlov and K. Guslienko, “Stability of magnetic vortex in soft magnetic nano-sized circular cylinder,” J. Magn. Magn. Mater. 242–245, No. 2, 1015–1017 (2002).CrossRef K. Metlov and K. Guslienko, “Stability of magnetic vortex in soft magnetic nano-sized circular cylinder,” J. Magn. Magn. Mater. 242245, No. 2, 1015–1017 (2002).CrossRef
37.
Zurück zum Zitat K. Guslienko and K. L. Metlov, “Evolution and stability of a magnetic vortex in a small cylindrical ferromagnetic particle under applied field,” Phys. Rev. B 63, 100403 (2001).CrossRef K. Guslienko and K. L. Metlov, “Evolution and stability of a magnetic vortex in a small cylindrical ferromagnetic particle under applied field,” Phys. Rev. B 63, 100403 (2001).CrossRef
38.
Zurück zum Zitat K. Yu. Guslienko, V. Novosad, Y. Otani, H. Shima, and K. Fukamichi, “Field evolution of magnetic vortex state in ferromagnetic disks,” Appl. Phys. Lett. 78, 3848–3850 (2001).CrossRef K. Yu. Guslienko, V. Novosad, Y. Otani, H. Shima, and K. Fukamichi, “Field evolution of magnetic vortex state in ferromagnetic disks,” Appl. Phys. Lett. 78, 3848–3850 (2001).CrossRef
39.
Zurück zum Zitat C. Chappert, A. Fert A., and A. F. Van Dau, “The emergence of spin electronics in data storage,” Nat. Mater. 6, 813–823 (2007).CrossRef C. Chappert, A. Fert A., and A. F. Van Dau, “The emergence of spin electronics in data storage,” Nat. Mater. 6, 813–823 (2007).CrossRef
40.
Zurück zum Zitat A. A. Thiele, “Applications of the gyrocoupling vector and dissipation dyadic in the dynamics of magnetic domains,” J. Appl. Phys. 45, No. 1, 377–393 (1974).CrossRef A. A. Thiele, “Applications of the gyrocoupling vector and dissipation dyadic in the dynamics of magnetic domains,” J. Appl. Phys. 45, No. 1, 377–393 (1974).CrossRef
41.
Zurück zum Zitat D. L. Huber, “Dynamics of spin vortices in two dimensional planar magnets,” Phys. Rev. B 26, No. 7, 3758–3765 (1982).CrossRef D. L. Huber, “Dynamics of spin vortices in two dimensional planar magnets,” Phys. Rev. B 26, No. 7, 3758–3765 (1982).CrossRef
42.
Zurück zum Zitat D. L. Huber, “Equation of motion of a spin vortex in a two-dimensional planar magnet,” J. Appl. Phys. 53, No. 3, 1899–1900 (1982).CrossRef D. L. Huber, “Equation of motion of a spin vortex in a two-dimensional planar magnet,” J. Appl. Phys. 53, No. 3, 1899–1900 (1982).CrossRef
43.
Zurück zum Zitat F. G. Mertens and A. R. Bishop, Dynamics of Vortices in Two-Dimensional Magnets, Nonlinear Science at the Dawn of the 21th Century, Ed. by P. L. Christiansen, M. P. Soerensen, and A, Scott (Springer, Berlin, 2000), pp. 137–170. F. G. Mertens and A. R. Bishop, Dynamics of Vortices in Two-Dimensional Magnets, Nonlinear Science at the Dawn of the 21th Century, Ed. by P. L. Christiansen, M. P. Soerensen, and A, Scott (Springer, Berlin, 2000), pp. 137–170.
44.
Zurück zum Zitat D. D. Sheka, “Field momentum and gyroscopic dynamics of classical systems with topological defects,” J. Phys. A: Math. Gen. 39, No. 50, 15477–15489 (2006).CrossRef D. D. Sheka, “Field momentum and gyroscopic dynamics of classical systems with topological defects,” J. Phys. A: Math. Gen. 39, No. 50, 15477–15489 (2006).CrossRef
45.
Zurück zum Zitat A. V. Khvalkovskiy, J. Grollier, A. Dussaux, K. A. Zvezdin, and V. Cros, “Vortex oscillations induced by spin-polarized current in a magnetic nanopillar: Analytical versus micromagnetic calculations,” Phys. Rev. B 80, 140401 (2009).CrossRef A. V. Khvalkovskiy, J. Grollier, A. Dussaux, K. A. Zvezdin, and V. Cros, “Vortex oscillations induced by spin-polarized current in a magnetic nanopillar: Analytical versus micromagnetic calculations,” Phys. Rev. B 80, 140401 (2009).CrossRef
46.
Zurück zum Zitat Y. Gaididei, V. Kravchuk, and D. Sheka, “Magnetic vortex dynamics induced by an electrical current,” Int. J. Quantum Chem. 110, 8397 (2010). Y. Gaididei, V. Kravchuk, and D. Sheka, “Magnetic vortex dynamics induced by an electrical current,” Int. J. Quantum Chem. 110, 8397 (2010).
47.
Zurück zum Zitat B. A. Ivanov and E. Zaspel, “Excitation of spin dynamics by spin-polarized current in vortex state magnetic disks,” Phys. Rev. Lett. 99, 247208 (2007).CrossRef B. A. Ivanov and E. Zaspel, “Excitation of spin dynamics by spin-polarized current in vortex state magnetic disks,” Phys. Rev. Lett. 99, 247208 (2007).CrossRef
48.
Zurück zum Zitat N. A. Usov and S. E. Peschanyi, “Vortex distribution of magnetization in a thin ferromagnetic cylinder,” Phys. Met. Metallogr. 78, No. 6, 13–24 (1994). N. A. Usov and S. E. Peschanyi, “Vortex distribution of magnetization in a thin ferromagnetic cylinder,” Phys. Met. Metallogr. 78, No. 6, 13–24 (1994).
49.
51.
52.
53.
Zurück zum Zitat https://deparkes.co.uk/2014/05/30/list-micromagnetic- simulation-software/. https://deparkes.co.uk/2014/05/30/list-micromagnetic- simulation-software/.
54.
Zurück zum Zitat D. V. Berkov and J. Miltat, “Spin-torque driven magnetization dynamics: Micromagnetic modeling,” J. Magn. Magn. Mater. 320, 1238–1259 (2008).CrossRef D. V. Berkov and J. Miltat, “Spin-torque driven magnetization dynamics: Micromagnetic modeling,” J. Magn. Magn. Mater. 320, 1238–1259 (2008).CrossRef
55.
Zurück zum Zitat J. Leliaert and J. Mulkers, “Tomorrow’s micromagnetic simulations,” J. Appl. Phys. 125, 180901 (2019).CrossRef J. Leliaert and J. Mulkers, “Tomorrow’s micromagnetic simulations,” J. Appl. Phys. 125, 180901 (2019).CrossRef
56.
Zurück zum Zitat B. A. Ivanov, G. G. Avanesyan, A. V. Khvalkovskiy, N. E. Kulagin, C. E. Zaspel, and K. A. Zvezdin, “Non-newtonian dynamics of the fast motion of a magnetic vortex,” J. Exp. Theor. Phys. Lett. 91, No. 4, 178 (2010).CrossRef B. A. Ivanov, G. G. Avanesyan, A. V. Khvalkovskiy, N. E. Kulagin, C. E. Zaspel, and K. A. Zvezdin, “Non-newtonian dynamics of the fast motion of a magnetic vortex,” J. Exp. Theor. Phys. Lett. 91, No. 4, 178 (2010).CrossRef
57.
Zurück zum Zitat S. S. Cherepov, B, Koop, V. Korenivski, D, Worledge, A. Yu. Galkin, S. R. Khymyn, and B. A. Ivanov, “Core-core dynamics in spin vortex pairs,” Phys. Rev. Lett. 109, 097204 (2012).CrossRef S. S. Cherepov, B, Koop, V. Korenivski, D, Worledge, A. Yu. Galkin, S. R. Khymyn, and B. A. Ivanov, “Core-core dynamics in spin vortex pairs,” Phys. Rev. Lett. 109, 097204 (2012).CrossRef
58.
Zurück zum Zitat P. D. Kim, V. A. Orlov, V. S. Prokopenko, S. S. Zamai, V. Ya. Prints, R. Yu. Rudenko, and T. V. Rudenko, “On the low-frequency resonance of magnetic vortices in micro- and nanodots,” Phys. Solid State 57, 29–36 (2015).CrossRef P. D. Kim, V. A. Orlov, V. S. Prokopenko, S. S. Zamai, V. Ya. Prints, R. Yu. Rudenko, and T. V. Rudenko, “On the low-frequency resonance of magnetic vortices in micro- and nanodots,” Phys. Solid State 57, 29–36 (2015).CrossRef
59.
Zurück zum Zitat K. Y. Guslienko, G. N. Kakazei, J. Ding, X. M. Liu, and A. O. Adeyeye, “Giant moving vortex mass in thick magnetic nanodots,” Sci. Rep. 5,13881 (2015).CrossRef K. Y. Guslienko, G. N. Kakazei, J. Ding, X. M. Liu, and A. O. Adeyeye, “Giant moving vortex mass in thick magnetic nanodots,” Sci. Rep. 5,13881 (2015).CrossRef
60.
Zurück zum Zitat M. Goiriena-Goikoetxea, K. Y. Guslienko, I. Rouco, M. Orue, E. Berganza, M. Jaafar, A. Asenjo, M. L. Fernández-Gubieda, L. Fernández Barquín, and A. García-Arriba, “Magnetization reversal in circular vortex dots of small radius,” Nanoscale 9, 11269–11278 (2017).CrossRef M. Goiriena-Goikoetxea, K. Y. Guslienko, I. Rouco, M. Orue, E. Berganza, M. Jaafar, A. Asenjo, M. L. Fernández-Gubieda, L. Fernández Barquín, and A. García-Arriba, “Magnetization reversal in circular vortex dots of small radius,” Nanoscale 9, 11269–11278 (2017).CrossRef
61.
Zurück zum Zitat A. M. Kosevich, V. P. Voronov, and I. V. Manzhos, “Nonlinear collective excitations in an easy-plane magnet,” Zh. Eksp. Teor. Fiz. 84, No. 1, 148–160 (1983). A. M. Kosevich, V. P. Voronov, and I. V. Manzhos, “Nonlinear collective excitations in an easy-plane magnet,” Zh. Eksp. Teor. Fiz. 84, No. 1, 148–160 (1983).
62.
Zurück zum Zitat A. M. Kosevich, B. A. Ivanov, and A. S. Kovalev, Nonlinear Waves of Magnetization. Dynamic and Topological Solitons (Naukova dumka, Kiev, 1983), p. 192 [in Russian]. A. M. Kosevich, B. A. Ivanov, and A. S. Kovalev, Nonlinear Waves of Magnetization. Dynamic and Topological Solitons (Naukova dumka, Kiev, 1983), p. 192 [in Russian].
63.
Zurück zum Zitat B. A. Ivanov and D. D. Sheka, “Vortices in the cone phase of a classical quasi-two-dimensional ferromagnet,” Fiz. Nizk. Temp. 21, No. 10, 1148–1156 (1995). B. A. Ivanov and D. D. Sheka, “Vortices in the cone phase of a classical quasi-two-dimensional ferromagnet,” Fiz. Nizk. Temp. 21, No. 10, 1148–1156 (1995).
64.
Zurück zum Zitat B. A. Ivanov and G. M. Wysin, “Magnon modes for a circular two–dimensional easy–plane ferromagnet in the cone state,” Phys. Rev. B 65, No. 13, 134434 (2002).CrossRef B. A. Ivanov and G. M. Wysin, “Magnon modes for a circular two–dimensional easy–plane ferromagnet in the cone state,” Phys. Rev. B 65, No. 13, 134434 (2002).CrossRef
65.
Zurück zum Zitat V. P. Kravchuk and D. D. Sheka, “Thin ferromagnetic nanodisk in transverse magnetic field,” Phys. Solid State 49, No. 10, 1923–1931 (2007).CrossRef V. P. Kravchuk and D. D. Sheka, “Thin ferromagnetic nanodisk in transverse magnetic field,” Phys. Solid State 49, No. 10, 1923–1931 (2007).CrossRef
66.
Zurück zum Zitat A. Dussaux, A. V. Khvalkovskiy, P. Bortolotti, J. R. Grollie, V. Cros, and A. Fert, “Field dependence of spin-transfer-induced vortex dynamics in the nonlinear regime,” Phys. Rev. B 86, 014402 (2012).CrossRef A. Dussaux, A. V. Khvalkovskiy, P. Bortolotti, J. R. Grollie, V. Cros, and A. Fert, “Field dependence of spin-transfer-induced vortex dynamics in the nonlinear regime,” Phys. Rev. B 86, 014402 (2012).CrossRef
67.
Zurück zum Zitat G. de Loubens, B. Pigeau, F. Lochner, F. Boust, K. Y. Guslienko, H. Hurdequint, L. W. Molenkamp, G. Schmidt, A. N. Slavin, V. S. Tiberkevich, N. Vukadinovic, and O. Klein, “Bistability of vortex core dynamics in a single perpendicularly magnetized nanodisk,” Phys. Rev. Lett. 102, 177602 (2009).CrossRef G. de Loubens, B. Pigeau, F. Lochner, F. Boust, K. Y. Guslienko, H. Hurdequint, L. W. Molenkamp, G. Schmidt, A. N. Slavin, V. S. Tiberkevich, N. Vukadinovic, and O. Klein, “Bistability of vortex core dynamics in a single perpendicularly magnetized nanodisk,” Phys. Rev. Lett. 102, 177602 (2009).CrossRef
68.
Zurück zum Zitat K. Yu. Guslienko, X. F. Han, D. J. Keavney, R. Divan, and S. D. Bader, “Magnetic vortex core dynamics in a ferromagnetic dot,” Phys. Rev. Lett. 96, 067205 (2006).CrossRef K. Yu. Guslienko, X. F. Han, D. J. Keavney, R. Divan, and S. D. Bader, “Magnetic vortex core dynamics in a ferromagnetic dot,” Phys. Rev. Lett. 96, 067205 (2006).CrossRef
69.
Zurück zum Zitat P. N. Skirdkov, A. F. Popkov, and K. A. Zvezdin, “Vortex spin-torque diode: The impact of DC bias,” Appl. Phys. Lett. 113, 242403 (2018).CrossRef P. N. Skirdkov, A. F. Popkov, and K. A. Zvezdin, “Vortex spin-torque diode: The impact of DC bias,” Appl. Phys. Lett. 113, 242403 (2018).CrossRef
70.
Zurück zum Zitat P. N. Skirdkov and K. A. Zvezdin, “Spin-torque diodes: From fundamental research to applications,” Ann. Phys. 532, 12 (2020).CrossRef P. N. Skirdkov and K. A. Zvezdin, “Spin-torque diodes: From fundamental research to applications,” Ann. Phys. 532, 12 (2020).CrossRef
71.
Zurück zum Zitat P. N. Skirdkov, A. D. Belanovsky, K. A. Zvezdin, A. K. Zvezdin, N. Locatelli, J. Grollier, and V. Cros, “Influence of shape imperfection on dynamics of vortex spin-torque nano-oscillator,” SPIN 02, 01, 1250005 (2012).CrossRef P. N. Skirdkov, A. D. Belanovsky, K. A. Zvezdin, A. K. Zvezdin, N. Locatelli, J. Grollier, and V. Cros, “Influence of shape imperfection on dynamics of vortex spin-torque nano-oscillator,” SPIN 02, 01, 1250005 (2012).CrossRef
72.
Zurück zum Zitat V. A. Orlov, G. S. Patrin, and I. N. Orlova, “Interaction of a magnetic vortex with magnetic anisotropy nonuniformity,” J. Exp. Theor. Phys. 131, 589–599 (2020).CrossRef V. A. Orlov, G. S. Patrin, and I. N. Orlova, “Interaction of a magnetic vortex with magnetic anisotropy nonuniformity,” J. Exp. Theor. Phys. 131, 589–599 (2020).CrossRef
73.
Zurück zum Zitat M. Kuepferling, S. Zullino, A. Sola, B. Van de Wiele, G. Durin, M. Pasquale, K. Rott, G. Reiss, and G. Bertotti, “Vortex dynamics in Co–Fe–B magnetic tunnel junctions in presence of defects,” J. Appl. Phys. 117, 17E107 (2015). M. Kuepferling, S. Zullino, A. Sola, B. Van de Wiele, G. Durin, M. Pasquale, K. Rott, G. Reiss, and G. Bertotti, “Vortex dynamics in Co–Fe–B magnetic tunnel junctions in presence of defects,” J. Appl. Phys. 117, 17E107 (2015).
74.
Zurück zum Zitat T. Okuno, K. Shigeto, T. Ono, K. Mibu, and T. Shinjo, “MFM study of magnetic vortex cores in circular permalloy dots: behavior in external field,” J. Magn. Magn. Mater. 240, 1–6 (2002).CrossRef T. Okuno, K. Shigeto, T. Ono, K. Mibu, and T. Shinjo, “MFM study of magnetic vortex cores in circular permalloy dots: behavior in external field,” J. Magn. Magn. Mater. 240, 1–6 (2002).CrossRef
75.
Zurück zum Zitat A. Thiaville, J. M. Garcia, R. Dittrich, J. Miltat, and T. Schrefl, “Micromagnetic study of Bloch-point-mediated vortex core reversal,” Phys. Rev. B 67, 094410 (2003).CrossRef A. Thiaville, J. M. Garcia, R. Dittrich, J. Miltat, and T. Schrefl, “Micromagnetic study of Bloch-point-mediated vortex core reversal,” Phys. Rev. B 67, 094410 (2003).CrossRef
76.
Zurück zum Zitat R. Wang and X. Dong, “Sub-nanosecond switching of vortex cores using a resonant perpendicular magnetic field,” Appl. Phys. Lett. 100, 082402 (2012)CrossRef R. Wang and X. Dong, “Sub-nanosecond switching of vortex cores using a resonant perpendicular magnetic field,” Appl. Phys. Lett. 100, 082402 (2012)CrossRef
77.
Zurück zum Zitat M. -W. Yoo, J. Lee, and S-K. Kim, “Radial-spin-wave-mode-assisted vortex-core magnetization reversals,” Appl. Phys. Lett. 100, 172413 (2012).CrossRef M. -W. Yoo, J. Lee, and S-K. Kim, “Radial-spin-wave-mode-assisted vortex-core magnetization reversals,” Appl. Phys. Lett. 100, 172413 (2012).CrossRef
78.
Zurück zum Zitat D. J. Keavney, X. M. Cheng, and K. S. Buchanan, “Polarity reversal of a magnetic vortex core by a unipolar, nonresonant in-plane pulsed magnetic field,” Appl. Phys. Lett. 94, 172506 (2009).CrossRef D. J. Keavney, X. M. Cheng, and K. S. Buchanan, “Polarity reversal of a magnetic vortex core by a unipolar, nonresonant in-plane pulsed magnetic field,” Appl. Phys. Lett. 94, 172506 (2009).CrossRef
79.
Zurück zum Zitat R. Hertel, S. Gliga, M. Fahnle, and C. M. Schneider, “Ultrafast nanomagnetic toggle switching of vortex cores,” Phys Rev Lett. 98, 117201 (2007).CrossRef R. Hertel, S. Gliga, M. Fahnle, and C. M. Schneider, “Ultrafast nanomagnetic toggle switching of vortex cores,” Phys Rev Lett. 98, 117201 (2007).CrossRef
80.
Zurück zum Zitat J.-G. Caputo, Y. Gaididei, F. G. Mertens, and D. D. Sheka, “Vortex polarity switching by a spin-polarized current,” Phys. Rev. Lett. 98, 056604 (2007).CrossRef J.-G. Caputo, Y. Gaididei, F. G. Mertens, and D. D. Sheka, “Vortex polarity switching by a spin-polarized current,” Phys. Rev. Lett. 98, 056604 (2007).CrossRef
81.
Zurück zum Zitat K. Yamada, S. Kasai, Y. Nakatani, K. Kobayashi, et al., “Electrical switching of the vortex core in a magnetic disk,” Nat. Mater. 6, 270–273 (2007).CrossRef K. Yamada, S. Kasai, Y. Nakatani, K. Kobayashi, et al., “Electrical switching of the vortex core in a magnetic disk,” Nat. Mater. 6, 270–273 (2007).CrossRef
82.
Zurück zum Zitat D. D. Sheka, Y. Gaididei, and F. G. Mertens, “Current induced switching of vortex polarity in magnetic nanodisks,” Appl. Phys. Lett. 91, 082509 (2007).CrossRef D. D. Sheka, Y. Gaididei, and F. G. Mertens, “Current induced switching of vortex polarity in magnetic nanodisks,” Appl. Phys. Lett. 91, 082509 (2007).CrossRef
83.
Zurück zum Zitat W. Jin, H. He, Y. Chen, and Y. Liu, “Controllable vortex polarity switching by spin polarized current,” J. Appl. Phys. 105, 013906 (2009).CrossRef W. Jin, H. He, Y. Chen, and Y. Liu, “Controllable vortex polarity switching by spin polarized current,” J. Appl. Phys. 105, 013906 (2009).CrossRef
84.
Zurück zum Zitat A. V. Khvalkovskiy, A. N. Slavin, J. Grollier, K. A. Zvezdin, and K. Y. Guslienko, “Critical velocity for the vortex core reversal in perpendicular bias magnetic field,” Appl. Phys. Lett. 96, 022504 (2010).CrossRef A. V. Khvalkovskiy, A. N. Slavin, J. Grollier, K. A. Zvezdin, and K. Y. Guslienko, “Critical velocity for the vortex core reversal in perpendicular bias magnetic field,” Appl. Phys. Lett. 96, 022504 (2010).CrossRef
85.
Zurück zum Zitat Y. Liu, S. Gliga, R. Hertel, and C. M. Schneider, “Current-induced magnetic vortex core switching in a Permalloy nanodisk,” Appl. Phys. Lett. 91, 112501 (2007).CrossRef Y. Liu, S. Gliga, R. Hertel, and C. M. Schneider, “Current-induced magnetic vortex core switching in a Permalloy nanodisk,” Appl. Phys. Lett. 91, 112501 (2007).CrossRef
86.
Zurück zum Zitat V. Uhlíř, M. Urbánek, L. Hladík, J. Spousta, et al., “Dynamic switching of the spin circulation in tapered magnetic nanodisks,” Nat. Nanotechnol. 8, 341–346 (2013).CrossRef V. Uhlíř, M. Urbánek, L. Hladík, J. Spousta, et al., “Dynamic switching of the spin circulation in tapered magnetic nanodisks,” Nat. Nanotechnol. 8, 341–346 (2013).CrossRef
87.
Zurück zum Zitat N. Locatelli, A. E. Ekomasov, A. V. Khvalkovskiy, Sh. A. Azamatov, K. A. Zvezdin, J. Grollier, E. G. Ekomasov, and V. Cros, “Reversal process of a magnetic vortex core under the combined action of a perpendicular field and spin transfer torque,” Appl. Phys. Lett. 102, 062401 (2013).CrossRef N. Locatelli, A. E. Ekomasov, A. V. Khvalkovskiy, Sh. A. Azamatov, K. A. Zvezdin, J. Grollier, E. G. Ekomasov, and V. Cros, “Reversal process of a magnetic vortex core under the combined action of a perpendicular field and spin transfer torque,” Appl. Phys. Lett. 102, 062401 (2013).CrossRef
88.
Zurück zum Zitat K. Yamada, S. Kasai, Y. Nakatani, K. Kobayashi, and T. Ono, “Current-induced switching of magnetic vortex core in ferromagnetic elliptical disks,” Appl. Phys. Lett. 96, 192508 (2010).CrossRef K. Yamada, S. Kasai, Y. Nakatani, K. Kobayashi, and T. Ono, “Current-induced switching of magnetic vortex core in ferromagnetic elliptical disks,” Appl. Phys. Lett. 96, 192508 (2010).CrossRef
89.
Zurück zum Zitat S.-K. Kim, Y.-S. Choi, K.-S. Lee, K. Y. Guslienko, and D.-E. Jeong, “Electric-current-driven vortex-core reversal in soft magnetic nanodots,” Appl. Phys. Lett. 91, 082506 (2007).CrossRef S.-K. Kim, Y.-S. Choi, K.-S. Lee, K. Y. Guslienko, and D.-E. Jeong, “Electric-current-driven vortex-core reversal in soft magnetic nanodots,” Appl. Phys. Lett. 91, 082506 (2007).CrossRef
90.
Zurück zum Zitat K. Nakano, D. Chiba, N. Ohshima, S. Kasai, T. Sato, Y. Nakatani, K. Sekiguchi, K. Kobayashi, and T. Ono, “All-electrical operation of magnetic vortex core memory cell,” Appl. Phys. Lett. 99, 262505 (2011).CrossRef K. Nakano, D. Chiba, N. Ohshima, S. Kasai, T. Sato, Y. Nakatani, K. Sekiguchi, K. Kobayashi, and T. Ono, “All-electrical operation of magnetic vortex core memory cell,” Appl. Phys. Lett. 99, 262505 (2011).CrossRef
91.
Zurück zum Zitat K. Yu. Guslienko, K. S. Buchanan, S. D. Bader, and V. Novosad, “Dynamics of coupled vortices in layered magnetic nanodots,” Appl. Phys. Lett. 86, 223112 (2005).CrossRef K. Yu. Guslienko, K. S. Buchanan, S. D. Bader, and V. Novosad, “Dynamics of coupled vortices in layered magnetic nanodots,” Appl. Phys. Lett. 86, 223112 (2005).CrossRef
92.
Zurück zum Zitat N. Locatelli, V. V. Naletov, J. Grollier, G. de Loubens, V. Cros, C. Deranlot, C. Ulysse, G. Faini, O. Klein, and A. Fert, “Dynamics of two coupled vortices in a spin valve nanopillar excited by spin transfer torque,” Appl. Phys. Lett. 98, No. 6, 062501 (2011).CrossRef N. Locatelli, V. V. Naletov, J. Grollier, G. de Loubens, V. Cros, C. Deranlot, C. Ulysse, G. Faini, O. Klein, and A. Fert, “Dynamics of two coupled vortices in a spin valve nanopillar excited by spin transfer torque,” Appl. Phys. Lett. 98, No. 6, 062501 (2011).CrossRef
93.
Zurück zum Zitat S. S. Cherepov, B. C. Koop, A. Yu. Galkin, R. S. Khymyn, B. A. Ivanov, D. C. Worledge, and V. Korenivski, “Core-core dynamics in spin vortex pairs,” Phys. Rev. Lett. 109, 097204 (2012).CrossRef S. S. Cherepov, B. C. Koop, A. Yu. Galkin, R. S. Khymyn, B. A. Ivanov, D. C. Worledge, and V. Korenivski, “Core-core dynamics in spin vortex pairs,” Phys. Rev. Lett. 109, 097204 (2012).CrossRef
94.
Zurück zum Zitat V. Sluka, A. Kakay, A. M. Deac, D. E. Burgler, C. M. Schneider, and R. Hertel, “Spin-torque induced dynamics at fine-split frequencies in nano-oscillators with two stacked vortices,” Nat. Commun. 6, 6409 (2015).CrossRef V. Sluka, A. Kakay, A. M. Deac, D. E. Burgler, C. M. Schneider, and R. Hertel, “Spin-torque induced dynamics at fine-split frequencies in nano-oscillators with two stacked vortices,” Nat. Commun. 6, 6409 (2015).CrossRef
95.
Zurück zum Zitat N. Locatelli, R. Lebrun, V. Naletov, A. Hamadeh, G. De Loubens, O. Klein, J. Grollier, and V. Cros, “Improved spectral stability in spin-transfer nano oscillators: single vortex versus coupled vortices dynamics,” IEEE Trans. Magn. 51, 4300206 (2015).CrossRef N. Locatelli, R. Lebrun, V. Naletov, A. Hamadeh, G. De Loubens, O. Klein, J. Grollier, and V. Cros, “Improved spectral stability in spin-transfer nano oscillators: single vortex versus coupled vortices dynamics,” IEEE Trans. Magn. 51, 4300206 (2015).CrossRef
96.
Zurück zum Zitat A. Hamadeh, N. Locatelli, V. Naletov, R. Lebrun, G. Loubens, J. Grollier, O. Klein, and V. Cros, “Origin of spectral purity and tuning sensitivity in a spin transfer vortex nano-oscillator,” Phys. Rev. Lett. 11, No. 25, 257201 (2014).CrossRef A. Hamadeh, N. Locatelli, V. Naletov, R. Lebrun, G. Loubens, J. Grollier, O. Klein, and V. Cros, “Origin of spectral purity and tuning sensitivity in a spin transfer vortex nano-oscillator,” Phys. Rev. Lett. 11, No. 25, 257201 (2014).CrossRef
97.
Zurück zum Zitat A. Ekomasov, S. Stepanov, K. Zvezdin, and E. Ekomasov, “Influence of perpendicular magnetic field and polarized current on the dynamics of coupled magnetic vortices in a thin nanocolumnar trilayer conducting structure,” Phys. Met. Metallogr. 118, No. 4, 328–333 (2017).CrossRef A. Ekomasov, S. Stepanov, K. Zvezdin, and E. Ekomasov, “Influence of perpendicular magnetic field and polarized current on the dynamics of coupled magnetic vortices in a thin nanocolumnar trilayer conducting structure,” Phys. Met. Metallogr. 118, No. 4, 328–333 (2017).CrossRef
98.
Zurück zum Zitat E. G. Ekomasov, S. V. Stepanov, M. I. Fakhretdinov, G. I. Antonov, A. E. Ekomasov, and K. A. Zvezdin, “Coupled dynamics of magnetic vortices in a three-layer thin conducting permalloy nanodisk,” Chelyab. Fiz.-Matem. Zhurn. 5, No. 2, 161–17 (2020). E. G. Ekomasov, S. V. Stepanov, M. I. Fakhretdinov, G. I. Antonov, A. E. Ekomasov, and K. A. Zvezdin, “Coupled dynamics of magnetic vortices in a three-layer thin conducting permalloy nanodisk,” Chelyab. Fiz.-Matem. Zhurn. 5, No. 2, 161–17 (2020).
99.
Zurück zum Zitat S. Stepanov, A. Ekomasov, K. Zvezdin, and E. Ekomasov, “Dynamics of coupled magnetic vortices in trilayer conducting nanocylinder,” Phys. Solid State 60, No. 6, 1055–1060 (2018).CrossRef S. Stepanov, A. Ekomasov, K. Zvezdin, and E. Ekomasov, “Dynamics of coupled magnetic vortices in trilayer conducting nanocylinder,” Phys. Solid State 60, No. 6, 1055–1060 (2018).CrossRef
100.
Zurück zum Zitat A. Ekomasov, S. Stepanov, K. Zvezdin, and E. Ekomasov, “Spin current induced dynamics and polarity switching of coupled magnetic vertices in three-layer nanopillars,” J. Magn. Magn. Mater. 471, 513–520 (2019).CrossRef A. Ekomasov, S. Stepanov, K. Zvezdin, and E. Ekomasov, “Spin current induced dynamics and polarity switching of coupled magnetic vertices in three-layer nanopillars,” J. Magn. Magn. Mater. 471, 513–520 (2019).CrossRef
101.
Zurück zum Zitat E. G. Ekomasov, S. V. Stepanov, K. A. Zvezdin, N. G. Pugach, and G. I. Antonov, “The effect of the spin-polarized current on the dynamics and structural changes of magnetic vortices in a large-diameter three-layer conducting nanocylinder,” Phys. Met. Metallogr. 122, No. 3, 197–204 (2021).CrossRef E. G. Ekomasov, S. V. Stepanov, K. A. Zvezdin, N. G. Pugach, and G. I. Antonov, “The effect of the spin-polarized current on the dynamics and structural changes of magnetic vortices in a large-diameter three-layer conducting nanocylinder,” Phys. Met. Metallogr. 122, No. 3, 197–204 (2021).CrossRef
102.
Zurück zum Zitat F. A. Araujo, H. Kubota, K. Yakushiji, A. Fukushima, and S. Yuasa, “Nonlinear behavior and mode coupling in spin-transfer nano-oscillators,” Phys. Rev. Appl. 2, 061001 (2014).CrossRef F. A. Araujo, H. Kubota, K. Yakushiji, A. Fukushima, and S. Yuasa, “Nonlinear behavior and mode coupling in spin-transfer nano-oscillators,” Phys. Rev. Appl. 2, 061001 (2014).CrossRef
103.
Zurück zum Zitat L. Shen, J. Xia, G. Zhao, X. Zhang, M. Ezawa, O. A. Tretiakov, X. Liu, and Y. Zhou, “Spin torque nano-oscillators based on antiferromagnetic skyrmions,” Appl. Phys. Lett. 114, 042402 (2019).CrossRef L. Shen, J. Xia, G. Zhao, X. Zhang, M. Ezawa, O. A. Tretiakov, X. Liu, and Y. Zhou, “Spin torque nano-oscillators based on antiferromagnetic skyrmions,” Appl. Phys. Lett. 114, 042402 (2019).CrossRef
104.
Zurück zum Zitat M. E. Stebliy, A. V. Ognev, A. S. Samardak, A. G. Kolesnikov, L. A. Chebotkevich, and X. Han, “High-frequency switching of magnetic bistability in an asymmetric double disk nanostructure,” Appl. Phys. Lett. 104, 112405 (2014).CrossRef M. E. Stebliy, A. V. Ognev, A. S. Samardak, A. G. Kolesnikov, L. A. Chebotkevich, and X. Han, “High-frequency switching of magnetic bistability in an asymmetric double disk nanostructure,” Appl. Phys. Lett. 104, 112405 (2014).CrossRef
105.
Zurück zum Zitat A. V. Bondarenko, E. Holmgren, B. C. Koop, T. Descamps, B. A. Ivanov, and V. Korenivski, “Stochastic dynamics of strongly-bound magnetic vortex pairs,” AIP Adv. 7, 056007 (2017).CrossRef A. V. Bondarenko, E. Holmgren, B. C. Koop, T. Descamps, B. A. Ivanov, and V. Korenivski, “Stochastic dynamics of strongly-bound magnetic vortex pairs,” AIP Adv. 7, 056007 (2017).CrossRef
106.
Zurück zum Zitat E. Holmgren, A. Bondarenko, B. A. Ivanov, and V. Korenivski, “Resonant pinning spectroscopy with spin-vortex pairs,” Phys. Rev. B 97, 094406 (2018).CrossRef E. Holmgren, A. Bondarenko, B. A. Ivanov, and V. Korenivski, “Resonant pinning spectroscopy with spin-vortex pairs,” Phys. Rev. B 97, 094406 (2018).CrossRef
107.
Zurück zum Zitat E. Holmgren, A. Bondarenko, M. Persson, B. A. Ivanov, and V. Korenivski, “Transient dynamics of strongly coupled spin vortex pairs: Effects of anharmonicity and resonant excitation on inertial switching,” Appl. Phys. Lett. 112, 192405 (2018).CrossRef E. Holmgren, A. Bondarenko, M. Persson, B. A. Ivanov, and V. Korenivski, “Transient dynamics of strongly coupled spin vortex pairs: Effects of anharmonicity and resonant excitation on inertial switching,” Appl. Phys. Lett. 112, 192405 (2018).CrossRef
108.
Zurück zum Zitat W. Jin, H. He, Y. Chen, and Y. Liu, “Controllable vortex polarity switching by spin polarized current,” J. Appl. Phys. 105, 013906 (2009).CrossRef W. Jin, H. He, Y. Chen, and Y. Liu, “Controllable vortex polarity switching by spin polarized current,” J. Appl. Phys. 105, 013906 (2009).CrossRef
109.
Zurück zum Zitat K.-S. Lee, M.-W. Yoo, Y.-S. Choi, and S.-K. Kim, “Edge-soliton-mediated vortex-core reversal dynamics,” Phys. Rev. Lett. 106, 147201 (2011).CrossRef K.-S. Lee, M.-W. Yoo, Y.-S. Choi, and S.-K. Kim, “Edge-soliton-mediated vortex-core reversal dynamics,” Phys. Rev. Lett. 106, 147201 (2011).CrossRef
110.
Zurück zum Zitat A. S. Jenkins, R. Lebrun, E. Grimaldi, S. Tsunegi, P. Bortolotti, H. Kubota, K. Yakushiji, A. Fukushima, G. de Loubens, O. Klein, S. Yuasa, and V. Cros, “Spin-torque resonant expulsion of the vortex core for an efficient radiofrequency detection scheme,” Nat. Nanotechnol. 11, 360–364 (2016).CrossRef A. S. Jenkins, R. Lebrun, E. Grimaldi, S. Tsunegi, P. Bortolotti, H. Kubota, K. Yakushiji, A. Fukushima, G. de Loubens, O. Klein, S. Yuasa, and V. Cros, “Spin-torque resonant expulsion of the vortex core for an efficient radiofrequency detection scheme,” Nat. Nanotechnol. 11, 360–364 (2016).CrossRef
111.
Zurück zum Zitat A. Ekomasov, A. Khval’kovskii, K. Zvezdin, and E. Ekomasov, “Simulation of static and dynamic scenarios of polarization switching of magnetic vortices in a nanocolumnar conducting three-layer structure,” Izv. RAN Cer. Fiz. 77, No. 10, 1490–1492 (2013). A. Ekomasov, A. Khval’kovskii, K. Zvezdin, and E. Ekomasov, “Simulation of static and dynamic scenarios of polarization switching of magnetic vortices in a nanocolumnar conducting three-layer structure,” Izv. RAN Cer. Fiz. 77, No. 10, 1490–1492 (2013).
112.
Zurück zum Zitat A. Ekomasov, C. Stepanov, and E. Ekomasov, “Simulation of vortex core switching in a nanocolumnar conductive three-layer structure,” Pis’ma o Mater. 6, 46 (2016). A. Ekomasov, C. Stepanov, and E. Ekomasov, “Simulation of vortex core switching in a nanocolumnar conductive three-layer structure,” Pis’ma o Mater. 6, 46 (2016).
113.
Zurück zum Zitat A. D. Belanovsky, N. Locatelli, P. N. Skirdkov, A. F. Abreu, J. Grollier, K. A. Zvezdin, V. Cros, and A. K. Zvezdin, “Phase locking dynamics of dipolarly coupled vortex-based spin transfer oscillators,” Phys. Rev. B 85, 100409(R) (2012). A. D. Belanovsky, N. Locatelli, P. N. Skirdkov, A. F. Abreu, J. Grollier, K. A. Zvezdin, V. Cros, and A. K. Zvezdin, “Phase locking dynamics of dipolarly coupled vortex-based spin transfer oscillators,” Phys. Rev. B 85, 100409(R) (2012).
114.
Zurück zum Zitat N. Locatelli, A. Hamadeh, AraujoF. Abreu, A. D. Belanovsky, P. N. Skirdkov, R. Lebrun, V. V. Naletov, K. A. Zvezdin, M. Munoz, J. Grollier, O. Klein, V. Cros, and G. de Loubens, “Efficient synchronization of dipolarly coupled vortex-based spin transfer nano-oscillators,” Sci. Rep. 5, 17039 (2015).CrossRef N. Locatelli, A. Hamadeh, AraujoF. Abreu, A. D. Belanovsky, P. N. Skirdkov, R. Lebrun, V. V. Naletov, K. A. Zvezdin, M. Munoz, J. Grollier, O. Klein, V. Cros, and G. de Loubens, “Efficient synchronization of dipolarly coupled vortex-based spin transfer nano-oscillators,” Sci. Rep. 5, 17039 (2015).CrossRef
115.
Zurück zum Zitat A. D. Belanovsky, N. Locatelli, P. N. Skirdkov, A. F. Abreu, J. Grollier, K. A. Zvezdin, V. Cros, and A. K. Zvezdin, “Numerical and analytical investigation of the synchronization of dipolarly coupled vortex spin-torque nano-oscillators,” Appl. Phys. Lett. 103, 122405 (2013).CrossRef A. D. Belanovsky, N. Locatelli, P. N. Skirdkov, A. F. Abreu, J. Grollier, K. A. Zvezdin, V. Cros, and A. K. Zvezdin, “Numerical and analytical investigation of the synchronization of dipolarly coupled vortex spin-torque nano-oscillators,” Appl. Phys. Lett. 103, 122405 (2013).CrossRef
116.
Zurück zum Zitat A. F. Abreu, A. D. Belanovsky, P. N. Skirdkov, K. A. Zvezdin, A. K. Zvezdin, N. Locatelli, R. Lebrun, J. Grollier, V. Cros, G. de Loubens, and O. Klein, “Optimizing magnetodipolar interactions for synchronizing vortex-based spin-torque nano-oscillators,” Phys. Rev. B 92, 045419 (2015).CrossRef A. F. Abreu, A. D. Belanovsky, P. N. Skirdkov, K. A. Zvezdin, A. K. Zvezdin, N. Locatelli, R. Lebrun, J. Grollier, V. Cros, G. de Loubens, and O. Klein, “Optimizing magnetodipolar interactions for synchronizing vortex-based spin-torque nano-oscillators,” Phys. Rev. B 92, 045419 (2015).CrossRef
117.
Zurück zum Zitat J. Grollier, V. Cros, and A. Fert, “Synchronization of spin-transfer oscillators driven by stimulated microwave currents,” Phys. Rev. B 73, 060409 (2006).CrossRef J. Grollier, V. Cros, and A. Fert, “Synchronization of spin-transfer oscillators driven by stimulated microwave currents,” Phys. Rev. B 73, 060409 (2006).CrossRef
118.
Zurück zum Zitat V. S. Tiberkevich, A. N. Slavin, E. Bankowski, and G. Gerhart, “Phase-locking and frustration in an array of nonlinear spin-torque nano-oscillators,” Appl. Phys. Lett. 95, 262505 (2009).CrossRef V. S. Tiberkevich, A. N. Slavin, E. Bankowski, and G. Gerhart, “Phase-locking and frustration in an array of nonlinear spin-torque nano-oscillators,” Appl. Phys. Lett. 95, 262505 (2009).CrossRef
119.
Zurück zum Zitat B. Georges, J. Grollier, V. Cros, and A. Fert, Impact of the electrical connection of spin transfer nano-oscillators on their synchronization: analytical study, Appl. Phys. Lett. 92, 232504 (2008).CrossRef B. Georges, J. Grollier, V. Cros, and A. Fert, Impact of the electrical connection of spin transfer nano-oscillators on their synchronization: analytical study, Appl. Phys. Lett. 92, 232504 (2008).CrossRef
120.
Zurück zum Zitat A. Ruotolo, V. Cros, B. Georges, A. Dussaux, J. Grollier, C. Deranlot, R. Guillemet, K. Bouzehouane, S. Fusil, and A. Fert, “Phase-locking of magnetic vortices mediated by antivortices,” Nature Nano. 4, 528 (2009).CrossRef A. Ruotolo, V. Cros, B. Georges, A. Dussaux, J. Grollier, C. Deranlot, R. Guillemet, K. Bouzehouane, S. Fusil, and A. Fert, “Phase-locking of magnetic vortices mediated by antivortices,” Nature Nano. 4, 528 (2009).CrossRef
121.
Zurück zum Zitat A. D. Belanovsky, N. Locatelli, P. N. Skirdkov, Araujo F. Abreu, J. Grollier, K. A. Zvezdin, V. Cros, and A. K. Zvezdin, “Phase locking dynamics of dipolarly coupled vortex-based spin transfer oscillators,” Phys. Rev. B 85, 100409 (2012).CrossRef A. D. Belanovsky, N. Locatelli, P. N. Skirdkov, Araujo F. Abreu, J. Grollier, K. A. Zvezdin, V. Cros, and A. K. Zvezdin, “Phase locking dynamics of dipolarly coupled vortex-based spin transfer oscillators,” Phys. Rev. B 85, 100409 (2012).CrossRef
122.
Zurück zum Zitat A. D. Belanovsky, N. Locatelli, P. N. Skirdkov, Araujo F. Abreu, K. A. Zvezdin, J. Grollier, V. Cros, and A. K. Zvezdin, “Numerical and analytical investigation of the synchronization of dipolarly coupled vortex spin-torque nano-oscillators,” Appl. Phys. Lett. 103, 122405 (2013).CrossRef A. D. Belanovsky, N. Locatelli, P. N. Skirdkov, Araujo F. Abreu, K. A. Zvezdin, J. Grollier, V. Cros, and A. K. Zvezdin, “Numerical and analytical investigation of the synchronization of dipolarly coupled vortex spin-torque nano-oscillators,” Appl. Phys. Lett. 103, 122405 (2013).CrossRef
123.
Zurück zum Zitat Y. Zhou and J. Akerman, “Perpendicular spin torque promotes synchronization of magnetic tunnel junction based spin torque oscillators,” Appl. Phys. Lett. 94, 112503 (2009).CrossRef Y. Zhou and J. Akerman, “Perpendicular spin torque promotes synchronization of magnetic tunnel junction based spin torque oscillators,” Appl. Phys. Lett. 94, 112503 (2009).CrossRef
124.
Zurück zum Zitat A. N. Slavin and V. S. Tiberkevich, “Nonlinear self-phase-locking effect in an array of current-driven magnetic nanocontacts,” Phys. Rev. B 72, 092407 (2005).CrossRef A. N. Slavin and V. S. Tiberkevich, “Nonlinear self-phase-locking effect in an array of current-driven magnetic nanocontacts,” Phys. Rev. B 72, 092407 (2005).CrossRef
125.
Zurück zum Zitat A. N. Slavin and V. S. Tiberkevich, “Theory of mutual phase locking of spintorque nanosized oscillators,” Phys. Rev. B 74, 104401 (2006)CrossRef A. N. Slavin and V. S. Tiberkevich, “Theory of mutual phase locking of spintorque nanosized oscillators,” Phys. Rev. B 74, 104401 (2006)CrossRef
126.
Zurück zum Zitat S. Urazhdin, P. Tabor, V. S. Tiberkevich, and A. Slavin, “Fractional synchronization of spin-torque nano-oscillators,” Phys. Rev. Lett. 105, 104101 (2010).CrossRef S. Urazhdin, P. Tabor, V. S. Tiberkevich, and A. Slavin, “Fractional synchronization of spin-torque nano-oscillators,” Phys. Rev. Lett. 105, 104101 (2010).CrossRef
127.
Zurück zum Zitat S. Kaka, M. Puffall, W. Rippard, T. Silva, S. Russek, and J. Katine, “Mutual phase-locking of microwave spin torque nano-oscillators,” Nature 437, 389–392 (2005).CrossRef S. Kaka, M. Puffall, W. Rippard, T. Silva, S. Russek, and J. Katine, “Mutual phase-locking of microwave spin torque nano-oscillators,” Nature 437, 389–392 (2005).CrossRef
128.
Zurück zum Zitat F. B. Mancoff, N. D. Rizzo, B. N. Engel, and S. Tehrani, “Phase-locking in double-point-contact spin-transfer devices,” Nature 437, 393–395 (2005).CrossRef F. B. Mancoff, N. D. Rizzo, B. N. Engel, and S. Tehrani, “Phase-locking in double-point-contact spin-transfer devices,” Nature 437, 393–395 (2005).CrossRef
129.
Zurück zum Zitat A. R. Safin, N. N. Udalov, and M. V. Kapranov, “Mutual phase locking of very nonidentical spin torque nanooscillators via spin wave interaction,” Eur. Phys. J. Appl. Phys. 67, No. 2, 20601 (2014).CrossRef A. R. Safin, N. N. Udalov, and M. V. Kapranov, “Mutual phase locking of very nonidentical spin torque nanooscillators via spin wave interaction,” Eur. Phys. J. Appl. Phys. 67, No. 2, 20601 (2014).CrossRef
130.
Zurück zum Zitat V. S. Tiberkevich, A. N. Slavin, E. Bankowski, and G. Gerhart, “Phase locking of vortex-based spin-torque nanocontact oscillators by antivortices,” Appl. Phys. Lett. 102, 052403 (2013).CrossRef V. S. Tiberkevich, A. N. Slavin, E. Bankowski, and G. Gerhart, “Phase locking of vortex-based spin-torque nanocontact oscillators by antivortices,” Appl. Phys. Lett. 102, 052403 (2013).CrossRef
131.
Zurück zum Zitat N. Locatelli, V. V. Naletov, J. Grollier, G. De Loubens, V. Cros, C. Deranlot, C. Ulysse, G. Faini, O. Klein, and A. Fert, “Dynamics of two coupled vortices in a spin valve nanopillar excited by spin transfer torque,” Appl. Phys. Lett. 98, 062501 (2011).CrossRef N. Locatelli, V. V. Naletov, J. Grollier, G. De Loubens, V. Cros, C. Deranlot, C. Ulysse, G. Faini, O. Klein, and A. Fert, “Dynamics of two coupled vortices in a spin valve nanopillar excited by spin transfer torque,” Appl. Phys. Lett. 98, 062501 (2011).CrossRef
132.
Zurück zum Zitat J. Shibata, K. Shigeto, and Y. Otani, “Dynamics of magnetostatically coupled vortices in magnetic nanodisks,” Phys. Rev. B 67, 224404 (2003).CrossRef J. Shibata, K. Shigeto, and Y. Otani, “Dynamics of magnetostatically coupled vortices in magnetic nanodisks,” Phys. Rev. B 67, 224404 (2003).CrossRef
133.
Zurück zum Zitat A. Vogel, A. Drews, T. Kamionka, M. Bolte, and G. Meier, “Influence of dipolar interaction on vortex dynamics in arrays of ferromagnetic disks,” Phys. Rev. Lett. 105, 037201 (2010).CrossRef A. Vogel, A. Drews, T. Kamionka, M. Bolte, and G. Meier, “Influence of dipolar interaction on vortex dynamics in arrays of ferromagnetic disks,” Phys. Rev. Lett. 105, 037201 (2010).CrossRef
134.
Zurück zum Zitat S. Sugimoto, Y. Fukuma, S. Kasai, T. Kimura, A. Barman, and Y. C. Otani, “Dynamics of coupled vortices in a pair of ferromagnetic disks,” Phys. Rev. Lett. 106, 197203 (2011).CrossRef S. Sugimoto, Y. Fukuma, S. Kasai, T. Kimura, A. Barman, and Y. C. Otani, “Dynamics of coupled vortices in a pair of ferromagnetic disks,” Phys. Rev. Lett. 106, 197203 (2011).CrossRef
135.
Zurück zum Zitat M. Romera, P. Talatchian, S. Tsunegi, F. Abreu, CrosV. Araujo, P. Bortolotti, J. Trastoy, K. Yakushiji, A. Fukushima, H. Kubota, S. Yuasa, M. Ernoult, D. Vodenicarevic, T. Hirtzlin, N. Locatelli, D. Querlioz, and J. Grollier, “Vowel recognition with four coupled spin-torque nano-oscillator,” Nature 563, 230 (2018).CrossRef M. Romera, P. Talatchian, S. Tsunegi, F. Abreu, CrosV. Araujo, P. Bortolotti, J. Trastoy, K. Yakushiji, A. Fukushima, H. Kubota, S. Yuasa, M. Ernoult, D. Vodenicarevic, T. Hirtzlin, N. Locatelli, D. Querlioz, and J. Grollier, “Vowel recognition with four coupled spin-torque nano-oscillator,” Nature 563, 230 (2018).CrossRef
136.
Zurück zum Zitat J. Grollier, D. Querlioz, K. Y. Camsari, K. Everschor-Sitte, et al., “Neuromorphic spintronics,” Nat. Electron. 3, 360–370 (2020).CrossRef J. Grollier, D. Querlioz, K. Y. Camsari, K. Everschor-Sitte, et al., “Neuromorphic spintronics,” Nat. Electron. 3, 360–370 (2020).CrossRef
Metadaten
Titel
Spin Currents and Nonlinear Dynamics of Vortex Spin Torque Nano-Oscillators
verfasst von
K. A. Zvezdin
E. G. Ekomasov
Publikationsdatum
01.03.2022
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 3/2022
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X22030140

Weitere Artikel der Ausgabe 3/2022

Physics of Metals and Metallography 3/2022 Zur Ausgabe