Skip to main content
Erschienen in: Autonomous Robots 2/2017

02.01.2016

Spinal joint compliance and actuation in a simulated bounding quadruped robot

verfasst von: Soha Pouya, Mohammad Khodabakhsh, Alexander Spröwitz, Auke Ijspeert

Erschienen in: Autonomous Robots | Ausgabe 2/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Spine movements play an important role in quadrupedal locomotion, yet their potential benefits in locomotion of quadruped robots have not been systematically explored. In this work, we investigate the role of spinal joint actuation and compliance on the bounding performance of a simulated compliant quadruped robot. We designed and conducted extensive simulation experiments, to compare the benefits of different spine designs, and in particular, we compared the bounding performance when (i) using actuated versus passive spinal joint, (ii) changing the stiffness of the spinal joint and (iii) altering joint actuation profiles. We used a detailed rigid body dynamics modeling to capture the main dynamical features of the robot. We applied a set of analytic tools to evaluate the bounding gait characteristics including periodicity, stability, and cost of transport. A stochastic optimization method called particle swarm optimization was implemented to perform a global search over the parameter space, and extract a pool of diverse gait solutions. Our results show improvements in bounding speed for decreasing spine stiffness, both in the passive and the actuated case. The results also suggests that for the passive spine configuration at low stiffness values, periodic solutions are hard to realize. Overall, passive spine solutions were more energy efficient and self-stable than actuated ones, but they basically exist in limited regions of parameter space. Applying more complex joint control profiles reduced the dependency of the robot’s speed to its chosen spine stiffness. In average, active spine control decreased energy efficiency and self-stability behavior, in comparison to a passive compliant spine setup.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Alexander, R. M. (1977). Storage of elastic strain energy in muscle and other tissues. Nature, 265, 114–117.CrossRef Alexander, R. M. (1977). Storage of elastic strain energy in muscle and other tissues. Nature, 265, 114–117.CrossRef
Zurück zum Zitat Alexander, R. M. (1984). Elastic energy stores in running vertebrates. American Zoologist, 24(1), 85–94.CrossRef Alexander, R. M. (1984). Elastic energy stores in running vertebrates. American Zoologist, 24(1), 85–94.CrossRef
Zurück zum Zitat Alexander, R. M., Dimery, N. J., & Ker, R. F. (1985). Elastic structures in the back and their role in galloping in some mammals. Journal of Zoology, 207(4), 467–482.CrossRef Alexander, R. M., Dimery, N. J., & Ker, R. F. (1985). Elastic structures in the back and their role in galloping in some mammals. Journal of Zoology, 207(4), 467–482.CrossRef
Zurück zum Zitat Andrews, B., Miller, B., & Schmitt, J. (2011). Running over unknown rough terrain with a one-legged planar robot. Bioinspiration & Biomimetics, 6(2), 026009.CrossRef Andrews, B., Miller, B., & Schmitt, J. (2011). Running over unknown rough terrain with a one-legged planar robot. Bioinspiration & Biomimetics, 6(2), 026009.CrossRef
Zurück zum Zitat Blickhan, R. (1989). The spring-mass model for running and hopping. Journal of Biomechanics, 22(11), 1217–1227.CrossRef Blickhan, R. (1989). The spring-mass model for running and hopping. Journal of Biomechanics, 22(11), 1217–1227.CrossRef
Zurück zum Zitat Blickhan, R., & Full, R. (1993). Similarity in multilegged locomotion: Bouncing like a monopode. Journal of Comparative Physiology A, 173(5), 509–517.CrossRef Blickhan, R., & Full, R. (1993). Similarity in multilegged locomotion: Bouncing like a monopode. Journal of Comparative Physiology A, 173(5), 509–517.CrossRef
Zurück zum Zitat Brown, B., & Zeglin, G. (1998). The bow leg hopping robot. In IEEE International conference on robotics and automation (vol. 1). Brown, B., & Zeglin, G. (1998). The bow leg hopping robot. In IEEE International conference on robotics and automation (vol. 1).
Zurück zum Zitat Buehler, M., Battaglia, R., Cocosco, A., Hawker, G., Sarkis, J., & Yamazaki, K. (1998). SCOUT: A simple quadruped that walks, climbs, and runs. In IEEE international conference on robotics and automation (Vol. 2). Buehler, M., Battaglia, R., Cocosco, A., Hawker, G., Sarkis, J., & Yamazaki, K. (1998). SCOUT: A simple quadruped that walks, climbs, and runs. In IEEE international conference on robotics and automation (Vol. 2).
Zurück zum Zitat Cao, Q., & Poulakakis, I. (2012). Passive quadrupedal bounding with a segmented flexible torso. In IEEE/RSJ international conference on intelligent robots and systems. Cao, Q., & Poulakakis, I. (2012). Passive quadrupedal bounding with a segmented flexible torso. In IEEE/RSJ international conference on intelligent robots and systems.
Zurück zum Zitat Clerc, M., & Kennedy, J. (2002). The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation, 6(1), 58–73.CrossRef Clerc, M., & Kennedy, J. (2002). The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation, 6(1), 58–73.CrossRef
Zurück zum Zitat Culha, U., & Saranli, U. (2011). Quadrupedal bounding with an actuated spinal joint. In IEEE international conference on robotics and automation. Culha, U., & Saranli, U. (2011). Quadrupedal bounding with an actuated spinal joint. In IEEE international conference on robotics and automation.
Zurück zum Zitat Delcomyn, F. (1980). Neural basis of rhythmic behavior in animals. Science, 210(4469), 492–498.CrossRef Delcomyn, F. (1980). Neural basis of rhythmic behavior in animals. Science, 210(4469), 492–498.CrossRef
Zurück zum Zitat Estremera, J., & Waldron, K. (2008). Thrust control, stabilization and energetics of a quadruped running robot. International Journal of Robotics Research, 27, 1135–1151.CrossRef Estremera, J., & Waldron, K. (2008). Thrust control, stabilization and energetics of a quadruped running robot. International Journal of Robotics Research, 27, 1135–1151.CrossRef
Zurück zum Zitat Faraji, S., Pouya, S., Moeckel, R., & Ijspeert, A. (2013). Compliant and adaptive control of a planar monopod hopper in rough terrain. In IEEE international conference on robotics and automation. Faraji, S., Pouya, S., Moeckel, R., & Ijspeert, A. (2013). Compliant and adaptive control of a planar monopod hopper in rough terrain. In IEEE international conference on robotics and automation.
Zurück zum Zitat Folkertsma, G. A., Kim, S., & Stramigioli, S. (2012). Parallel stiffness in a bounding quadruped with flexible spine. In IEEE/RSJ international conference intelligent robots and systems. Folkertsma, G. A., Kim, S., & Stramigioli, S. (2012). Parallel stiffness in a bounding quadruped with flexible spine. In IEEE/RSJ international conference intelligent robots and systems.
Zurück zum Zitat Full, R. J., & Koditschek, D. E. (1999). Templates and anchors: Neuromechanical hypotheses of legged locomotion on land. Journal of Experimental Biology, 202(23), 3325–3332. Full, R. J., & Koditschek, D. E. (1999). Templates and anchors: Neuromechanical hypotheses of legged locomotion on land. Journal of Experimental Biology, 202(23), 3325–3332.
Zurück zum Zitat Guckenheimer, J., & Holmes, P. (1983). Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. New York: Springer.CrossRefMATH Guckenheimer, J., & Holmes, P. (1983). Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. New York: Springer.CrossRefMATH
Zurück zum Zitat Hurmuzlu, Y., & Basdogan, C. (1994). On the measurement of dynamic stability of human locomotion. Journal of Biomechanical Engineering, 116, 30–36.CrossRef Hurmuzlu, Y., & Basdogan, C. (1994). On the measurement of dynamic stability of human locomotion. Journal of Biomechanical Engineering, 116, 30–36.CrossRef
Zurück zum Zitat Iida, F., Gomez, G., & Pfeifer, R. (2005). Exploiting body dynamics for controlling a running quadruped robot. In International conference on advanced robotics. Iida, F., Gomez, G., & Pfeifer, R. (2005). Exploiting body dynamics for controlling a running quadruped robot. In International conference on advanced robotics.
Zurück zum Zitat Ijspeert, A. J. (2008). Central pattern generators for locomotion control in animals and robots: A review. Neural Networks, 21(4), 642–653.CrossRef Ijspeert, A. J. (2008). Central pattern generators for locomotion control in animals and robots: A review. Neural Networks, 21(4), 642–653.CrossRef
Zurück zum Zitat Khoramshahi, M., Spröwitz, A., Tuleu, A., Ahmadabadi, M., & Ijspeert, A. (2013). Benefits of an active spine supported bounding locomotion with a small compliant quadruped robot. In IEEE international conference on robotics and automation. Khoramshahi, M., Spröwitz, A., Tuleu, A., Ahmadabadi, M., & Ijspeert, A. (2013). Benefits of an active spine supported bounding locomotion with a small compliant quadruped robot. In IEEE international conference on robotics and automation.
Zurück zum Zitat Kimura, H., Fukuoka, Y., & Cohen, A. (2004). Biologically inspired adaptive dynamic walking of a quadruped robot. In International symposium on adaptive motion of animals and machines (AMAM). Kimura, H., Fukuoka, Y., & Cohen, A. (2004). Biologically inspired adaptive dynamic walking of a quadruped robot. In International symposium on adaptive motion of animals and machines (AMAM).
Zurück zum Zitat Leeser, K. (1996). Locomotion experiments on a planar quadruped robot with articulated spine, Master’s thesis, MIT. Leeser, K. (1996). Locomotion experiments on a planar quadruped robot with articulated spine, Master’s thesis, MIT.
Zurück zum Zitat Maufroy, C., Kimura, H., & Takase, K. (2010). Integration of posture and rhythmic motion controls in quadrupedal dynamic walking using phase modulations based on leg loading/unloading. Autonomous Robots, 28(3), 331–353.CrossRef Maufroy, C., Kimura, H., & Takase, K. (2010). Integration of posture and rhythmic motion controls in quadrupedal dynamic walking using phase modulations based on leg loading/unloading. Autonomous Robots, 28(3), 331–353.CrossRef
Zurück zum Zitat Moeckel, R., Perov, Y. N., Nguyen, A. T., Vespignani, M., Bonardi, S., Pouya, S., Sproewitz, A., Kieboom, J., Wilhelm, F., & Ijspeert, A. J. (2013). Gait optimization for roombots modular robotsMatching simulation and reality. In IEEE International Conference on Robotics and Automation. Moeckel, R., Perov, Y. N., Nguyen, A. T., Vespignani, M., Bonardi, S., Pouya, S., Sproewitz, A., Kieboom, J., Wilhelm, F., & Ijspeert, A. J. (2013). Gait optimization for roombots modular robotsMatching simulation and reality. In IEEE International Conference on Robotics and Automation.
Zurück zum Zitat Owaki, D., Kano, T., Nagasawa, K., Tero, A., & Ishiguro, A. (2013). Simple robot suggests physical interlimb communication is essential for quadruped walking. Journal of The Royal Society Interface 10(78). Owaki, D., Kano, T., Nagasawa, K., Tero, A., & Ishiguro, A. (2013). Simple robot suggests physical interlimb communication is essential for quadruped walking. Journal of The Royal Society Interface 10(78).
Zurück zum Zitat Poulakakis, I., & Smith, J. A. (2005). Modeling and experiments of untethered quadrupedal running with a bounding gait: The Scout II robot. International Journal of Robotics Research, 24, 239–256.CrossRef Poulakakis, I., & Smith, J. A. (2005). Modeling and experiments of untethered quadrupedal running with a bounding gait: The Scout II robot. International Journal of Robotics Research, 24, 239–256.CrossRef
Zurück zum Zitat Pouya, S., van den Kieboom, J., Spröwitz, A., & Ijspeert, A. J. (2010). Automatic gait generation in modular robots:to oscillate or to rotate; that is the question. In IEEE/RSJ international conference on intelligent robots and systems. Pouya, S., van den Kieboom, J., Spröwitz, A., & Ijspeert, A. J. (2010). Automatic gait generation in modular robots:to oscillate or to rotate; that is the question. In IEEE/RSJ international conference on intelligent robots and systems.
Zurück zum Zitat Pusey, J. L., Duperret, J. M., Haynes, G. C., Knopf, R., & Koditschek, D. E. (2013). Free-standing leaping experiments with a power-autonomous elasticspined quadruped. In SPIE defense, security, and sensing, international society for optics and photonics. Pusey, J. L., Duperret, J. M., Haynes, G. C., Knopf, R., & Koditschek, D. E. (2013). Free-standing leaping experiments with a power-autonomous elasticspined quadruped. In SPIE defense, security, and sensing, international society for optics and photonics.
Zurück zum Zitat Raibert, M., Blankespoor, K., Nelson, G., & Playter, R. (2008). the BigDog Team, BigDog, the rough-terrain quaduped robot. In The international federation of automatic control. Seoul, Korea. Raibert, M., Blankespoor, K., Nelson, G., & Playter, R. (2008). the BigDog Team, BigDog, the rough-terrain quaduped robot. In The international federation of automatic control. Seoul, Korea.
Zurück zum Zitat Raibert, M. (1985). Legged robots that balance. Cambridge, MA: The MIT Press.MATH Raibert, M. (1985). Legged robots that balance. Cambridge, MA: The MIT Press.MATH
Zurück zum Zitat Raibert, M. (1991). Trotting, pacing, and bounding by a quadruped robot. Journal of Biomechanics, 23, 79–98.CrossRef Raibert, M. (1991). Trotting, pacing, and bounding by a quadruped robot. Journal of Biomechanics, 23, 79–98.CrossRef
Zurück zum Zitat Remy, D. (2011). Optimal exploitation of natural dynamics in legged locomotion, Ph.D. thesis, ETHZ, Zurich. Remy, D. (2011). Optimal exploitation of natural dynamics in legged locomotion, Ph.D. thesis, ETHZ, Zurich.
Zurück zum Zitat Remy, C. D., Buffinton, K., & Siegwart, R. (2011). A Matlab framework for efficient gait creation. In IEEE/RSJ international conference on intelligent robots and systems. Remy, C. D., Buffinton, K., & Siegwart, R. (2011). A Matlab framework for efficient gait creation. In IEEE/RSJ international conference on intelligent robots and systems.
Zurück zum Zitat Revzen, S., Guckenheimer, J., & Full, R. (2009). Study of neuromechanical control of rhythmic behaviors by floquet analysis, integrative and comparative biology (Vol. 49). Oxford: oxford University Press. Revzen, S., Guckenheimer, J., & Full, R. (2009). Study of neuromechanical control of rhythmic behaviors by floquet analysis, integrative and comparative biology (Vol. 49). Oxford: oxford University Press.
Zurück zum Zitat Roos, F., Johansson, H., & Wikander, J. (2006). Optimal selection of motor and gearhead in mechatronic applications. Mechatronics, 16(1), 63–72.CrossRef Roos, F., Johansson, H., & Wikander, J. (2006). Optimal selection of motor and gearhead in mechatronic applications. Mechatronics, 16(1), 63–72.CrossRef
Zurück zum Zitat Siciliano, B., Sciavicco, L., Villani, L., & Oriolo, G. (2008). Robotics modelling, planning and control. New York: Springer. Siciliano, B., Sciavicco, L., Villani, L., & Oriolo, G. (2008). Robotics modelling, planning and control. New York: Springer.
Zurück zum Zitat Spröwitz, A., Badri, E., Khoramshahi, M., Tuleu, A., & Ijspeert, A. (2013). Use your spine! effect of active spine movements on horizontal impulse and cost of transport in a bounding, quadruped robot. In Proceedings of dynamic walking. Spröwitz, A., Badri, E., Khoramshahi, M., Tuleu, A., & Ijspeert, A. (2013). Use your spine! effect of active spine movements on horizontal impulse and cost of transport in a bounding, quadruped robot. In Proceedings of dynamic walking.
Zurück zum Zitat Spröwitz, A., Moeckel, R., Maye, J., & Ijspeert, A. J. (2008). Learning to move in modular robots using central pattern generators and online optimization. The International Journal of Robotics Research, 27(3–4), 423–443.CrossRef Spröwitz, A., Moeckel, R., Maye, J., & Ijspeert, A. J. (2008). Learning to move in modular robots using central pattern generators and online optimization. The International Journal of Robotics Research, 27(3–4), 423–443.CrossRef
Zurück zum Zitat Spröwitz, A., Tuleu, A., Vespignani, M., Ajallooeian, M., Badri, E., & Ijspeert, A. J. (2013). Towards dynamic trot gait locomotion: Design, control, and experiments with Cheetah-cub, a compliant quadruped robot. The International Journal of Robotics Research, 32(8), 932–950.CrossRef Spröwitz, A., Tuleu, A., Vespignani, M., Ajallooeian, M., Badri, E., & Ijspeert, A. J. (2013). Towards dynamic trot gait locomotion: Design, control, and experiments with Cheetah-cub, a compliant quadruped robot. The International Journal of Robotics Research, 32(8), 932–950.CrossRef
Zurück zum Zitat Tsujita, K., & Miki, K. (2011). A study on trunk stiffness and gait stability in quadrupedal locomotion using musculoskeletal robot. In International conference on advanced robotics (ICAR) (pp. 316–321). Tsujita, K., & Miki, K. (2011). A study on trunk stiffness and gait stability in quadrupedal locomotion using musculoskeletal robot. In International conference on advanced robotics (ICAR) (pp. 316–321).
Zurück zum Zitat Williams, S. B., Tan, H., Usherwood, J. R., & Wilson, A. M. (2009). Pitch then power: Limitations to acceleration in quadrupeds. Biology Letters, 5(5), rsbl20090360.CrossRef Williams, S. B., Tan, H., Usherwood, J. R., & Wilson, A. M. (2009). Pitch then power: Limitations to acceleration in quadrupeds. Biology Letters, 5(5), rsbl20090360.CrossRef
Zurück zum Zitat Zhao, Q., Nakajima, K., Sumioka, H., Yu, X., & Pfeifer, R. (2012). Embodiment enables the spinal engine in quadruped robot locomotion. In IEEE/RSJ International conference on intelligent robots and systems. Zhao, Q., Nakajima, K., Sumioka, H., Yu, X., & Pfeifer, R. (2012). Embodiment enables the spinal engine in quadruped robot locomotion. In IEEE/RSJ International conference on intelligent robots and systems.
Metadaten
Titel
Spinal joint compliance and actuation in a simulated bounding quadruped robot
verfasst von
Soha Pouya
Mohammad Khodabakhsh
Alexander Spröwitz
Auke Ijspeert
Publikationsdatum
02.01.2016
Verlag
Springer US
Erschienen in
Autonomous Robots / Ausgabe 2/2017
Print ISSN: 0929-5593
Elektronische ISSN: 1573-7527
DOI
https://doi.org/10.1007/s10514-015-9540-2

Weitere Artikel der Ausgabe 2/2017

Autonomous Robots 2/2017 Zur Ausgabe

Neuer Inhalt