Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

24.03.2017 | Ausgabe 9/2017

The Journal of Supercomputing 9/2017

SpMV and BiCG-Stab optimization for a class of hepta-diagonal-sparse matrices on GPU

Zeitschrift:
The Journal of Supercomputing > Ausgabe 9/2017
Autoren:
Mayez A. Al-Mouhamed, Ayaz H. Khan

Abstract

The abundant data parallelism available in many-core GPUs has been a key interest to improve accuracy in scientific and engineering simulation. In many cases, most of the simulation time is spent in linear solver involving sparse matrix–vector multiply. In forward petroleum oil and gas reservoir simulation, the application of a stencil relationship to structured grid leads to a family of generalized hepta-diagonal solver matrices with some regularity and structural uniqueness. We present a customized storage scheme that takes advantage of generalized hepta-diagonal sparsity pattern and stencil regularity by optimizing both storage and matrix–vector computation. We also present an in-kernel optimization for implementing sparse matrix–vector multiply (SpMV) and biconjugate gradient stabilized (BiCG-Stab) solver. In-kernel is intended to avoid the multiple kernels invocation associated with the use of the numerical library operators. To keep in-kernel, a lock-free inter-block synchronization is used in which completing thread blocks are assigned some independent computations to avoid repeatedly polling the global memory. Other optimizations enable combining reductions and collective write operations to memory. The in-kernel optimization is particularly useful for the iterative structure of BiCG-Stab for preserving vector data locality and to avoid saving vector data back to memory and reloading on each kernel exit and re-entry. Evaluation uses generalized hepta-diagonal matrices that derives from a range of forward reservoir simulation’s structured grids. Results show the profitability of proposed generalized hepta-diagonal custom storage scheme over standard library storage like compressed sparse row, hybrid sparse, and diagonal formats. Using proposed optimizations, SpMV and BiCG-Stab have been noticeably accelerated compared to other implementations using multiple kernel exit–re-entry when the solver is implemented by invoking numerical library operators.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 9/2017

The Journal of Supercomputing 9/2017 Zur Ausgabe

Premium Partner

    Bildnachweise