2016 | OriginalPaper | Buchkapitel
Tipp
Weitere Kapitel dieses Buchs durch Wischen aufrufen
Erschienen in:
SFPE Handbook of Fire Protection Engineering
The term spontaneous combustion will be used here to refer to the general phenomenon of an unstable (usually oxidizable) material reacting and evolving heat, which to a considerable extent is retained inside the material itself by virtue of poor thermal conductivity of either the material or its container. Under some circumstances this process can lead to flaming combustion and overt fire, in which case it is properly called spontaneous ignition, which here is regarded as a special case of spontaneous combustion. This has been responsible for significant losses of life and enormous losses of property. Fire loss statistics from many sources show that spontaneous ignition is quoted as the cause in a much greater proportion of cases with multimillion-dollar losses than in smaller fires. Of course, one should also note that the proportion of “cause unknown” results follows a similar trend, probably due to the greater degree of destruction, and hence evidence loss, in larger fires.
Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten
Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:
Anzeige
C ν
Heat capacity at constant volume per unit mass (J/K⋅mol)
c
Concentration (mol/m3)
cf
Feed concentration in CSTR (mol/m3)
CAT
Critical ambient temperature (K)
CST
Critical stacking temperature (K)
E
Activation energy (J/mol)
F
Feed rate in CSTR (m3/s)
f(c)
Chemical reaction rate (mol/m3⋅s)
Q
Heat of reaction (J/mol)
R
Universal gas constant (J/mol⋅K)
r
Characteristic radius
S
Surface area (m2)
T
Temperature (K)
T a
Ambient temperature (K)
T a,critical
Critical ambient temperature (CAT) (K)
T f
Feed temperature in CSTR (K)
TTI
Time to ignition (s)
u
Dimensionless temperature (RT/E)
u a
Dimensionless ambient temperature
V
Volume of self-heating body (m3)
ν
Dimensionless concentration (c/c
0)
δ
Frank-Kamenetskii parameter
θ
Frank-Kamenetskii dimensionless temperature
ρ
Bulk density (mol/m3)
κ
Thermal conductivity (W/m⋅K)
χ
Heat-transfer coefficient (W/m2⋅K)
ε
Inverse dimensionless heat of reaction
τ
Dimensionless time
l
Dimensionless heat transfer coefficient
Bi
Biot number (χr/κ)
∂()/∂n
Differential coefficient in a direction normal to the boundary of the body
1.
Zurück zum Zitat Safety and Runaway Reactions, Institute for Systems Informatics and Safety, Joint Research Centre European Commission, EUR 17723 EN (1998).
Safety and Runaway Reactions, Institute for Systems Informatics and Safety, Joint Research Centre European Commission, EUR 17723 EN (1998).
2.
Zurück zum Zitat N.N. Semenov, Zeitschrift für Physikalische Chemie, 48, p. 571 (1928). N.N. Semenov,
Zeitschrift für Physikalische Chemie, 48, p. 571 (1928).
3.
Zurück zum Zitat D.A. Frank-Kamenetskii, “Diffusion and Heat Transfer” in Chemical Kinetics, Plenum Press, New York (1969). D.A. Frank-Kamenetskii, “Diffusion and Heat Transfer” in
Chemical Kinetics, Plenum Press, New York (1969).
4.
Zurück zum Zitat P.C. Bowes, Self-Heating: Evaluating and Controlling the Hazards, HMSO, London (1984). P.C. Bowes,
Self-Heating: Evaluating and Controlling the Hazards, HMSO, London (1984).
5.
Zurück zum Zitat V. Babrauskas, Ignition Handbook, Fire Science Publishers, Issaquah, WA (2003). V. Babrauskas,
Ignition Handbook, Fire Science Publishers, Issaquah, WA (2003).
6.
Zurück zum Zitat J.F. Griffiths and B.F. Gray, “Fundamentals of Autoignition of Hydrocarbon and Other Organic Substrates in the Gas Phase,” in 24th Loss Prevention Symposium, American Institute of Chemical Engineers, San Diego, 92b (1990). J.F. Griffiths and B.F. Gray, “Fundamentals of Autoignition of Hydrocarbon and Other Organic Substrates in the Gas Phase,” in
24th Loss Prevention Symposium, American Institute of Chemical Engineers, San Diego, 92b (1990).
7.
Zurück zum Zitat N.N. Semenov, Some Problems in Chemical Kinetics and Reactivity (English translation), Princeton University Press, Princeton, NJ (1959). N.N. Semenov,
Some Problems in Chemical Kinetics and Reactivity (English translation), Princeton University Press, Princeton, NJ (1959).
8.
Zurück zum Zitat G.C. Wake, J.B. Burnell, J.G. Graham-Eagle, and B.F. Gray, Reaction Diffusion Equations (K.J. Brown and A.A. Lacey, eds.), Oxford, UK, pp. 25–37 (1990). G.C. Wake, J.B. Burnell, J.G. Graham-Eagle, and B.F. Gray,
Reaction Diffusion Equations (K.J. Brown and A.A. Lacey, eds.), Oxford, UK, pp. 25–37 (1990).
9.
Zurück zum Zitat J.F. Griffiths and J.A. Barnard, Flame and Combustion, Blackie, Glasgow, Scotland (1994). J.F. Griffiths and J.A. Barnard,
Flame and Combustion, Blackie, Glasgow, Scotland (1994).
10.
Zurück zum Zitat B.F. Gray, “Critical Behaviour in Chemically Reacting Systems III—An Analytical Criterion for Insensitivity,” Combustion and Flame, 24, p. 43 (1975). CrossRef B.F. Gray, “Critical Behaviour in Chemically Reacting Systems III—An Analytical Criterion for Insensitivity,”
Combustion and Flame, 24, p. 43 (1975).
CrossRef
11.
Zurück zum Zitat B.F. Gray, “Unified Theory of Explosions, Cool Flames and Two Stage Ignitions,” Transactions of the Faraday Society, 65, p. 1603 (1969). CrossRef B.F. Gray, “Unified Theory of Explosions, Cool Flames and Two Stage Ignitions,”
Transactions of the Faraday Society, 65, p. 1603 (1969).
CrossRef
12.
Zurück zum Zitat B.F. Gray, M.J. Sexton, B. Halliburton, and C. Macaskill, “Wetting Induced Ignition in Cellulosic Materials,” Fire Safety Journal, 37, pp. 465–479 (2002). CrossRef B.F. Gray, M.J. Sexton, B. Halliburton, and C. Macaskill, “Wetting Induced Ignition in Cellulosic Materials,”
Fire Safety Journal, 37, pp. 465–479 (2002).
CrossRef
13.
Zurück zum Zitat T. Dixon, “Spontaneous Combustion in Bagasse Stockpiles,” in Proceedings of the Australian Society of Sugar Cane Technologists, 53 (1988). T. Dixon, “Spontaneous Combustion in Bagasse Stockpiles,” in
Proceedings of the Australian Society of Sugar Cane Technologists, 53 (1988).
14.
Zurück zum Zitat B.F. Gray, unpublished. B.F. Gray, unpublished.
15.
Zurück zum Zitat R. Aris, The Mathematical Theory of Diffusion and Reaction in Permeable Catalysts, Oxford, UK (1975). R. Aris,
The Mathematical Theory of Diffusion and Reaction in Permeable Catalysts, Oxford, UK (1975).
16.
Zurück zum Zitat P.L. Chambre, Journal of Chemical Physics, 20, p. 1795 (1952). P.L. Chambre,
Journal of Chemical Physics, 20, p. 1795 (1952).
17.
Zurück zum Zitat T. Boddington, P. Gray, and I. Harvey, “Thermal Theory of Spontaneous Ignition,” Philosophical Transactions of the Royal Society, A270, p. 467 (1971). CrossRef T. Boddington, P. Gray, and I. Harvey, “Thermal Theory of Spontaneous Ignition,”
Philosophical Transactions of the Royal Society, A270, p. 467 (1971).
CrossRef
18.
Zurück zum Zitat B.F. Gray and B. Halliburton, “The Thermal Decomposition of Hydrated Calcium Hypochlorite UN 2880,” Fire Safety Science, 35, pp. 223–239 (2000). CrossRef B.F. Gray and B. Halliburton, “The Thermal Decomposition of Hydrated Calcium Hypochlorite UN 2880,”
Fire Safety Science, 35, pp. 223–239 (2000).
CrossRef
19.
Zurück zum Zitat Y. Uehara, H. Uematsu, and Y. Saito, “Thermal Ignition of Calcium Hypochlorite,” Combustion and Flame, 32, p. 85 (1978). CrossRef Y. Uehara, H. Uematsu, and Y. Saito, “Thermal Ignition of Calcium Hypochlorite,”
Combustion and Flame, 32, p. 85 (1978).
CrossRef
20.
Zurück zum Zitat I.K. Walker, W.J. Harrison, and F.H. Jackson, New Zealand Journal of Science, 21, p. 487 (1978). I.K. Walker, W.J. Harrison, and F.H. Jackson,
New Zealand Journal of Science, 21, p. 487 (1978).
21.
Zurück zum Zitat R.A. Sisson, A. Swift, G.C. Wake, and B.F. Gray, “Critical Conditions for the Exothermic Combustion of Damp Cellulose, Part 1,” IMA Journal of Applied Mathematics, 50, p. 285 (1993). MathSciNetCrossRefMATH R.A. Sisson, A. Swift, G.C. Wake, and B.F. Gray, “Critical Conditions for the Exothermic Combustion of Damp Cellulose, Part 1,”
IMA Journal of Applied Mathematics, 50, p. 285 (1993).
MathSciNetCrossRefMATH
22.
Zurück zum Zitat R.A. Sisson, A. Swift, G.C. Wake, and B.F. Gray, “Critical Conditions for the Exothermic Combustion of Damp Cellulose, Part 2,” IMA Journal of Applied Mathematics, 49, p. 273 (1992). MathSciNetCrossRefMATH R.A. Sisson, A. Swift, G.C. Wake, and B.F. Gray, “Critical Conditions for the Exothermic Combustion of Damp Cellulose, Part 2,”
IMA Journal of Applied Mathematics, 49, p. 273 (1992).
MathSciNetCrossRefMATH
23.
Zurück zum Zitat B.F. Gray and G.C. Wake, “The Ignition of Hygroscopic Combustible Materials by Water,” Combustion and Flame, 79, p. 2 (1990). CrossRef B.F. Gray and G.C. Wake, “The Ignition of Hygroscopic Combustible Materials by Water,”
Combustion and Flame, 79, p. 2 (1990).
CrossRef
24.
Zurück zum Zitat B. Halliburton, Ph.D. Dissertation, Macquarie University, Sydney, Australia, p. 2109 (2002). B. Halliburton, Ph.D. Dissertation, Macquarie University, Sydney, Australia, p. 2109 (2002).
25.
Zurück zum Zitat T. Dixon and N. Ashbolt, Private communication, Sugar Research Institute, Mackay, Queensland, Australia (1985). T. Dixon and N. Ashbolt, Private communication, Sugar Research Institute, Mackay, Queensland, Australia (1985).
26.
Zurück zum Zitat International Maritime Dangerous Goods Code, International Maritime Organization, London, 2010. International Maritime Dangerous Goods Code, International Maritime Organization, London, 2010.
27.
Zurück zum Zitat J.C. Jones, “On the UN test for the Spontaneous Heating of Solids ,” Loss Prevention in the Process Industries, 13, pp. 177–178 (2000). CrossRef J.C. Jones, “On the UN test for the Spontaneous Heating of Solids
,” Loss Prevention in the Process Industries, 13, pp. 177–178 (2000).
CrossRef
28.
Zurück zum Zitat X.D. Chen and L.V. Chong, “Self-Ignition Kinetics of Combustible Solids,” Transactions of Institution of Chemical Engineers, 76B, p. 90 (1998). X.D. Chen and L.V. Chong, “Self-Ignition Kinetics of Combustible Solids,”
Transactions of Institution of Chemical Engineers, 76B, p. 90 (1998).
29.
Zurück zum Zitat W. Mackey, “On a Spontaneous Ignition Test,” Journal of the Society of Chemical Industry, 15, p. 90 (1896). W. Mackey, “On a Spontaneous Ignition Test,”
Journal of the Society of Chemical Industry, 15, p. 90 (1896).
30.
Zurück zum Zitat N. Kirov, “The Crossover Test,” CSIRO Technical Note, Chatswood, Australia (1954). N. Kirov, “The Crossover Test,”
CSIRO Technical Note, Chatswood, Australia (1954).
31.
Zurück zum Zitat P.H. Thomas, “On the Thermal Conduction Equation for Self-Heating Materials with Surface Cooling,” Transactions of the Faraday Society, 54, p. 60 (1958). CrossRef P.H. Thomas, “On the Thermal Conduction Equation for Self-Heating Materials with Surface Cooling,”
Transactions of the Faraday Society, 54, p. 60 (1958).
CrossRef
32.
Zurück zum Zitat P.H. Thomas, Transactions of the Faraday Society, 56, p. 833 (1960). P.H. Thomas,
Transactions of the Faraday Society, 56, p. 833 (1960).
33.
Zurück zum Zitat B.F. Gray and G.C. Wake, “Criticality in the Infinite Slab and Cylinder with Surface Heat Sources,” Combustion and Flame, 55, p. 23 (1984). CrossRef B.F. Gray and G.C. Wake, “Criticality in the Infinite Slab and Cylinder with Surface Heat Sources,”
Combustion and Flame, 55, p. 23 (1984).
CrossRef
34.
Zurück zum Zitat B.F. Gray, A. Gomez, and G.C. Wake, “Friction and Localised Heat Initiation of Ignition,” Combustion and Flame, 61, p. 177 (1985). CrossRef B.F. Gray, A. Gomez, and G.C. Wake, “Friction and Localised Heat Initiation of Ignition,”
Combustion and Flame, 61, p. 177 (1985).
CrossRef
35.
Zurück zum Zitat “Transport of Dangerous Goods,” Manual of Tests and Criteria, 2nd ed., United Nations, New York and Geneva (1995). “Transport of Dangerous Goods,”
Manual of Tests and Criteria, 2nd ed., United Nations, New York and Geneva (1995).
36.
Zurück zum Zitat B.F. Gray , “On the Critical Conditions for an Assembly of Interacting Thermons, Series B,” Journal of the Australian Mathematical Society, 43, pp. 1–12 (2001). MATH B.F. Gray
, “On the Critical Conditions for an Assembly of Interacting Thermons, Series B,”
Journal of the Australian Mathematical Society, 43, pp. 1–12 (2001).
MATH
37.
Zurück zum Zitat B.F. Gray, “Interpretation of Small Scale Test Data,” Interflam 2001, 9th International Fire Science and Engineering Conference, Edinburgh, Scotland, pp. 719–729 (2001). B.F. Gray, “Interpretation of Small Scale Test Data,”
Interflam 2001, 9th International Fire Science and Engineering Conference, Edinburgh, Scotland, pp. 719–729 (2001).
38.
Zurück zum Zitat B.F. Gray, S.G. Little, and G.C. Wake, “The Prediction of a Practical Lower Bound for Ignition Delay Times,” 24th International Combustion Symposium, Combustion Institute, Pittsburgh, PA, p. 1785 (1992). B.F. Gray, S.G. Little, and G.C. Wake, “The Prediction of a Practical Lower Bound for Ignition Delay Times,”
24th International Combustion Symposium, Combustion Institute, Pittsburgh, PA, p. 1785 (1992).
39.
Zurück zum Zitat B.F. Gray and J.H. Merkin, “Thermal Explosion Escape Times in the Uniform Temperature Approximation,” Mathematical Engineering in Industry, 4, p. 13 (1993). B.F. Gray and J.H. Merkin, “Thermal Explosion Escape Times in the Uniform Temperature Approximation,”
Mathematical Engineering in Industry, 4, p. 13 (1993).
40.
Zurück zum Zitat P.H. Thomas, “An Approximate Theory of Hot Spot Criticality ,” Combustion and Flame, 21, p. 99 (1973) CrossRef P.H. Thomas, “An Approximate Theory of Hot Spot Criticality
,” Combustion and Flame, 21, p. 99 (1973)
CrossRef
41.
Zurück zum Zitat J. Zinn and L. Mader, “Thermal Initiation of Explosives,” Journal of Applied Physics, 31, p. 323 (1960). CrossRef J. Zinn and L. Mader, “Thermal Initiation of Explosives,”
Journal of Applied Physics, 31, p. 323 (1960).
CrossRef
42.
Zurück zum Zitat T. Boddington, C. Feng, and P. Gray, “Thermal Explosion, Times to Ignition and Near Critical Behaviour in Uniform Temperature Systems, Part 2,” Journal of the Chemical Society, Faraday Transactions, 2, 79, p. 1299 (1983). T. Boddington, C. Feng, and P. Gray, “Thermal Explosion, Times to Ignition and Near Critical Behaviour in Uniform Temperature Systems, Part 2,”
Journal of the Chemical Society, Faraday Transactions, 2, 79, p. 1299 (1983).
43.
Zurück zum Zitat T. Boddington, C. Feng, and P. Gray, “Thermal Explosion, Times to Ignition and Near Critical Behaviour in Distributed Temperature Systems, Part 3,” Journal of the Chemical Society, Faraday Transactions, 2, 80, p. 1155 (1984). T. Boddington, C. Feng, and P. Gray, “Thermal Explosion, Times to Ignition and Near Critical Behaviour in Distributed Temperature Systems, Part 3,”
Journal of the Chemical Society, Faraday Transactions, 2, 80, p. 1155 (1984).
44.
Zurück zum Zitat T. Boddington, C. Feng, and P. Gray, “Thermal Explosion and Times to Ignition I, Reactant Consumption Ignored,” Proceedings of the Royal Society, A385, pp. 289–311 (1982). T. Boddington, C. Feng, and P. Gray, “Thermal Explosion and Times to Ignition I, Reactant Consumption Ignored,”
Proceedings of the Royal Society, A385, pp. 289–311 (1982).
45.
Zurück zum Zitat T. Boddington, C. Feng, and P. Gray, “Thermal Explosion and Times to Ignition II, Reactant Consumption Included,” Proceedings of the Royal Society, A391, p. 269 (1984). T. Boddington, C. Feng, and P. Gray, “Thermal Explosion and Times to Ignition II, Reactant Consumption Included,”
Proceedings of the Royal Society, A391, p. 269 (1984).
46.
Zurück zum Zitat B.F. Gray and J.H. Merkin, “Thermal Explosion: Escape Times in the Uniform Temperature Approximation: I Effects of Parameter Perturbations,” Journal of the Chemical Society, Faraday Transactions, 2, 86, p. 597 (1990). B.F. Gray and J.H. Merkin, “Thermal Explosion: Escape Times in the Uniform Temperature Approximation: I Effects of Parameter Perturbations,”
Journal of the Chemical Society, Faraday Transactions, 2, 86, p. 597 (1990).
47.
Zurück zum Zitat S.G. Little, Master’s Thesis, School of Chemistry, Macquarie University, Sydney, Australia, p. 2109 (1991). S.G. Little, Master’s Thesis, School of Chemistry, Macquarie University, Sydney, Australia, p. 2109 (1991).
48.
Zurück zum Zitat Y.I. Rubtsov, A.I. Kazakov, L.P. Andrienko, and S.B. Manelis, “High Temperature Pyrolysis of Cellulose,” Combustion, Explosion, and Shock Waves, 29, p. 710 (1993). Y.I. Rubtsov, A.I. Kazakov, L.P. Andrienko, and S.B. Manelis, “High Temperature Pyrolysis of Cellulose,”
Combustion, Explosion, and Shock Waves, 29, p. 710 (1993).
49.
Zurück zum Zitat L.G. Britton, “Spontaneous Ignition of Liquids on Porous Media,” 24th Loss Prevention Symposium, American Institute of Chemical Engineers, San Diego (1990). L.G. Britton, “Spontaneous Ignition of Liquids on Porous Media,”
24th Loss Prevention Symposium, American Institute of Chemical Engineers, San Diego (1990).
50.
Zurück zum Zitat A.C. McIntosh and B.F. Gray, “Self Heating of Combustible Vapor in Porous Material When Fibres Are Completely Covered by Fluid,” Combustion Science and Technology, 113, p. 503 (1996). CrossRef A.C. McIntosh and B.F. Gray, “Self Heating of Combustible Vapor in Porous Material When Fibres Are Completely Covered by Fluid,”
Combustion Science and Technology, 113, p. 503 (1996).
CrossRef
51.
Zurück zum Zitat A.C. McIntosh, B.F. Gray, and G.C. Wake, “Analysis of the Bifurcational Behaviour of a Simple Model of Vapor Ignition in Porous Material,” Proceedings of the Royal Society, A453, p. 281 (1997). A.C. McIntosh, B.F. Gray, and G.C. Wake, “Analysis of the Bifurcational Behaviour of a Simple Model of Vapor Ignition in Porous Material,”
Proceedings of the Royal Society, A453, p. 281 (1997).
52.
Zurück zum Zitat B.F. Gray and S.K. Scott, “The Influence of Initial Temperature Excess on Critical Conditions for Thermal Explosion,” Combustion and Flame, 61, p. 227 (1985). CrossRef B.F. Gray and S.K. Scott, “The Influence of Initial Temperature Excess on Critical Conditions for Thermal Explosion,”
Combustion and Flame, 61, p. 227 (1985).
CrossRef
53.
Zurück zum Zitat B.F. Gray and G.C. Wake, “Critical Conditions for Thermal Ignition,” Mathematical and Computer Modelling, 18, pp. 65–75 (1993). MathSciNetCrossRefMATH B.F. Gray and G.C. Wake, “Critical Conditions for Thermal Ignition,”
Mathematical and Computer Modelling, 18, pp. 65–75 (1993).
MathSciNetCrossRefMATH
54.
Zurück zum Zitat B.F. Gray, J.F. Griffiths, and S.M. Hasko, “Spontaneous Ignition Hazards in Stockpiles of Cellulosic Materials,” Journal of Chemical Technology and Biotechnology, 34A, p. 453 (1984). B.F. Gray, J.F. Griffiths, and S.M. Hasko, “Spontaneous Ignition Hazards in Stockpiles of Cellulosic Materials,”
Journal of Chemical Technology and Biotechnology, 34A, p. 453 (1984).
55.
Zurück zum Zitat P. Beever, “Self Heating and Spontaneous Combustion,” in SFPE Handbook of Fire Protection Engineering, 2nd ed. (P.J. DiNenno et al., eds.), pp. 2-180–2-189 (1988). P. Beever, “Self Heating and Spontaneous Combustion,” in
SFPE Handbook of Fire Protection Engineering, 2nd ed. (P.J. DiNenno et al., eds.), pp. 2-180–2-189 (1988).
56.
Zurück zum Zitat C.M. Rivers, Master’s Thesis, Massey University, Palmerston North, New Zealand (1994). C.M. Rivers, Master’s Thesis, Massey University, Palmerston North, New Zealand (1994).
57.
Zurück zum Zitat ASTM E698-01, Standard Test Method for Arrhenius Constants for Thermally Unstable Materials, ASTM International. ASTM E698-01,
Standard Test Method for Arrhenius Constants for Thermally Unstable Materials, ASTM International.
58.
Zurück zum Zitat B.F. Gray and C. Macaskill, “The Role of Self-Heating in the Estimation of Kinetic Constants for Unstable Materials Using DSC,” Interflam 2004, 10th International Fire Science and Engineering Conference, Interscience Communications, London, UK (2004). B.F. Gray and C. Macaskill, “The Role of Self-Heating in the Estimation of Kinetic Constants for Unstable Materials Using DSC,”
Interflam 2004, 10th International Fire Science and Engineering Conference, Interscience Communications, London, UK (2004).
- Titel
- Spontaneous Combustion and Self-Heating
- DOI
- https://doi.org/10.1007/978-1-4939-2565-0_20
- Autor:
-
Brian F. Gray
- Verlag
- Springer New York
- Sequenznummer
- 20
- Kapitelnummer
- 20