1.
Fukanuma H., Ohmori A. (1994). Behavior of molten droplets impinging on flat surfaces.
Proceedings of the 7th National Thermal Spray Conference, 563–568.
2.
Inada, S., & Yang, W.-J. (1994). Solidification of molten metal droplets impinging on a cold surface.
Experimental Heat Transfer, 7, 93–100.
CrossRef
3.
Pasandideh-Fard, M., Bhola, R., Chandra, S., & Mostaghimi, J. (1998). Deposition of tin droplets on a steel plate: Simulations and experiments.
International Journal of Heat and Mass Transfer, 41, 2929–2945.
CrossRef
4.
Aziz, S. D., & Chandra, S. (2000). Impact, recoil and splashing of molten metal droplets.
International Journal of Heat and Mass Transfer, 43, 2841–2857.
CrossRef
5.
Mehdizadeh, N. Z., Raessi, M., Chandra, S., & Mostaghimi, J. (2004). Effect of substrate temperature on splashing of molten tin droplets.
ASME Journal of Heat Transfer, 126, 445–452.
CrossRef
6.
Dhiman, R., & Chandra, S. (2005). Freezing-induced splashing during impact of molten metal droplets with high Weber numbers.
International Journal of Heat & Mass Transfer, 48, 5625–5638.
CrossRef
7.
Madejski, J. (1976). Solidification of droplets on a cold surface.
International Journal of Heat & Mass Transfer, 19, 1009–1013.
CrossRef
8.
Bennet, T., & Poulikakos, D. (1994). Heat transfer aspects of splat-quench solidification: Modelling and experiment.
Journal of Materials Science, 29, 2025–2039.
CrossRef
9.
Pasandideh-Fard, M., Qiao, Y. M., Chandra, S., & Mostaghimi, J. (1996). Capillary effects during droplet impact on a solid surface.
Physics of Fluids, 8, 650–659.
CrossRef
10.
Poirier, D. R., & Poirier, E. J. (1994).
Heat transfer fundamentals for metal casting (2nd ed.pp. 41–42). Warrendale, PA: Minerals, Metals and Materials Society.
11.
Wang, G. X., & Matthys, E. F. (1996). On the heat transfer at the interface between a solidifying metal and a solid substrate. In E. F. Matthys & W. G. Truckner (Eds.),
Metal spinning, strip casting and slab casting. Warrendale, PA: Minerals, Metals and Materials Society.
12.
Liu, W., Wang, G. X., & Matthys, E. F. (1995). Thermal analysis and measurements for a molten metal drop impacting on a substrate: cooling, solidification and heat transfer coefficient.
International Journal of Heat and Mass Transfer, 38, 1387–1395.
CrossRef
13.
Loulou, T., Artyukhin, E. A., & Bardon, J. P. (1999). Estimation of thermal contact resistance during the first stages of metal solidification process: II- experimental set-up and results.
International Journal of Heat and Mass Transfer, 42, 2119–2127.
CrossRef
14.
Aziz, S. D., & Chandra, S. (2000). Impact recoil and splashing of molten metal droplets.
The International Journal of Heat and Mass Transfer, 43, 2841–2857.
CrossRef
15.
Wang, W., & Qiu, H. H. (2002). Interfacial thermal conductance in rapid contact solidification process.
International Journal of Heat and Mass Transfer, 45, 2043–2053.
CrossRef
16.
Heichal, Y., & Chandra, S. (2005). Predicting thermal contact resistance between molten metal droplets and a solid surface.
Journal of Heat Transfer, 127, 1269–1275.
CrossRef
17.
McDonald, A., Moreau, C., & Chandra, S. (2007). Thermal contact resistance between plasma-sprayed particles and flat surfaces.
International Journal of Heat and Mass Transfer, 50, 1737–1749.
CrossRef
18.
Pershin, V., Lufita, M., Chandra, S., & Mostaghimi, J. (2003). Effect of substrate temperature on adhesion strength of plasma-sprayed nickel coatings.
Journal of Thermal Spray Technology, 12, 370–376.
CrossRef
19.
Cedelle, J., Vardelle, M., & Fauchais, P. (2006). Influence of stainless steel substrate preheating on surface topography and on millimetre and micrometer sized splat formation.
Surface and Coatings Technology, 201, 1373–1382.
CrossRef
20.
Li, C.-J., & Li, J.-L. (2004). Evaporated-gas-induced splashing model for splat formation during plasma spraying.
Surface and Coatings Technology, 184, 13–23.
CrossRef
21.
Mehdizadeh, N. Z., Lamontagne, M., Moreau, C., Chandra, S., & Mostaghimi, J. (2005). Photographing impact of molten molybdenum particles in a plasma spray.
Journal of Thermal Spray Technology, 14, 354–361.
CrossRef
22.
McDonald, A., Lamontagne, M., Moreau, C., & Chandra, S. (2006). Impact of plasma-sprayed metal particles on hot and cold glass surfaces.
Thin Solid Films, 514, 212–222.
CrossRef
23.
Shakeri, S., & Chandra, S. (2002). Splashing of molten tin droplets on a rough steel surface.
International Journal of Heat and Mass Transfer, 24, 4561–4575.
CrossRef
24.
Shinoda, K., Raessi, M., Mostaghimi, J., Yoshida, T., & Murakami, H. (2009). Effect of substrate concave pattern on splat formation of yttria-stabilized zirconia in atmospheric plasma spraying.
Journal of Thermal Spray Technology, 18, 609–618.
CrossRef
25.
Mani, M., Mandre, S., & Brenner, M. P. (2009). Precursors to splashing of liquid droplets on a solid surface.
Physical Review Letters, 102, 134502.
CrossRef
26.
Mani, M., Mandre, S., & Brenner, M. P. (2010). Events before droplet splashing on a solid surface.
Journal of Fluid Mechanics, 647, 163–185.
CrossRef
27.
Mehdi-Nejad, V., Mostaghimi, J., & Chandra, S. (2003). Air bubble entrapment under an impacting droplet.
Physics of Fluids, 15, 173–183.
CrossRef
28.
Xu, L., Zhang, W. W., & Nagel, S. R. (2005). Drop splashing on a dry smooth surface.
Physical Review Letters, 94, 184505.
CrossRef
29.
Rioboo, R., Tropea, C., & Marengo, M. (2001). Outcomes from a drop impact on solid surfaces.
Atomization and Sprays, 11, 155–165.
CrossRef
30.
Mundo, C., Sommerfeld, M., & Tropea, C. (1995). Droplet-wall collisions: experimental studies of the deformation and breakup process.
International Journal of Multiphase Flow, 21, 151–173.
CrossRef
31.
Cossali, G. E., Coghe, A., & Marengo, M. (1997). The impact of a single drop on a wetted solid surface.
Experiments in Fluids, 22, 463–472.
CrossRef
32.
Xu, L., Barcos, L., & Nagel, S. R. (2007). Splashing of liquids: Interplay of surface roughness with surrounding gas.
Physical Review E, 76, 066311.
CrossRef
33.
Dhiman, R., McDonald, A., & Chandra, S. (2007). Predicting splat morphology in a thermal spray process.
Surface and Coatings Technology, 201, 7789–8801.
CrossRef
34.
Fukanuma, H. (1994). A porosity formation and flattening model of an impinging molten particle in thermal spray coatings.
Journal of Thermal Spray Technology, 3, 33–44.
CrossRef
35.
Cirolini, S., Harding, J. H., & Jacucci, G. (1991). Computer simulation of plasma-sprayed coatings – I. Coating deposition model.
Surface and Coatings Technology, 48, 137–145.
CrossRef
36.
Xue, M., Chandra, S., & Mostaghimi, J. (2006). Investigation of splat curling up in thermal spray coatings.
Journal of Thermal Spray Technology, 15, 531–536.
CrossRef
37.
Brackbill, J., Kothe, D., & Zemach, C. (1992). A continuum method for modeling surface tension.
Journal of Computational Physics, 100, 335–354.
CrossRef
38.
Kothe, D. B. (1998). Perspective on Eulerian finite volume methods for incompressible interfacial flows. In H. C. Kuhlmann & H. J. Rath (Eds.),
Free surface flows (pp. 267–331). New York: Springer.
CrossRef
39.
Hirt, C. W., & Nichols, B. D. (1981). Volume of fluid (VOF) method for the dynamics of free boundaries.
Journal of Computational Physics, 39, 201–225.
CrossRef
40.
Osher, S., & Fedkiw, R. (2001). Level set methods: An overview and some recent results.
Journal of Computational Physics, 169, 463–502.
CrossRef
41.
Afkhami, S., & Bussmann, M. (2008). Height functions for applying contact angles to 3D VOF simulations.
International Journal of Numerical Methods in Fluids, 61, 827–847.
CrossRef
42.
Raessi, M., Mostaghimi, J., & Bussmann, M. (2007). Advecting normal vectors: A new method for calculating interface normal and curvatures when modeling two-phase flows.
Journal of Computational Physics, 226, 774–797.
CrossRef
43.
Bussmann, M., Mostaghimi, J., & Chandra, S. (1999). On a three-dimensional volume tracking model of droplet impact.
Physics of Fluids, 11, 1406–1417.
CrossRef
44.
Cao, Y., Faghri, A., & Chang, W. S. (1989). A numerical analysis of Stefan problems for generalized multi-dimensional phase-change structures using the enthalpy transforming model.
International Journal of Heat and Mass Transfer, 32, 1289–1298.
CrossRef
45.
M. Pasandideh-Fard (1998).
Droplet impact and solidification in a thermal spray process. Ph.D. thesis, Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada.
46.
S. Alavi, M. Pasandideh-Fard, J. Mostaghimi (2012).
Simulation of fluid flow and heat transfer including phase change during the impact of semi-molten particles. ASME 2012 Heat Transfer Summer Conference, Rio Grande, Puerto Rico, USA, July 8–12.
47.
Ghafouri-Azar, R., Mostaghimi, J., & Chandra, S. (2004). Numerical study of solidification of a droplet over a deposited frozen splat.
International Journal of Computational Fluid Dynamics, 18, 133–138.
CrossRef
48.
Pasandideh-Fard, M., Pershin, V., Chandra, S., & Mostaghimi, J. (2002). Splat shapes in a thermal spray coating process: Simulations and experiments.
Journal of Thermal Spray Technology, 11, 206–217.
CrossRef
49.
M. Raessi, J. Mostaghimi, M. Bussmann (2005). Droplet impact during the plasma spray coating process – Effect of surface roughness on splat shapes.
Proceedings of 17th international symposium on plasma chemistry, Toronto, Ontario, Canada, 916–917.
50.
Parizi, H. B., Rosenzweig, L., Mostaghimi, J., Chandra, S., Coyle, T. W., Salimi, H., Pershin, L., McDonald, A., & Moreau, C. (2007). Numerical simulation of droplet impact on patterned surfaces.
Journal of Thermal Spray Technology, 16, 713–721.
CrossRef
51.
Wu, T. C. M., Bussmann, M., & Mostaghimi, J. (2009). The impact of partially molten YSZ particle.
Journal of Thermal Spray Technology, 18, 957–964.
CrossRef
52.
Alavi, S., Pasandideh-Fard, M., & Mostaghimi, J. (2012). Simulation of semi-molten particle impacts including heat transfer and phase change.
Journal of Thermal Spray Technology, 21, 1278–1293.
CrossRef
53.
Amon, C. H., Schmaltz, K. S., & Prinz, F. B. (1996). Numerical and experimental investigation of interface bonding via substrate remelting of an impinging molten metal droplet.
ASME Journal of Heat Transfer, 118, 164–172.
CrossRef
54.
Orme, M., & Huang, C. (1997). Phase change manipulation for droplet-based solid freeform fabrication.
Transactions of the ASME, 119, 818–823.
CrossRef
55.
Fang, M., Chandra, S., & Park, C. B. (2007). Experiments on remelting and solidification of molten metal droplets deposited in vertical columns.
ASME Journal of Manufacturing Science and Engineering, 129, 311–318.
CrossRef
56.
Fang, M., Chandra, S., & Park, C. B. (2009). Heat Transfer during deposition of molten aluminum alloy droplets to build vertical columns.
Journal of Heat Transfer, 131 .paper 112101
57.
Ghafouri-Azar, R., Shakeri, S., Chandra, S., & Mostaghimi, J. (2003). Interactions between molten metal droplets impinging on a solid surface.
International Journal of Heat and Mass Transfer, 46, 1395–1407.
CrossRef
58.
Bergmann, D., Fritsching, U., & Bauckhage, K. (2000). A mathematical model for cooling and rapid solidification of molten metal droplets.
International Journal of Thermal Sciences, 39, 53–62.
CrossRef
59.
Mathur, P., Apelian, D., & Lawley, A. (1989). Analysis of the spray deposition process.
Acta Metallurgica, 31, 429–443.
CrossRef
60.
Bergmann, D., & Fritsching, U. (2004). Sequential thermal modelling of the spray-forming process.
International Journal of Thermal Sciences, 43, 403–415.
CrossRef
61.
McPherson, R., & Shafer, B. V. (1982). Interlamellar contact within plasma-sprayed coatings.
Thin Solid Films, 97, 201–204.
CrossRef
62.
Xue, M., Chandra, S., Mostaghimi, J., & Salimijazi, H. R. (2007). Formation of pores in thermal spray coatings due to incomplete filling of crevices in patterned surfaces.
Plasma Chemistry and Plasma Processing, 27, 647–657.
CrossRef
63.
Cai, W. D., & Lavernia, E. J. (1997). Modeling of porosity during spray forming.
Materials Science and Engineering, A226–228, 8–12.
CrossRef
64.
Ghafouri-Azar, R., Mostaghimi, J., Chandra, S., & Charmchi, M. (2003). A stochastic model to simulate the formation of a thermal spray coating.
Journal of Thermal Spray Technology, 12, 54–69.
CrossRef
65.
Ghafouri-Azar, R., Mostaghimi, J., & Chandra, S. (2006). Development of residual stresses in thermal spray coatings.
Computational Materials Science, 35, 13–26.
CrossRef
66.
Xue, M., Chandra, S., Mostaghimi, J., & Moreau, C. (2008). A stochastic model to predict the microstructure of plasma sprayed zirconia coatings.
Modelling and Simulations in Material Science and Engineering, 16, 065006.
CrossRef
67.
Parizi, H. B., Mostaghimi, J., Pershin, L., & Jazi, H. S. (2010). Analysis of the microstructure of thermal spray coatings: A modeling approach.
Journal of Thermal Spray Technology, 19, 736–744.
CrossRef
68.
Gingold, R. A., & Monaghan, J. J. (1977). Smoothed particle hydrodynamics: Theory and appications to non-spherical stars.
Monthly Notices of the Royal Astronomical Society, 181, 375–389.
CrossRef
69.
Lucy, L. B. (1977). A numerical approach to the testing of the fission hypothesis.
Astronomical Journal, 82, 1013–1024.
CrossRef
70.
Liu, P. L. F., Yeh, H., & Costas, S. (Eds.). (2008).
Advances in coastal and ocean engineering: Advanced numerical models for simulating tsunami waves and runup. Singapore: World Scientific Publishing 10.
71.
B. Cartwright, P. H. L. Groenenboom, D. Mcguckin (2004). Examples of ship motions and wash predictions by smoothed particle hydrodynamics,
9th international symposium on the practical design of ships and other floating structures, Germany.
72.
Hu, X., & Adams, N. (2006). A multi-phase SPH method for macroscopic and mesoscopic flows.
Journal of Computational Physics, 213, 844–861.
CrossRef
73.
Farrokhpanah, A., Samareh, B., & Mostaghimi, J. (2015). Applying contact angle to a two dimensional multiphase smoothed particle hydrodynamics model.
Journal of Fluids Engineering, 137, 041303–041301.
CrossRef
74.
Monaghan, J. (2012). Smoothed particle hydrodynamics and its diverse applications.
Annual Review of Fluid Mechanics, 44, 323–346.
CrossRef
75.
Das, A. K., & Das, P. K. (2009). Simulation of drop movement over an inclined surface using smooth particle hydrodynamics.
Langmuir, 25, 11459–11466.
CrossRef
76.
Das, A. K., & Das, P. K. (2010). Equilibrium shape and contact angle of sessile drops of different volumes – Computation by SPH and its further improvement by DI.
Chemical Engineering Science, 65, 4027–4037.
CrossRef
77.
Kistler, S. F. (1993). The hydrodynamics of wetting. In J. C. Berg (Ed.),
Wettability (pp. 311–429). New York: Marcel Dekke.
78.
Šikalo, Š., Wilhelm, H. D., Roisman, I. V., Jakirli, S., & Tropea, C. (2005). Dynamic contact angle of spreading droplets: Experiments and simulations.
Physics of Fluids, 17, 062103.