Skip to main content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Mechanics of Composite Materials 2/2013

01.05.2013

Spring-in and Warpage — Progress in Simulating Manufacturing Aspects

verfasst von: K. Rohwer, E. Kappel, D. Stefaniak, T. Wille

Erschienen in: Mechanics of Composite Materials | Ausgabe 2/2013

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

After demolding, plane structures made of fibrous polymer-matrix composites often show a warpage and, owing to spring-in angles, do not reach the designed shape. Considerable effort has been put into the development of methods for simulating the distortions in order to avoid them by countermeasures. Besides the empirical trial-and-error-based procedure, there is a choice between simulation-based and semianalytical approaches. This paper focuses on the latter ones as being fast and sufficiently accurate for an initial design. Spring-in is observed in curved structures. A simple formula relates the amount of spring-in to the difference between their in-plane and transverse properties. Furthermore, it has been shown that an equivalent coefficient of thermal expansion can be determined with the use of L-shaped coupons. With the aid of this coefficient, the spring-in of more complex structures can be calculated with a sufficient accuracy. Experiments reveal a considerable warpage of plain structures, especially of slender plates. This happens in the cases of one-sided molds, obviously depends on the part/tool connectivity, and is caused by the difference in thermal expansion, as well as by the development of cross-linking in the thickness direction. Other parameters of influence may be gradients in the fiber volume fraction or resin-rich layers. A simple formula based on a model of two beams on top of each other was developed. It relates the artificial coefficients of thermal expansion to the curvature of the compound beam. Warpage measurements on simple test specimens allow one to determine these coefficients, which then can be used in detailed FEM analyses of more complex structures in order to anticipate their behavior on demolding.
Literatur
1.
Zurück zum Zitat T. Wille, S. Freund, and R. Hein, “Comparison of methods to predict process induced residual stresses and distortions of CFRP components,” NAFEMS Seminar Progress in Simulating Composites, Wiesbaden, Germany, 2011. T. Wille, S. Freund, and R. Hein, “Comparison of methods to predict process induced residual stresses and distortions of CFRP components,” NAFEMS Seminar Progress in Simulating Composites, Wiesbaden, Germany, 2011.
2.
Zurück zum Zitat M. R. Kamal and S. Sourour, “Kinetics and thermal characterization of thermoset cure,” Polymer Eng. and Sci., 13, 59–64 (1973). CrossRef M. R. Kamal and S. Sourour, “Kinetics and thermal characterization of thermoset cure,” Polymer Eng. and Sci., 13, 59–64 (1973). CrossRef
3.
Zurück zum Zitat M. Gigliotti, M. R.Wisnom, and K. D. Potter, “Development of curvature during the cure of AS4/8552 [0/90] unsymmetric composite plates,” Compos. Sci. Technol., 63, 187–197 (2003). CrossRef M. Gigliotti, M. R.Wisnom, and K. D. Potter, “Development of curvature during the cure of AS4/8552 [0/90] unsymmetric composite plates,” Compos. Sci. Technol., 63, 187–197 (2003). CrossRef
4.
Zurück zum Zitat V. Antonucci, et al. “Real time monitoring of cure and gelification of a thermoset matrix,” Compos. Sci. Technol., 66, 3273–3280 (2006). CrossRef V. Antonucci, et al. “Real time monitoring of cure and gelification of a thermoset matrix,” Compos. Sci. Technol., 66, 3273–3280 (2006). CrossRef
5.
Zurück zum Zitat M. Zarrellia, I. K. Partridge, A. D’Amore, “Warpage induced in bi-material specimens: Coefficient of thermal expansion, chemical shrinkage and viscoelastic modulus evolution during cure,” Composites, Pt A, 37, 565–570 (2006). CrossRef M. Zarrellia, I. K. Partridge, A. D’Amore, “Warpage induced in bi-material specimens: Coefficient of thermal expansion, chemical shrinkage and viscoelastic modulus evolution during cure,” Composites, Pt A, 37, 565–570 (2006). CrossRef
6.
Zurück zum Zitat N. Ersoy and M. Tugutlu, “Cure kinetics modeling and cure shrinkage behavior of a thermosetting composite,” Polymer Eng. and Sci., doi: 10.​1002/​pen.​21514, 84–92 (2010). N. Ersoy and M. Tugutlu, “Cure kinetics modeling and cure shrinkage behavior of a thermosetting composite,” Polymer Eng. and Sci., doi: 10.​1002/​pen.​21514, 84–92 (2010).
7.
Zurück zum Zitat L. Jun, et al. “Thermo-viscoelastic analysis of the integrated T-shaped composite structures,” Compos. Sci. Technol., 70, 1497–1503 (2010). CrossRef L. Jun, et al. “Thermo-viscoelastic analysis of the integrated T-shaped composite structures,” Compos. Sci. Technol., 70, 1497–1503 (2010). CrossRef
8.
Zurück zum Zitat C. Brauner, T. B. Block, C. Hoffmeister, and A. S. Herrmann, “Process simulation of carbon fiber/epoxy composites on the micro level to analyse chemical and thermal induced residual stresses,” NAFEMS Seminar Progress in Simulating Composites, Wiesbaden, Germany, 2011. C. Brauner, T. B. Block, C. Hoffmeister, and A. S. Herrmann, “Process simulation of carbon fiber/epoxy composites on the micro level to analyse chemical and thermal induced residual stresses,” NAFEMS Seminar Progress in Simulating Composites, Wiesbaden, Germany, 2011.
9.
Zurück zum Zitat M. Kleineberg, “Präzisionsfertigung komplexer CFK-Profile am Beispiel Rumpfspant,” Dissertation, TU Braunschweig, Germany, 2008. M. Kleineberg, “Präzisionsfertigung komplexer CFK-Profile am Beispiel Rumpfspant,” Dissertation, TU Braunschweig, Germany, 2008.
10.
Zurück zum Zitat T. Spröwitz, J. Tessmer, and T. Wille, “Process simulation in fiber-composite manufacturing – spring-in,” NAFEMS Seminar Simulating Composite Materials and Structures, Bad Kissingen, Germany, 2007. T. Spröwitz, J. Tessmer, and T. Wille, “Process simulation in fiber-composite manufacturing – spring-in,” NAFEMS Seminar Simulating Composite Materials and Structures, Bad Kissingen, Germany, 2007.
11.
Zurück zum Zitat J. M. Svanberg, “Predictions of manufacturing induced shape distortions – high performance thermoset composites,” PhD thesis, Lulea University of Technology, Sweden, 2002. J. M. Svanberg, “Predictions of manufacturing induced shape distortions – high performance thermoset composites,” PhD thesis, Lulea University of Technology, Sweden, 2002.
12.
Zurück zum Zitat E. Kappel, D. Stefaniak, T. Spröwitz, and C. Hühne, “A semi-analytical simulation strategy and its application to warpage of autoclave-processed CFRP parts,” Submitted for publication in Composites: Part A, 42, 1985–1994 (2011). CrossRef E. Kappel, D. Stefaniak, T. Spröwitz, and C. Hühne, “A semi-analytical simulation strategy and its application to warpage of autoclave-processed CFRP parts,” Submitted for publication in Composites: Part A, 42, 1985–1994 (2011). CrossRef
13.
Zurück zum Zitat Potter, K.D., Campbell, M., Langer, C., Wisnom, M.R.: “The generation of geometrical deformations due to tool/part interaction in the manufacture of composite components.” Composites, Pt A, 36, 301–308 (2005). Potter, K.D., Campbell, M., Langer, C., Wisnom, M.R.: “The generation of geometrical deformations due to tool/part interaction in the manufacture of composite components.” Composites, Pt A, 36, 301–308 (2005).
14.
Zurück zum Zitat V. Kaushik and J. Raghavan, “Experimental study of tool–part interaction during autoclave processing of thermoset polymer composite structures,” Composites: Pt A, 41, 1210–1218 (2010). CrossRef V. Kaushik and J. Raghavan, “Experimental study of tool–part interaction during autoclave processing of thermoset polymer composite structures,” Composites: Pt A, 41, 1210–1218 (2010). CrossRef
15.
Zurück zum Zitat X. Zeng and J. Raghavan, “Role of tool-part interaction in process-induced warpage of autoclave-manufactured composite structures,” Composites: Pt A, 41, 1174–1183 (2010). CrossRef X. Zeng and J. Raghavan, “Role of tool-part interaction in process-induced warpage of autoclave-manufactured composite structures,” Composites: Pt A, 41, 1174–1183 (2010). CrossRef
16.
Zurück zum Zitat C. Albert and G. Fernlund, “Spring-in and warpage of angled composite laminates,” Compos. Sci. Technol., 62, 1895–1912 (2002). CrossRef C. Albert and G. Fernlund, “Spring-in and warpage of angled composite laminates,” Compos. Sci. Technol., 62, 1895–1912 (2002). CrossRef
17.
Zurück zum Zitat G. Fernlund, et al. “Experimental and numerical study of the effect of cure cycle, tool surface, geometry and lay-up on the dimensional fidelity of autoclave-processed composite parts,” Composites: Pt A, 33, 341–351 (2002). CrossRef G. Fernlund, et al. “Experimental and numerical study of the effect of cure cycle, tool surface, geometry and lay-up on the dimensional fidelity of autoclave-processed composite parts,” Composites: Pt A, 33, 341–351 (2002). CrossRef
18.
Zurück zum Zitat T. Garstka, N. Ersoy, K. D. Potter, and M.R. Wisnom, “In situ measurements of through-the-thickness strains during processing of AS4/8552 composite,” Composites: Pt A, 38, 2517–2526 (2007). CrossRef T. Garstka, N. Ersoy, K. D. Potter, and M.R. Wisnom, “In situ measurements of through-the-thickness strains during processing of AS4/8552 composite,” Composites: Pt A, 38, 2517–2526 (2007). CrossRef
19.
Zurück zum Zitat S. K. Bapanapalli and L. V. Smith, “A linear finite element model to predict processing-induced distortion in FRP laminates,” Composites: Pt A, 36, 1666–1674 (2005). CrossRef S. K. Bapanapalli and L. V. Smith, “A linear finite element model to predict processing-induced distortion in FRP laminates,” Composites: Pt A, 36, 1666–1674 (2005). CrossRef
20.
Zurück zum Zitat D. A. Darrow Jr. and L. V. Smith, “Isolating Components of Processing Induced Warpage in Laminated Composites,” J. Compos. Mater., 36, 2407–2419 (2002). CrossRef D. A. Darrow Jr. and L. V. Smith, “Isolating Components of Processing Induced Warpage in Laminated Composites,” J. Compos. Mater., 36, 2407–2419 (2002). CrossRef
21.
Zurück zum Zitat H. W. Wiersma, L. J. B. Peeters, and R. Akkerman, “Prediction of springforward in continuous-fiber/polymer L-shaped parts,” Composites, Pt A, 29A, 1333–1342 (1998). CrossRef H. W. Wiersma, L. J. B. Peeters, and R. Akkerman, “Prediction of springforward in continuous-fiber/polymer L-shaped parts,” Composites, Pt A, 29A, 1333–1342 (1998). CrossRef
22.
Zurück zum Zitat C. K. Huang and S. Y. Yang, “Warping in advanced composite tools with varying angles and radii,” Composites: Pt A, 28A, 89l-893 (1997). C. K. Huang and S. Y. Yang, “Warping in advanced composite tools with varying angles and radii,” Composites: Pt A, 28A, 89l-893 (1997).
23.
Zurück zum Zitat R. H. Nelson and D. S. Cairns, “Prediction of dimensional changes in composite laminates during cure,” Proc. 34th Int. SAMPE Symp., May 8–11, 1989, pp. 2396–2410. R. H. Nelson and D. S. Cairns, “Prediction of dimensional changes in composite laminates during cure,” Proc. 34th Int. SAMPE Symp., May 8–11, 1989, pp. 2396–2410.
24.
Zurück zum Zitat K. J. Yoon and J.-S. Kim, “Effect of thermal deformation and chemical shrinkage on the process induced distortion of carbon/epoxy curved laminates,” J. Compos. Mater., 35, 253–263 (2001). CrossRef K. J. Yoon and J.-S. Kim, “Effect of thermal deformation and chemical shrinkage on the process induced distortion of carbon/epoxy curved laminates,” J. Compos. Mater., 35, 253–263 (2001). CrossRef
25.
Zurück zum Zitat L. K. Jain and Y.-W. Mai, “Stresses and deformations induced during manufacturing. Part I. Theoretical analysis of composite cylinders and shells,” J. Compos. Mater., 31, 672–695 (1997). CrossRef L. K. Jain and Y.-W. Mai, “Stresses and deformations induced during manufacturing. Part I. Theoretical analysis of composite cylinders and shells,” J. Compos. Mater., 31, 672–695 (1997). CrossRef
26.
Zurück zum Zitat D. W. Radford, “Shape stability in composites.” PhD thesis, Rensselaer Polytechnic Institute, Troy, New York, USA, 1987. D. W. Radford, “Shape stability in composites.” PhD thesis, Rensselaer Polytechnic Institute, Troy, New York, USA, 1987.
27.
Zurück zum Zitat D. W. Radford and R. J. Diefendorf, “Shape instabilities in composites resulting from laminate anisotropy,” J. of Reinforced Plastics and Composites, 12, 58–75 (1993). CrossRef D. W. Radford and R. J. Diefendorf, “Shape instabilities in composites resulting from laminate anisotropy,” J. of Reinforced Plastics and Composites, 12, 58–75 (1993). CrossRef
28.
Zurück zum Zitat A. Salomi, et al. “Spring-in angle as molding distortion for thermoplastic matrix composite,” Compos. Sci. Technol., 68, 3047–3054 (2008). CrossRef A. Salomi, et al. “Spring-in angle as molding distortion for thermoplastic matrix composite,” Compos. Sci. Technol., 68, 3047–3054 (2008). CrossRef
29.
Zurück zum Zitat T. Spröwitz, Chr. Huehne, and E. Kappel, “Thermal aspects for composite structures – from manufacturing to in-service predictions,” CEAS 2009 – Europ. Air and Space Conf., 26–29 October 2009, Manchester, UK. T. Spröwitz, Chr. Huehne, and E. Kappel, “Thermal aspects for composite structures – from manufacturing to in-service predictions,” CEAS 2009 – Europ. Air and Space Conf., 26–29 October 2009, Manchester, UK.
30.
Zurück zum Zitat H. Sarrazin, B. Kim, S.-H. Ahn, G. S. Springer, “Effects of processing temperature and layup on springback,” J. Compos. Mater., 29, 1278–1294 (1995). CrossRef H. Sarrazin, B. Kim, S.-H. Ahn, G. S. Springer, “Effects of processing temperature and layup on springback,” J. Compos. Mater., 29, 1278–1294 (1995). CrossRef
31.
32.
Zurück zum Zitat J. D. D. Melo and D. W. Radford, “Modeling manufacturing distorsions in flat, symmetric composite laminates,” Proc. 31st Int. SAMPE Tech. Conf., October 26–30, 1999, pp. 592–603. J. D. D. Melo and D. W. Radford, “Modeling manufacturing distorsions in flat, symmetric composite laminates,” Proc. 31st Int. SAMPE Tech. Conf., October 26–30, 1999, pp. 592–603.
33.
Zurück zum Zitat A. R. A. Arafath, R. Vaziri, and A. Poursartip, “Closed-form solution for process-induced stresses and deformation of a composite part cured on a solid tool. Part I. Flat geometries,” Composites: Pt A, 39, 1106–1117 (2008). CrossRef A. R. A. Arafath, R. Vaziri, and A. Poursartip, “Closed-form solution for process-induced stresses and deformation of a composite part cured on a solid tool. Part I. Flat geometries,” Composites: Pt A, 39, 1106–1117 (2008). CrossRef
Metadaten
Titel
Spring-in and Warpage — Progress in Simulating Manufacturing Aspects
verfasst von
K. Rohwer
E. Kappel
D. Stefaniak
T. Wille
Publikationsdatum
01.05.2013
Verlag
Springer US
Erschienen in
Mechanics of Composite Materials / Ausgabe 2/2013
Print ISSN: 0191-5665
Elektronische ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-013-9335-5

Weitere Artikel der Ausgabe 2/2013

Mechanics of Composite Materials 2/2013 Zur Ausgabe

Premium Partner

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.