Skip to main content
main-content

Tipp

Weitere Kapitel dieses Buchs durch Wischen aufrufen

2020 | OriginalPaper | Buchkapitel

3. Konventionelle Verfahren zur Wasserstoffherstellung

verfasst von: Jose Antonio Medrano, Emma Palo, Fausto Gallucci

Erschienen in: CO2 und CO – Nachhaltige Kohlenstoffquellen für die Kreislaufwirtschaft

Verlag: Springer Berlin Heidelberg

share
TEILEN

Zusammenfassung

Wasserstoff ist ein notwendiger Rohstoff in der Erzeugung von Ammoniak, für Hydrocracking sowie für die Herstellung von Methanol und Pharmazeutika und wird auch von Lebensmittel- und Metallindustrien benötigt. Nach dem Stand der Technik ist die Herstellung von Wasserstoff von der Verwendung fossiler Ausgangsstoffe und Energieträger abhängig und damit mit einer erheblichen CO2-Emission verbunden. Kapitel 3 beschreibt die derzeit eingesetzten Verfahren und benennt nachhaltigere Alternativen .

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 15 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 15 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 15 Tage kostenlos.

Literatur
2.
Zurück zum Zitat Rostrup-Nielsen JR (2000) New aspects of syngas production and use. Catal Today 63:159–164 Rostrup-Nielsen JR (2000) New aspects of syngas production and use. Catal Today 63:159–164
3.
Zurück zum Zitat da Silva Veras T, Mozer TS, da Costa Rubim Messeder dos Santos D, da Silva César A (2017) Hydrogen: trends, production and characterization of the main process worldwide. Int J Hydrogen Energy 42:2018–2033 da Silva Veras T, Mozer TS, da Costa Rubim Messeder dos Santos D, da Silva César A (2017) Hydrogen: trends, production and characterization of the main process worldwide. Int J Hydrogen Energy 42:2018–2033
4.
Zurück zum Zitat Rafiqul I, Weber C, Lehmann B, Voss A (2005) Energy efficiency improvements in ammonia production – perspectives and uncertainties. Energy 30:2487–2504 Rafiqul I, Weber C, Lehmann B, Voss A (2005) Energy efficiency improvements in ammonia production – perspectives and uncertainties. Energy 30:2487–2504
5.
Zurück zum Zitat Ball M, Wietschel M (2009) The future of hydrogen – opportunities and challenges. Int J Hydrogen Energy 34:615–627 Ball M, Wietschel M (2009) The future of hydrogen – opportunities and challenges. Int J Hydrogen Energy 34:615–627
6.
Zurück zum Zitat Spallina V, Pandolfo D, Battistella A, Romano MC, van Sint Annaland M, Gallucci F (2016) Techno-economic assessment of membrane assisted fluidized bed reactors for pure H 2 production with CO 2 capture. Energy Convers Manag 120:257–273 Spallina V, Pandolfo D, Battistella A, Romano MC, van Sint Annaland M, Gallucci F (2016) Techno-economic assessment of membrane assisted fluidized bed reactors for pure H 2 production with CO 2 capture. Energy Convers Manag 120:257–273
11.
Zurück zum Zitat Ratnasamy C, Wagner JP (2009) Water gas shift catalysis. Catal Rev 51:325–440 Ratnasamy C, Wagner JP (2009) Water gas shift catalysis. Catal Rev 51:325–440
12.
Zurück zum Zitat Holladay JD, Hu J, King DL, Wang Y (2009) An overview of hydrogen production technologies. Catal Today 139:244–260 Holladay JD, Hu J, King DL, Wang Y (2009) An overview of hydrogen production technologies. Catal Today 139:244–260
13.
Zurück zum Zitat Armaroli N, Balzani V (2011) The hydrogen issue. Chemsuschem 4:21–36 Armaroli N, Balzani V (2011) The hydrogen issue. Chemsuschem 4:21–36
14.
Zurück zum Zitat Angeli SD, Monteleone G, Giaconia A, Lemonidou A (2014) State-of-the-art catalysts for CH4 steam reforming at low temperature. Int J Hydrogen Energy 39:1979–1997 Angeli SD, Monteleone G, Giaconia A, Lemonidou A (2014) State-of-the-art catalysts for CH4 steam reforming at low temperature. Int J Hydrogen Energy 39:1979–1997
17.
Zurück zum Zitat Basini L, Aasberg-Petersen K, Guarinoni A, Østberg M (2001) Catalytic partial oxidation of natural gas at elevated pressure and low residence time. Catal Today 64:9–20 Basini L, Aasberg-Petersen K, Guarinoni A, Østberg M (2001) Catalytic partial oxidation of natural gas at elevated pressure and low residence time. Catal Today 64:9–20
18.
Zurück zum Zitat Basile F, Basini L, Amore MD, Fornasari G, Guarinoni A, Matteuzzi D, Piero GD, Trifirò F, Vaccari A (1998) Ni/Mg/Al anionic clay derived catalysts for the catalytic partial oxidation of methane: residence time dependence of the reactivity features. J Catal 173:247–256 Basile F, Basini L, Amore MD, Fornasari G, Guarinoni A, Matteuzzi D, Piero GD, Trifirò F, Vaccari A (1998) Ni/Mg/Al anionic clay derived catalysts for the catalytic partial oxidation of methane: residence time dependence of the reactivity features. J Catal 173:247–256
21.
Zurück zum Zitat Navarro RM, Peña MA, Fierro JLG (2007) Hydrogen production reactions from carbon feedstocks: fossil fuels and biomass. Chem Rev 107:3952–3991 Navarro RM, Peña MA, Fierro JLG (2007) Hydrogen production reactions from carbon feedstocks: fossil fuels and biomass. Chem Rev 107:3952–3991
22.
Zurück zum Zitat Ûarnes I (2011) Next generation coal gasification technology. CCC/187, London, UK, IEA Clean Coal Centre, 1–49 Ûarnes I (2011) Next generation coal gasification technology. CCC/187, London, UK, IEA Clean Coal Centre, 1–49
23.
Zurück zum Zitat Kopyscinski J, Schildhauer TJ, Biollaz SMA (2010) Production of synthetic natural gas (SNG) from coal and dry biomass – a technology review from 1950 to 2009. Fuel 89:1763–1783 Kopyscinski J, Schildhauer TJ, Biollaz SMA (2010) Production of synthetic natural gas (SNG) from coal and dry biomass – a technology review from 1950 to 2009. Fuel 89:1763–1783
34.
Zurück zum Zitat Rahimpour MR, Jafari M, Iranshahi D (2013) Progress in catalytic naphtha reforming process: a review. Appl Energy 109:79–93 Rahimpour MR, Jafari M, Iranshahi D (2013) Progress in catalytic naphtha reforming process: a review. Appl Energy 109:79–93
35.
Zurück zum Zitat Fraser S (2014) Distillation in refining. In: Górak A, Schoenmakers H (Hrsg) Distillation: operation and application. Elsevier, Amsterdam, S 155–190 Fraser S (2014) Distillation in refining. In: Górak A, Schoenmakers H (Hrsg) Distillation: operation and application. Elsevier, Amsterdam, S 155–190
45.
Zurück zum Zitat IEA (2007) IEA energy technology essentials – biomass for power generation and CHP. High Temp 1–4 IEA (2007) IEA energy technology essentials – biomass for power generation and CHP. High Temp 1–4
46.
Zurück zum Zitat Balat H, Kirtay E (2010) Hydrogen from biomass – present scenario and future prospects. Int J Hydrogen Energy 35:7416–7426 Balat H, Kirtay E (2010) Hydrogen from biomass – present scenario and future prospects. Int J Hydrogen Energy 35:7416–7426
47.
Zurück zum Zitat Zhang L, Xu C, Champagne P (2010) Overview of recent advances in thermo-chemical conversion of biomass. Energy Convers Manag 51:969–982 Zhang L, Xu C, Champagne P (2010) Overview of recent advances in thermo-chemical conversion of biomass. Energy Convers Manag 51:969–982
48.
Zurück zum Zitat Molino A, Chianese S, Musmarra D (2016) Biomass gasification technology: the state of the art overview. J Energy Chem 25:10–25 Molino A, Chianese S, Musmarra D (2016) Biomass gasification technology: the state of the art overview. J Energy Chem 25:10–25
49.
Zurück zum Zitat Sikarwar VS, Zhao M, Clough P, Yao J, Zhong X, Memon MZ, Shah N, Anthony EJ, Fennell PS (2016) An overview of advances in biomass gasification. Energy Environ Sci 9:2939–2977 Sikarwar VS, Zhao M, Clough P, Yao J, Zhong X, Memon MZ, Shah N, Anthony EJ, Fennell PS (2016) An overview of advances in biomass gasification. Energy Environ Sci 9:2939–2977
54.
Zurück zum Zitat Hrbek J (2016) Status report on thermal biomass gasification in countries participating in IEA Bioenergy Task 33. Statusbericht Hrbek J (2016) Status report on thermal biomass gasification in countries participating in IEA Bioenergy Task 33. Statusbericht
55.
Zurück zum Zitat Zeng K, Zhang D (2017) Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog Energy Combust Sci 36:307–326 Zeng K, Zhang D (2017) Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog Energy Combust Sci 36:307–326
56.
Zurück zum Zitat Carmo M, Fritz DL, Mergel J, Stolten D (2013) A comprehensive review on PEM water electrolysis. Int J Hydrogen Energy 38:4901–4934 Carmo M, Fritz DL, Mergel J, Stolten D (2013) A comprehensive review on PEM water electrolysis. Int J Hydrogen Energy 38:4901–4934
64.
Zurück zum Zitat IPCC (2014) Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change IPCC (2014) Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change
65.
Zurück zum Zitat IPCC (2005) IPCC special report on carbon dioxide capture and storage. Cambridge University Press, Cambridge IPCC (2005) IPCC special report on carbon dioxide capture and storage. Cambridge University Press, Cambridge
66.
Zurück zum Zitat IEA (2010) Energy technology perspectives: scenarios and strategies to 2050. OECD/IEA, Paris IEA (2010) Energy technology perspectives: scenarios and strategies to 2050. OECD/IEA, Paris
67.
Zurück zum Zitat Medrano JA, Potdar I, Melendez J, Spallina V, Pacheco-Tanaka DA, van Sint Annaland M, Gallucci F (2018) The membrane-assisted chemical looping reforming concept for efficient H 2 production with inherent CO 2 capture: experimental demonstration and model validation. Appl Energy 215:75–86 Medrano JA, Potdar I, Melendez J, Spallina V, Pacheco-Tanaka DA, van Sint Annaland M, Gallucci F (2018) The membrane-assisted chemical looping reforming concept for efficient H 2 production with inherent CO 2 capture: experimental demonstration and model validation. Appl Energy 215:75–86
68.
Zurück zum Zitat Medrano JA, Spallina V, van Sint Annaland M, Gallucci F (2014) Thermodynamic analysis of a membrane-assisted chemical looping reforming reactor concept for combined H 2 production and CO 2 capture. Int J Hydrogen Energy 39:4725–4738 Medrano JA, Spallina V, van Sint Annaland M, Gallucci F (2014) Thermodynamic analysis of a membrane-assisted chemical looping reforming reactor concept for combined H 2 production and CO 2 capture. Int J Hydrogen Energy 39:4725–4738
69.
Zurück zum Zitat Rydén M, Lyngfelt A, Mattisson T (2006) Synthesis gas generation by chemical-looping reforming in a continuously operating laboratory reactor. Fuel 85:1631–1641 Rydén M, Lyngfelt A, Mattisson T (2006) Synthesis gas generation by chemical-looping reforming in a continuously operating laboratory reactor. Fuel 85:1631–1641
70.
Zurück zum Zitat Tang M, Xu L, Fan M (2015) Progress in oxygen carrier development of methane-based chemical-looping reforming: a review. Appl Energy 151:143–156 Tang M, Xu L, Fan M (2015) Progress in oxygen carrier development of methane-based chemical-looping reforming: a review. Appl Energy 151:143–156
71.
Zurück zum Zitat Adanez J, Abad A, Garcia-Labiano F, Gayan P, de Diego LF (2012) Progress in chemical-looping combustion and reforming technologies. Prog Energy Combust Sci 38:215–282 Adanez J, Abad A, Garcia-Labiano F, Gayan P, de Diego LF (2012) Progress in chemical-looping combustion and reforming technologies. Prog Energy Combust Sci 38:215–282
72.
Zurück zum Zitat Gallucci F, Fernandez E, Corengia P, van Sint Annaland M (2013) Recent advances on membranes and membrane reactors for hydrogen production. Chem Eng Sci 92:40–66 Gallucci F, Fernandez E, Corengia P, van Sint Annaland M (2013) Recent advances on membranes and membrane reactors for hydrogen production. Chem Eng Sci 92:40–66
73.
Zurück zum Zitat Gallucci F, Medrano JA, Fernandez E, Melendez J, van Sint Annaland M (2017) Advances on high temperature Pd-based membranes and membrane reactors for hydrogen purification and production. J Membr Sci Res 3:142–156 Gallucci F, Medrano JA, Fernandez E, Melendez J, van Sint Annaland M (2017) Advances on high temperature Pd-based membranes and membrane reactors for hydrogen purification and production. J Membr Sci Res 3:142–156
74.
Zurück zum Zitat Fernandez E, Medrano JA, Melendez J, Parco M, van Sint Annaland M, Gallucci F, Pacheco Tanaka DA (2016) Preparation and characterization of metallic supported thin Pd-Ag membranes for high temperature hydrogen separation. Chem Eng J 305:182–190 Fernandez E, Medrano JA, Melendez J, Parco M, van Sint Annaland M, Gallucci F, Pacheco Tanaka DA (2016) Preparation and characterization of metallic supported thin Pd-Ag membranes for high temperature hydrogen separation. Chem Eng J 305:182–190
75.
Zurück zum Zitat Shirasaki Y, Yasuda I (2013) Membrane reactor for hydrogen production from natural gas at the Tokyo gas company: a case study. In: Basile A (Hrsg) Handbook of membrane reactors. Woodhead Publishing, Cambridge, S 487–507 Shirasaki Y, Yasuda I (2013) Membrane reactor for hydrogen production from natural gas at the Tokyo gas company: a case study. In: Basile A (Hrsg) Handbook of membrane reactors. Woodhead Publishing, Cambridge, S 487–507
76.
Zurück zum Zitat Aloisi I, Jand N, Stendardo S, Foscolo PU (2016) Hydrogen by sorption enhanced methane reforming: a grain model to study the behavior of bi-functional sorbent-catalyst particles. Chem Eng Sci 149:22–34 Aloisi I, Jand N, Stendardo S, Foscolo PU (2016) Hydrogen by sorption enhanced methane reforming: a grain model to study the behavior of bi-functional sorbent-catalyst particles. Chem Eng Sci 149:22–34
77.
Zurück zum Zitat Ugarte P, Durán P, Lasobras J, Soler J, Menéndez M, Herguido J (2017) Dry reforming of biogas in fluidized bed: process intensification. Int J Hydrogen Energy 42:13589–13597 Ugarte P, Durán P, Lasobras J, Soler J, Menéndez M, Herguido J (2017) Dry reforming of biogas in fluidized bed: process intensification. Int J Hydrogen Energy 42:13589–13597
78.
Zurück zum Zitat Usman M, Wan Daud WMA, Abbas HF (2015) Dry reforming of methane: influence of process parameters – a review. Renew Sustain Energy Rev 45:710–744 Usman M, Wan Daud WMA, Abbas HF (2015) Dry reforming of methane: influence of process parameters – a review. Renew Sustain Energy Rev 45:710–744
79.
Zurück zum Zitat Abdullah B, Abd Ghani NA, Vo DVN (2017) Recent advances in dry reforming of methane over Ni-based catalysts. J Clean Prod 162:170–185 Abdullah B, Abd Ghani NA, Vo DVN (2017) Recent advances in dry reforming of methane over Ni-based catalysts. J Clean Prod 162:170–185
80.
Zurück zum Zitat Upham DC, Agarwal V, Khechfe A, Snodgrass ZR, Gordon MJ, Metiu H, McFarland EW (2017) Catalytic molten metals for the direct conversion of methane to hydrogen and separable carbon. Science 358:917–921 Upham DC, Agarwal V, Khechfe A, Snodgrass ZR, Gordon MJ, Metiu H, McFarland EW (2017) Catalytic molten metals for the direct conversion of methane to hydrogen and separable carbon. Science 358:917–921
81.
Zurück zum Zitat Abbas HF, Wan Daud WMA (2010) Hydrogen production by methane decomposition: a review. Int J Hydrogen Energy 35:1160–1190 Abbas HF, Wan Daud WMA (2010) Hydrogen production by methane decomposition: a review. Int J Hydrogen Energy 35:1160–1190
82.
Zurück zum Zitat Ashcroft AT, Cheetham AK, Green MLH, Vernon PDF (1991) Partial oxidation of methane to synthesis gas using carbon dioxide. Nature 352:225–226 Ashcroft AT, Cheetham AK, Green MLH, Vernon PDF (1991) Partial oxidation of methane to synthesis gas using carbon dioxide. Nature 352:225–226
83.
Zurück zum Zitat Christian Enger B, Lødeng R, Holmen A (2008) A review of catalytic partial oxidation of methane to synthesis gas with emphasis on reaction mechanisms over transition metal catalysts. Appl Catal A Gen 346:1–27 Christian Enger B, Lødeng R, Holmen A (2008) A review of catalytic partial oxidation of methane to synthesis gas with emphasis on reaction mechanisms over transition metal catalysts. Appl Catal A Gen 346:1–27
85.
Zurück zum Zitat Iaquaniello G, Centi G, Salladini A, Palo E (2017) Waste as a Source of Carbon for Methanol Production. In: Basile A, Dalena F (Hrsg) Methanol, Science and Engineering. Elsevier, Amsterdam, S 95–111 Iaquaniello G, Centi G, Salladini A, Palo E (2017) Waste as a Source of Carbon for Methanol Production. In: Basile A, Dalena F (Hrsg) Methanol, Science and Engineering. Elsevier, Amsterdam, S 95–111
86.
Zurück zum Zitat Kendall K (2017) Hydrogen Fuel Cells. In: Abraham MA (Hrsg) Encyclopedia of Sustainable Technology. Elsevier, Oxford, S 305–316 Kendall K (2017) Hydrogen Fuel Cells. In: Abraham MA (Hrsg) Encyclopedia of Sustainable Technology. Elsevier, Oxford, S 305–316
87.
Zurück zum Zitat Eftekhari A, Fang B (2017) Electrochemical hydrogen storage: opportunities for fuel storage, batteries, fuel cells, and supercapacitors. Int J Hydrogen Energy 42:25143–25165 Eftekhari A, Fang B (2017) Electrochemical hydrogen storage: opportunities for fuel storage, batteries, fuel cells, and supercapacitors. Int J Hydrogen Energy 42:25143–25165
Metadaten
Titel
Konventionelle Verfahren zur Wasserstoffherstellung
verfasst von
Jose Antonio Medrano
Emma Palo
Fausto Gallucci
Copyright-Jahr
2020
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-60649-0_3