Skip to main content

Tipp

Weitere Kapitel dieses Buchs durch Wischen aufrufen

2012 | OriginalPaper | Buchkapitel

3. Absorption

verfasst von : Prof. Jennifer Wilcox

Erschienen in: Carbon Capture

Verlag: Springer New York

Abstract

In absorption and stripping processes mass transfer takes place between gas and liquid phases at each stage throughout a column. In the absorption process the solute, or component to be absorbed (e.g., CO2), is transferred from the gas phase to the liquid phase. In the stripping process, the opposite occurs, i.e., mass transfer occurs from the liquid to the gas phase. These two units are traditionally coupled, as shown in Fig. 3.1, for the solvent to be recovered and recycled, and for an effective separation of CO2 from a gas mixture to produce a somewhat pure stream of CO2.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
In the example the air-water interface, the viscosities of air and water are 18.6 and 0.89 Pa s, respectively and the densities of air and water are 1.22 and 1000 kg/m3 respectively; the air-to-film ratio is ~ 17000.
 
Literatur
1.
Zurück zum Zitat Reprinted from Gas-Liquid Reactions, Danckwerts, P.V., Copyright (1970), with permission from McGraw-Hill Companies, Inc Reprinted from Gas-Liquid Reactions, Danckwerts, P.V., Copyright (1970), with permission from McGraw-Hill Companies, Inc
2.
Zurück zum Zitat Reprinted with permission from J Phys Chem A, McCann N, Phan D, Wang X, Conway W, Burns R, Attalla M, Puxty G, Maeder M (2009) Kinetics and mechanism of carbamate formation from CO 2 (aq), carbonate species, and monoethanolamine in aqueous solution. Copyright 2009, American Chemical Society Reprinted with permission from J Phys Chem A, McCann N, Phan D, Wang X, Conway W, Burns R, Attalla M, Puxty G, Maeder M (2009) Kinetics and mechanism of carbamate formation from CO 2 (aq), carbonate species, and monoethanolamine in aqueous solution. Copyright 2009, American Chemical Society
3.
Zurück zum Zitat Reprinted with permission of John Wiley & Sons, Inc., Seader JD, Henley EJ (2006) Separation Process Principles Reprinted with permission of John Wiley & Sons, Inc., Seader JD, Henley EJ (2006) Separation Process Principles
4.
Zurück zum Zitat van Krevelen DW, Hoftijzer PJ (1948) In Chimie et Industrie, Numero Speciale du XXIe. Congress International de Chimie Industrielle, Brussels van Krevelen DW, Hoftijzer PJ (1948) In Chimie et Industrie, Numero Speciale du XXIe. Congress International de Chimie Industrielle, Brussels
5.
Zurück zum Zitat Setschenow M (1892) Action de líacide carbonique sur les solutions dessels a acides forts. Etude absortiometrique Ann Chim Phys 25:226–270 Setschenow M (1892) Action de líacide carbonique sur les solutions dessels a acides forts. Etude absortiometrique Ann Chim Phys 25:226–270
6.
Zurück zum Zitat (a) Barrett PVL (1966) Gas absorption on a sieve plate. Cambridge University, Cambridge; (b) Danckwerts PV (1970) Gas–liquid reactions. McGraw-Hill, New York, p 276 (a) Barrett PVL (1966) Gas absorption on a sieve plate. Cambridge University, Cambridge; (b) Danckwerts PV (1970) Gas–liquid reactions. McGraw-Hill, New York, p 276
7.
Zurück zum Zitat Onda K, Sada E, Kobayashi T, Kito S, Ito K (1970) Salting-out parameters of gas solubility in aqueous salt solutions J Chem Eng Jpn 3(1):18–24 CrossRef Onda K, Sada E, Kobayashi T, Kito S, Ito K (1970) Salting-out parameters of gas solubility in aqueous salt solutions J Chem Eng Jpn 3(1):18–24 CrossRef
8.
Zurück zum Zitat Houghton G, McLean AM, Ritchie PD (1957) Compressibility, fugacity, and water-solubility of carbon dioxide in the region 0–36 atm. and 0–100 °C Chem Eng Sci 6(3):132–137 Houghton G, McLean AM, Ritchie PD (1957) Compressibility, fugacity, and water-solubility of carbon dioxide in the region 0–36 atm. and 0–100 °C Chem Eng Sci 6(3):132–137
9.
Zurück zum Zitat Muldoon MJ, Aki SNVK, Anderson JL, Dixon JNK, Brennecke JF (2007) Improving carbon dioxide solubility in ionic liquids J Phys Chem B 111(30):9001–9009 CrossRef Muldoon MJ, Aki SNVK, Anderson JL, Dixon JNK, Brennecke JF (2007) Improving carbon dioxide solubility in ionic liquids J Phys Chem B 111(30):9001–9009 CrossRef
10.
Zurück zum Zitat Jacquemin J, Husson P, Mayer V, Cibulka I (2007) High-pressure volumetric properties of imidazolium-based ionic liquids: effect of the anion J Chem Eng Data 52(6):2204–2211 CrossRef Jacquemin J, Husson P, Mayer V, Cibulka I (2007) High-pressure volumetric properties of imidazolium-based ionic liquids: effect of the anion J Chem Eng Data 52(6):2204–2211 CrossRef
11.
Zurück zum Zitat (a) Cadena C, Anthony JL, Shah JK, Morrow TI, Brennecke JF, Maginn EJ (2004) Why is CO 2 so soluble in imidazolium-based ionic liquids? J Am Chem Soc 126(16), 5300–5308; (b) Huang X, Margulis CJ, Li Y, Berne BJ (2005) Why is the partial molar volume of CO 2 so small when dissolved in a room temperature ionic liquid? Structure and dynamics of CO 2 dissolved in [Bmim + ][PF 6 − ] J Am Chem Soc 127(50)17842–17851 (a) Cadena C, Anthony JL, Shah JK, Morrow TI, Brennecke JF, Maginn EJ (2004) Why is CO 2 so soluble in imidazolium-based ionic liquids? J Am Chem Soc 126(16), 5300–5308; (b) Huang X, Margulis CJ, Li Y, Berne BJ (2005) Why is the partial molar volume of CO 2 so small when dissolved in a room temperature ionic liquid? Structure and dynamics of CO 2 dissolved in [Bmim + ][PF 6  ] J Am Chem Soc 127(50)17842–17851
12.
Zurück zum Zitat (a) Blanchard LA, Gu Z, Brennecke JF (2001) High-pressure phase behavior of ionic liquid/CO 2 systems J Phys Chem B 105(12):2437–2444; (b) Huang J, Rüther T (2009) Why are ionic liquids attractive for CO 2 absorption? An overview Aust J Chem 62(4):298–308 (a) Blanchard LA, Gu Z, Brennecke JF (2001) High-pressure phase behavior of ionic liquid/CO 2 systems J Phys Chem B 105(12):2437–2444; (b) Huang J, Rüther T (2009) Why are ionic liquids attractive for CO 2 absorption? An overview Aust J Chem 62(4):298–308
13.
Zurück zum Zitat Sherwood TK, Pigford RL, Wilke CR (1975) Mass transfer. McGraw-Hill, New York, p 677 Sherwood TK, Pigford RL, Wilke CR (1975) Mass transfer. McGraw-Hill, New York, p 677
14.
Zurück zum Zitat (a) Mandal BP, Kundu M, Padhiyar NU, Bandyopadhyay SS (2004) Physical solubility and diffusivity of N 2O and CO 2 into aqueous solutions of (2-amino-2-methyl-1-propanol +diethanolamine) and (N-methyldiethanolamine + diethanolamine) J Chem Eng Data 49(2):264–270; (b) Mandal BP, Kundu M, Bandyopadhyay SS (2005) Physical solubility and diffusivity of N 2O and CO 2 into aqueous solutions of (2-amino-2-methyl-1-propanol + monoethanolamine) and (N-methyldiethanolamine + monoethanolamine) J Chem Eng Data 50(2):352–358; (c) Mathonat C, Majer V, Mather AE, Grolier JPE (1997) Enthalpies of absorption and solubility of CO 2 in aqueous solutions of methyldiethanolamine Fluid Phase Equilib 140(1–2):171–182 (a) Mandal BP, Kundu M, Padhiyar NU, Bandyopadhyay SS (2004) Physical solubility and diffusivity of N 2O and CO 2 into aqueous solutions of (2-amino-2-methyl-1-propanol +diethanolamine) and (N-methyldiethanolamine + diethanolamine) J Chem Eng Data 49(2):264–270; (b) Mandal BP, Kundu M, Bandyopadhyay SS (2005) Physical solubility and diffusivity of N 2O and CO 2 into aqueous solutions of (2-amino-2-methyl-1-propanol + monoethanolamine) and (N-methyldiethanolamine + monoethanolamine) J Chem Eng Data 50(2):352–358; (c) Mathonat C, Majer V, Mather AE, Grolier JPE (1997) Enthalpies of absorption and solubility of CO 2 in aqueous solutions of methyldiethanolamine Fluid Phase Equilib 140(1–2):171–182
15.
Zurück zum Zitat Chapman S, Cowling TG (1991) The mathematical theory of non-uniform gases: an account of the kinetic theory of viscosity, thermal conduction, and diffusion in gases. Cambridge University Press, Cambridge Chapman S, Cowling TG (1991) The mathematical theory of non-uniform gases: an account of the kinetic theory of viscosity, thermal conduction, and diffusion in gases. Cambridge University Press, Cambridge
16.
Zurück zum Zitat Wilke CR, Chang PC (1955) Correlations of diffusion coefficients in dilute solutions Am Inst Chem Eng 1:264 Wilke CR, Chang PC (1955) Correlations of diffusion coefficients in dilute solutions Am Inst Chem Eng 1:264
17.
Zurück zum Zitat Le Bas G (1915) The molecular volumes of liquid chemical compounds. Longmans, Green, New York Le Bas G (1915) The molecular volumes of liquid chemical compounds. Longmans, Green, New York
18.
Zurück zum Zitat Hayduk W, Laudie H (1974) Prediction of diffusion coefficients for non-electrolytes in dilute aequous solutions Am Inst Chem Eng 20:611 CrossRef Hayduk W, Laudie H (1974) Prediction of diffusion coefficients for non-electrolytes in dilute aequous solutions Am Inst Chem Eng 20:611 CrossRef
19.
Zurück zum Zitat Lusis MA, Ratcliff GA (1971) Diffusion of inert and hydrogen-bonding solutes in aliphatic alcohols Am Inst Chem Eng 17:1492 CrossRef Lusis MA, Ratcliff GA (1971) Diffusion of inert and hydrogen-bonding solutes in aliphatic alcohols Am Inst Chem Eng 17:1492 CrossRef
20.
Zurück zum Zitat Akgerman A, Gainer JL (1972) Diffusion of gases in liquids Ind Eng Chem Fund 11:373 CrossRef Akgerman A, Gainer JL (1972) Diffusion of gases in liquids Ind Eng Chem Fund 11:373 CrossRef
21.
Zurück zum Zitat Gainer JL, Metzner AB (1965) Transport phenomena 6, vol In AIChE- Inst Chem Eng Joint Meet, London Gainer JL, Metzner AB (1965) Transport phenomena 6, vol In AIChE- Inst Chem Eng Joint Meet, London
22.
Zurück zum Zitat Hiss TG, Cussler EL (1973) Diffusion in high viscosity liquids Am Inst Chem Eng 19:698 CrossRef Hiss TG, Cussler EL (1973) Diffusion in high viscosity liquids Am Inst Chem Eng 19:698 CrossRef
23.
Zurück zum Zitat Treybal RE (1981) Mass transfer operations, vol 2. McGraw-Hill, Singapore Treybal RE (1981) Mass transfer operations, vol 2. McGraw-Hill, Singapore
24.
Zurück zum Zitat Mandal BP, Kundu M, Bandyopadhyay SS (2003) Density and viscosity of aqueous solutions of (N-methyldiethanolamine + monoethanolamine), (N-methyldiethanolamine + diethanolamine), (2-amino-2-methyl-1-propanol + monoethanolamine), and (2-amino-2-methyl-1-propanol + diethanolamine) J Chem Eng Data 48(3)703–707 CrossRef Mandal BP, Kundu M, Bandyopadhyay SS (2003) Density and viscosity of aqueous solutions of (N-methyldiethanolamine + monoethanolamine), (N-methyldiethanolamine + diethanolamine), (2-amino-2-methyl-1-propanol + monoethanolamine), and (2-amino-2-methyl-1-propanol + diethanolamine) J Chem Eng Data 48(3)703–707 CrossRef
25.
Zurück zum Zitat Gubbins KE, Bhatia KK, Walker RDJ (1966) Am Inst Chem Eng 2:548 Gubbins KE, Bhatia KK, Walker RDJ (1966) Am Inst Chem Eng 2:548
26.
Zurück zum Zitat Ratcliff GA, Holdcroft JG (1963) Trans Inst Chem Eng 41:315 Ratcliff GA, Holdcroft JG (1963) Trans Inst Chem Eng 41:315
27.
Zurück zum Zitat Shiflett MB, Yokozeki A (2005) Solubilities and diffusivities of carbon dioxide in ionic liquids: [bmim][PF 6] and [bmim][BF 4] Ind Eng Chem Res 44(12):4453–4464 CrossRef Shiflett MB, Yokozeki A (2005) Solubilities and diffusivities of carbon dioxide in ionic liquids: [bmim][PF 6] and [bmim][BF 4] Ind Eng Chem Res 44(12):4453–4464 CrossRef
28.
Zurück zum Zitat Morgan D, Ferguson L, Scovazzo P (2005) Diffusivities of gases in room-temperature ionic liquids: data and correlations obtained using a lag-time technique Ind Eng Chem Res 44(13):4815–4823 CrossRef Morgan D, Ferguson L, Scovazzo P (2005) Diffusivities of gases in room-temperature ionic liquids: data and correlations obtained using a lag-time technique Ind Eng Chem Res 44(13):4815–4823 CrossRef
29.
Zurück zum Zitat Tokuda H, Tsuzuki S, Susan MABH, Hayamizu K, Watanabe M (2006) How ionic are room-temperature ionic liquids? An indicator of the physicochemical properties J Phys Chem B 110(39):19593–19600 CrossRef Tokuda H, Tsuzuki S, Susan MABH, Hayamizu K, Watanabe M (2006) How ionic are room-temperature ionic liquids? An indicator of the physicochemical properties J Phys Chem B 110(39):19593–19600 CrossRef
30.
Zurück zum Zitat Guerrero Sanchez C, Lara Ceniceros T, Jimenez Regalado E, Raşa M, Schubert US (2007) Magnetorheological fluids based on ionic liquids Adv Mater 19(13):1740–1747 CrossRef Guerrero Sanchez C, Lara Ceniceros T, Jimenez Regalado E, Raşa M, Schubert US (2007) Magnetorheological fluids based on ionic liquids Adv Mater 19(13):1740–1747 CrossRef
31.
Zurück zum Zitat Bonhôte P, Dias AP, Papageorgiou N, Kalyanasundaram K, Grätzel M (1996) Hydrophobic, highly conductive ambient-temperature molten salts Inorg Chem 35(5):1168–1178 CrossRef Bonhôte P, Dias AP, Papageorgiou N, Kalyanasundaram K, Grätzel M (1996) Hydrophobic, highly conductive ambient-temperature molten salts Inorg Chem 35(5):1168–1178 CrossRef
32.
Zurück zum Zitat Camper D, Bara J, Koval C, Noble R (2006) Bulk-fluid solubility and membrane feasibility of Rmim-based room-temperature ionic liquids Ind Eng Chem Res 45(18):6279–6283 CrossRef Camper D, Bara J, Koval C, Noble R (2006) Bulk-fluid solubility and membrane feasibility of Rmim-based room-temperature ionic liquids Ind Eng Chem Res 45(18):6279–6283 CrossRef
33.
Zurück zum Zitat Brubaker DW, Kammermeyer K (1954) Collected research papers for 1954 Ind Eng Chem 46:733 CrossRef Brubaker DW, Kammermeyer K (1954) Collected research papers for 1954 Ind Eng Chem 46:733 CrossRef
34.
Zurück zum Zitat Davies GA, Ponter AB, Crains K (1967) The diffusion of carbon dioxide in organic liquids Can J Chem Eng 45:372 Davies GA, Ponter AB, Crains K (1967) The diffusion of carbon dioxide in organic liquids Can J Chem Eng 45:372
35.
Zurück zum Zitat Walker NA, Smith FA, Cathers IR (1980) Bicarbonate assimilation by fresh-water charophytes and higher plants: I. Membrane transport of bicarbonate ions is not proven J Membr Biol 57(1):51–58 CrossRef Walker NA, Smith FA, Cathers IR (1980) Bicarbonate assimilation by fresh-water charophytes and higher plants: I. Membrane transport of bicarbonate ions is not proven J Membr Biol 57(1):51–58 CrossRef
36.
Zurück zum Zitat Glasstone S, Lewis D (1960) Elements of physical chemistry. Macmillan, London, p 760 Glasstone S, Lewis D (1960) Elements of physical chemistry. Macmillan, London, p 760
37.
Zurück zum Zitat Hou Y, Baltus RE (2007) Experimental measurement of the solubility and diffusivity of CO 2 in room-temperature ionic liquids using a transient thin-liquid-film method Ind Eng Chem Res 46(24):8166–8175 CrossRef Hou Y, Baltus RE (2007) Experimental measurement of the solubility and diffusivity of CO 2 in room-temperature ionic liquids using a transient thin-liquid-film method Ind Eng Chem Res 46(24):8166–8175 CrossRef
38.
Zurück zum Zitat Palmer DA, Van Eldik R (1983) The chemistry of metal carbonato and carbon dioxide complexes Chem Rev 83(6):651–731 CrossRef Palmer DA, Van Eldik R (1983) The chemistry of metal carbonato and carbon dioxide complexes Chem Rev 83(6):651–731 CrossRef
39.
Zurück zum Zitat (a) Peng Z, Merz Jr KM (1993) Theoretical investigation of the CO 2 + OH − → HCO 3 − reaction in the gas and aqueous phases J Am Chem Soc 115(21):9640–9647; (b) Nemukhin AV, Topol IA, Grigorenko BL, Burt SK (2002) On the origin of potential barrier for the reaction OH − + CO 2 →HCO 3 −  in water: studies by using continuum and cluster solvation methods J Phys Chem B 106(7):1734–1740 (a) Peng Z, Merz Jr KM (1993) Theoretical investigation of the CO 2 + OH  → HCO 3  reaction in the gas and aqueous phases J Am Chem Soc 115(21):9640–9647; (b) Nemukhin AV, Topol IA, Grigorenko BL, Burt SK (2002) On the origin of potential barrier for the reaction OH  + CO 2 →HCO 3   in water: studies by using continuum and cluster solvation methods J Phys Chem B 106(7):1734–1740
40.
Zurück zum Zitat Li WK, McKee ML (1997) Theoretical study of OH and H 2O addition to SO 2 J Phys Chem A 101(50):9778–9782 CrossRef Li WK, McKee ML (1997) Theoretical study of OH and H 2O addition to SO 2 J Phys Chem A 101(50):9778–9782 CrossRef
41.
Zurück zum Zitat Glasstone S, Laidler KJ, Eyring H (1941) The theory of rate process. McGraw-Hill, New York Glasstone S, Laidler KJ, Eyring H (1941) The theory of rate process. McGraw-Hill, New York
42.
Zurück zum Zitat Wynne Jones WFK, Eyring H (1935) The absolute rate of reactions in condensed phases J Chem Phys 3:492 CrossRef Wynne Jones WFK, Eyring H (1935) The absolute rate of reactions in condensed phases J Chem Phys 3:492 CrossRef
43.
Zurück zum Zitat Evans MG, Polanyi M (1936) Further considerations on the thermodynamics of chemical equilibria and reaction rates. T Faraday Soc 32:1333–1360 CrossRef Evans MG, Polanyi M (1936) Further considerations on the thermodynamics of chemical equilibria and reaction rates. T Faraday Soc 32:1333–1360 CrossRef
44.
Zurück zum Zitat Bell RP (1937) Relations between the energy and entropy of solution and their significance T Faraday Soc 33:496–501 CrossRef Bell RP (1937) Relations between the energy and entropy of solution and their significance T Faraday Soc 33:496–501 CrossRef
45.
Zurück zum Zitat Pinsent BRW, Pearson L, Roughton FJW (1956) The kinetics of combination of carbon dioxide with hydroxide ions T Faraday Soc 52:1512–1520 CrossRef Pinsent BRW, Pearson L, Roughton FJW (1956) The kinetics of combination of carbon dioxide with hydroxide ions T Faraday Soc 52:1512–1520 CrossRef
46.
Zurück zum Zitat Caplow M (1968) Kinetics of carbamate formation and breakdown J Am Chem Soc 90(24):6795–6803 CrossRef Caplow M (1968) Kinetics of carbamate formation and breakdown J Am Chem Soc 90(24):6795–6803 CrossRef
47.
Zurück zum Zitat (a) Crooks JE, Donnellan JP (1989) Kinetics and mechanism of the reaction between carbon dioxide and amines in aqueous solution J Am Chem Soc Farad T 2 1989(4):331–333; (b) da Silva EF, Svendsen HF (2004) Ab initio study of the reaction of carbamate formation from CO 2 and alkanolamines Ind Eng Chem Res 43(13):3413–3418 (a) Crooks JE, Donnellan JP (1989) Kinetics and mechanism of the reaction between carbon dioxide and amines in aqueous solution J Am Chem Soc Farad T 2 1989(4):331–333; (b) da Silva EF, Svendsen HF (2004) Ab initio study of the reaction of carbamate formation from CO 2 and alkanolamines Ind Eng Chem Res 43(13):3413–3418
48.
Zurück zum Zitat (a) Jensen MB, Jorgensen E, Fourholt C (1954) Reactions between carbon dioxide and amino alcohols. I. Monoethanolamine and diethanolamine Acta Chem Scand 8(7):1137; (b) Danckwerts PV, Sharma MM (1966) The absorption of carbon dioxide into solutions of alkalis and amines: (with some notes on hydrogen sulphide and carbonyl sulphide) Chem Eng 1966:CE244–CE279; (c) Penny DE, Ritter TJ (1983) Kinetic study of the reaction between carbon dioxide and primary amines J Am Chem Soc Farad T 1 79(9):2103–2109 (a) Jensen MB, Jorgensen E, Fourholt C (1954) Reactions between carbon dioxide and amino alcohols. I. Monoethanolamine and diethanolamine Acta Chem Scand 8(7):1137; (b) Danckwerts PV, Sharma MM (1966) The absorption of carbon dioxide into solutions of alkalis and amines: (with some notes on hydrogen sulphide and carbonyl sulphide) Chem Eng 1966:CE244–CE279; (c) Penny DE, Ritter TJ (1983) Kinetic study of the reaction between carbon dioxide and primary amines J Am Chem Soc Farad T 1 79(9):2103–2109
49.
Zurück zum Zitat McCann N, Maeder M, Hasse H (2011) Prediction of the overall enthalpy of CO 2 absorption in aqueous amine systems from experimentally determined reaction enthalpies Energy Proc 4:1542–1549 CrossRef McCann N, Maeder M, Hasse H (2011) Prediction of the overall enthalpy of CO 2 absorption in aqueous amine systems from experimentally determined reaction enthalpies Energy Proc 4:1542–1549 CrossRef
50.
Zurück zum Zitat (a) Alper E (1920) Reaction mechanism and kinetics of aqueous solutions of 2-amino-2-methyl-1-propanol and carbon dioxide Ind Eng Chem Res 29(8):1725–1728; (b) Yih SM, Shen KP (1988) Kinetics of carbon dioxide reaction with sterically hindered 2-amino-2-methyl-1-propanol aqueous solutions Ind Eng Chem Res 27(12):2237–2241; (c) Rinker EB, Sami SA, Sandall OC (1995) Kinetics and modelling of carbon dioxide absorption into aqueous solutions of N-methyldiethanolamine Chem Eng Sci 50(5):755–768 (a) Alper E (1920) Reaction mechanism and kinetics of aqueous solutions of 2-amino-2-methyl-1-propanol and carbon dioxide Ind Eng Chem Res 29(8):1725–1728; (b) Yih SM, Shen KP (1988) Kinetics of carbon dioxide reaction with sterically hindered 2-amino-2-methyl-1-propanol aqueous solutions Ind Eng Chem Res 27(12):2237–2241; (c) Rinker EB, Sami SA, Sandall OC (1995) Kinetics and modelling of carbon dioxide absorption into aqueous solutions of N-methyldiethanolamine Chem Eng Sci 50(5):755–768
51.
Zurück zum Zitat (a) McCann N, Maeder M, Attalla M (2008) Simulation of enthalpy and capacity of CO 2 absorption by aqueous amine systems Ind Eng Chem Res 47(6):2002–2009; (b) Jou FY, Otto FD, Mather AE (1994) Vapor–liquid equilibrium of carbon dioxide in aqueous mixtures of monoethanolamine and methyldiethanolamine Ind Eng Chem Res 33(8):2002–2005 (a) McCann N, Maeder M, Attalla M (2008) Simulation of enthalpy and capacity of CO 2 absorption by aqueous amine systems Ind Eng Chem Res 47(6):2002–2009; (b) Jou FY, Otto FD, Mather AE (1994) Vapor–liquid equilibrium of carbon dioxide in aqueous mixtures of monoethanolamine and methyldiethanolamine Ind Eng Chem Res 33(8):2002–2005
52.
Zurück zum Zitat McCann N, Phan D, Wang X, Conway W, Burns R, Attalla M, Puxty G, Maeder M (2009) Kinetics and mechanism of carbamate formation from CO 2 (aq), carbonate species, and monoethanolamine in aqueous solution J Phys Chem A 113(17):5022–5029 CrossRef McCann N, Phan D, Wang X, Conway W, Burns R, Attalla M, Puxty G, Maeder M (2009) Kinetics and mechanism of carbamate formation from CO 2 (aq), carbonate species, and monoethanolamine in aqueous solution J Phys Chem A 113(17):5022–5029 CrossRef
53.
Zurück zum Zitat Bishnoi S, Rochelle GT (2000) Absorption of carbon dioxide into aqueous piperazine: reaction kinetics, mass transfer and solubility Chem Eng Sci 55(22):5531–5543 CrossRef Bishnoi S, Rochelle GT (2000) Absorption of carbon dioxide into aqueous piperazine: reaction kinetics, mass transfer and solubility Chem Eng Sci 55(22):5531–5543 CrossRef
54.
Zurück zum Zitat Khalifah RG (1971) The carbon dioxide hydration activity of carbonic anhydrase J Biol Chem 246(8):2561 Khalifah RG (1971) The carbon dioxide hydration activity of carbonic anhydrase J Biol Chem 246(8):2561
55.
Zurück zum Zitat (a) Harned HS, Owen BB (1958) The physical chemistry of electrolytic solutions, vol 1 Reinhold Publishing Corporation, New York; (b) Puxty G, Rowland R (2011) Modeling CO 2 mass transfer in amine mixtures: PZ-AMP and PZ-MDEA Environ SciTechnol 45:2398–2405 (a) Harned HS, Owen BB (1958) The physical chemistry of electrolytic solutions, vol 1 Reinhold Publishing Corporation, New York; (b) Puxty G, Rowland R (2011) Modeling CO 2 mass transfer in amine mixtures: PZ-AMP and PZ-MDEA Environ SciTechnol 45:2398–2405
56.
Zurück zum Zitat Albert A, Serjeant EP (1962) Ionization constants of acids and bases: a laboratory manual. Methuen, London Albert A, Serjeant EP (1962) Ionization constants of acids and bases: a laboratory manual. Methuen, London
57.
Zurück zum Zitat Jensen BS (1959) The synthesis of 1-phenyl-3-methyl-4-acyl-pyrazolones-5 Acta Chem Scand 13(8):1668–1670 CrossRef Jensen BS (1959) The synthesis of 1-phenyl-3-methyl-4-acyl-pyrazolones-5 Acta Chem Scand 13(8):1668–1670 CrossRef
58.
Zurück zum Zitat Bates RG, Bower VE (1962) Revised standard values for pH measurements from 0 to 95 °C J Res Natl Bur Stand 66A(2):179–184 CrossRef Bates RG, Bower VE (1962) Revised standard values for pH measurements from 0 to 95 °C J Res Natl Bur Stand 66A(2):179–184 CrossRef
59.
Zurück zum Zitat Versteeg GF, Van Dijck LAJ, Van Swaaij WPM (1996) On the kinetics between CO 2 and alkanolamines both in aqueous and non-aqueous solutions. An overview Chem Eng Commun 144:113–158 CrossRef Versteeg GF, Van Dijck LAJ, Van Swaaij WPM (1996) On the kinetics between CO 2 and alkanolamines both in aqueous and non-aqueous solutions. An overview Chem Eng Commun 144:113–158 CrossRef
60.
Zurück zum Zitat Silverman DN (1994) In: Pradier JP, Pradier CM (eds) Carbon dioxide chemistry: environmental issues. Woodhead Publishing, Cambridge, p 406 Silverman DN (1994) In: Pradier JP, Pradier CM (eds) Carbon dioxide chemistry: environmental issues. Woodhead Publishing, Cambridge, p 406
61.
Zurück zum Zitat Lewis WK, Whitman WG (1924) Principles of gas absorption Ind Eng Chem 16(12):1215–1220 CrossRef Lewis WK, Whitman WG (1924) Principles of gas absorption Ind Eng Chem 16(12):1215–1220 CrossRef
62.
Zurück zum Zitat Whitman WG (1923) The two-film theory of gas absorption Chem Metall Eng 29:146–148 Whitman WG (1923) The two-film theory of gas absorption Chem Metall Eng 29:146–148
63.
Zurück zum Zitat Nernst W (1904) Theory of reaction velocity in heterogenous systems Z Phys Chem 47:52–55 Nernst W (1904) Theory of reaction velocity in heterogenous systems Z Phys Chem 47:52–55
64.
Zurück zum Zitat Higbie R (1935) Rate of absorption of a gas into a still liquid Trans Am Inst Chem Eng 31:365–389 Higbie R (1935) Rate of absorption of a gas into a still liquid Trans Am Inst Chem Eng 31:365–389
65.
Zurück zum Zitat Danckwerts PV (1951) Significance of liquid-film coefficients in gas absorption Ind Eng Chem 43(6):1460–1467 CrossRef Danckwerts PV (1951) Significance of liquid-film coefficients in gas absorption Ind Eng Chem 43(6):1460–1467 CrossRef
66.
Zurück zum Zitat (a) Richards GM, Ratcliff GA, Danckwerts PV (1964) Kinetics of CO 2 absorption–III: First-order reaction in a packed column Chem Eng Sci 19(5):325–328; (b) Danckwerts PV, McNeil KM (1967) The effects of catalysis on rates of absorption of CO 2 into aqueous amine-potash solutions Chem Eng Sci 22(7):925–930 (a) Richards GM, Ratcliff GA, Danckwerts PV (1964) Kinetics of CO 2 absorption–III: First-order reaction in a packed column Chem Eng Sci 19(5):325–328; (b) Danckwerts PV, McNeil KM (1967) The effects of catalysis on rates of absorption of CO 2 into aqueous amine-potash solutions Chem Eng Sci 22(7):925–930
67.
Zurück zum Zitat Kister HZ, Scherffius J, Afshar K, Abkar E (2007) Realistically predict capacity and pressure drop for packed columns Chem Eng Prog 103(7):28–38 Kister HZ, Scherffius J, Afshar K, Abkar E (2007) Realistically predict capacity and pressure drop for packed columns Chem Eng Prog 103(7):28–38
68.
Zurück zum Zitat Sherwood TK, Holloway FAL (1940) Performance of packed towers-liquid film data for several packings Trans Am Inst Chem Eng 36:39–70 Sherwood TK, Holloway FAL (1940) Performance of packed towers-liquid film data for several packings Trans Am Inst Chem Eng 36:39–70
69.
Zurück zum Zitat Furnas CC, Bellinger F (1938) Operating characteristics of packed columns I Trans Am Inst Chem Eng 34:251 Furnas CC, Bellinger F (1938) Operating characteristics of packed columns I Trans Am Inst Chem Eng 34:251
70.
Zurück zum Zitat Cryder DS, Maloney JO (1941) The rate of absorption of carbon dioxide in diethanolamine solutions Trans Am Inst Chem Eng 37:827–852 Cryder DS, Maloney JO (1941) The rate of absorption of carbon dioxide in diethanolamine solutions Trans Am Inst Chem Eng 37:827–852
71.
Zurück zum Zitat Tepe JB, Dodge BF (1943) Absorption of carbon dioxide by sodium hydroxide solutions in a packed column Trans Am Inst Chem Eng 39:255–276 Tepe JB, Dodge BF (1943) Absorption of carbon dioxide by sodium hydroxide solutions in a packed column Trans Am Inst Chem Eng 39:255–276
72.
Zurück zum Zitat Spector NA, Dodge BF (1946) Removal of carbon dioxide from atmospheric air Trans Am Inst Chem Eng 42:827–848 Spector NA, Dodge BF (1946) Removal of carbon dioxide from atmospheric air Trans Am Inst Chem Eng 42:827–848
73.
Zurück zum Zitat Colburn AP (1939) The simplified calculation of diffusal processes. General considerations of two-film resistance Trans Am Inst Chem Eng 35:211–236 Colburn AP (1939) The simplified calculation of diffusal processes. General considerations of two-film resistance Trans Am Inst Chem Eng 35:211–236
74.
Zurück zum Zitat (a) Onda K, Takeuchi H, Okumoto Y (1968) Mass transfer coefficients between gas and liquid phases in packed columns. J Chem Eng Jpn 1(1):56–62; (b) Vital TJ, Grossel SS, Olsen PI (1984) Estimating separation efficiency Hydrocarbon Process 63(11):147–153 (a) Onda K, Takeuchi H, Okumoto Y (1968) Mass transfer coefficients between gas and liquid phases in packed columns. J Chem Eng Jpn 1(1):56–62; (b) Vital TJ, Grossel SS, Olsen PI (1984) Estimating separation efficiency Hydrocarbon Process 63(11):147–153
75.
Zurück zum Zitat Cornell D, Knapp WG, Close HJ, Fair JR (1960) Mass transfer efficiency-packed columns Chem Eng Prog 56:68 Cornell D, Knapp WG, Close HJ, Fair JR (1960) Mass transfer efficiency-packed columns Chem Eng Prog 56:68
76.
Zurück zum Zitat Towler G, Sinnott R (2008) Chemical engineering design principles, practice and economics of plant and process design. Elsevier, Burlington, p 1245 Towler G, Sinnott R (2008) Chemical engineering design principles, practice and economics of plant and process design. Elsevier, Burlington, p 1245
77.
Zurück zum Zitat Ulrich GD, Vasudevan PT (2004) Chemical engineering process design and economics a practical guide, 2nd edn. Process Publishing, Durham, p 706 Ulrich GD, Vasudevan PT (2004) Chemical engineering process design and economics a practical guide, 2nd edn. Process Publishing, Durham, p 706
78.
Zurück zum Zitat Tan SH (1981) centrifugal-pump power needs Oil Gas J Tan SH (1981) centrifugal-pump power needs Oil Gas J
79.
Zurück zum Zitat Ramezan M, Skone TJ, Nsakala N, Liljedahl GN (2007) Carbon dioxide capture from existing coal-fired power plants; National Energy Technology Laboratory (NETL). U.S. Department of Energy, Pittsburgh Ramezan M, Skone TJ, Nsakala N, Liljedahl GN (2007) Carbon dioxide capture from existing coal-fired power plants; National Energy Technology Laboratory (NETL). U.S. Department of Energy, Pittsburgh
80.
Zurück zum Zitat Kim I, Svendsen HF (2007) Heat of absorption of carbon dioxide (CO 2) in monoethanolamine (MEA) and 2-(Aminoethyl) ethanolamine (AEEA) solutions Ind Eng Chem Res 46(17):5803–5809 CrossRef Kim I, Svendsen HF (2007) Heat of absorption of carbon dioxide (CO 2) in monoethanolamine (MEA) and 2-(Aminoethyl) ethanolamine (AEEA) solutions Ind Eng Chem Res 46(17):5803–5809 CrossRef
81.
Zurück zum Zitat Weiland RH, Dingman JC, Cronin DB (1997) Heat capacity of aqueous monoethanolamine, diethanolamine, N-methyldiethanolamine, and N-methyldiethanolamine-based blends with carbon dioxide J Chem Eng Data 42(5):1004–1006 CrossRef Weiland RH, Dingman JC, Cronin DB (1997) Heat capacity of aqueous monoethanolamine, diethanolamine, N-methyldiethanolamine, and N-methyldiethanolamine-based blends with carbon dioxide J Chem Eng Data 42(5):1004–1006 CrossRef
82.
Zurück zum Zitat Al-Ghawas HA, Hagewiesche DP, Ruiz-Ibanez G, Sandall OC (1989) Physicochemical properties important for carbon dioxide absorption in aqueous methyldiethanolamine J Chem Eng Data 34(4):385–391 CrossRef Al-Ghawas HA, Hagewiesche DP, Ruiz-Ibanez G, Sandall OC (1989) Physicochemical properties important for carbon dioxide absorption in aqueous methyldiethanolamine J Chem Eng Data 34(4):385–391 CrossRef
83.
Zurück zum Zitat Singh D, Croiset E, Douglas PL, Douglas MA (2003) Techno-economic study of CO 2 capture from an existing coal-fired power plant: MEA scrubbing vs. O 2/CO 2 Recycle Combustion 44(19): 3073–3091 Singh D, Croiset E, Douglas PL, Douglas MA (2003) Techno-economic study of CO 2 capture from an existing coal-fired power plant: MEA scrubbing vs. O 2/CO 2 Recycle Combustion 44(19): 3073–3091
Metadaten
Titel
Absorption
verfasst von
Prof. Jennifer Wilcox
Copyright-Jahr
2012
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4614-2215-0_3