Skip to main content

Tipp

Weitere Kapitel dieses Buchs durch Wischen aufrufen

2012 | OriginalPaper | Buchkapitel

4. Adsorption

verfasst von : Prof. Jennifer Wilcox

Erschienen in: Carbon Capture

Verlag: Springer New York

Abstract

In an adsorption process a gas mixture contacts small porous particles, which can selectively adsorb or complex with CO2 for its effective removal from the gas mixture. Sorbent technologies may also be developed to capture CO2 indirectly by focusing on the selective adsorption of other gases in a given gas mixture, e.g., N2, O2, CH4, H2, etc. Adsorption is particularly known for its effectiveness in the separation of dilute mixtures. Molecules of CO2 may be held loosely by weak intermolecular forces, termed physisorption or strongly via covalent bonding, termed chemisorption. Generally, physisorption occurs when the heat of adsorption is less than approximately 10–15 kcal/mol, while chemisorption occurs with heats of adsorption greater than 15 kcal/mol. These are rules of thumb, however, and exceptions do exist. For instance, the heat of physisorption of CO2 in some zeolites has been reported to be as high as 50 kcal/mol, with heats of chemisorption known to extend from as low as 15 kcal/mol to over 100 kcal/mol. The heat of adsorption is a direct measure of the binding strength between a fluid molecule and the surface.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
The Freundlich isotherm differs from Langmuir in that at high \({{p}_{{{\textit{CO}}_{2}}}} \) , the sorbent loading continues to increase, while for the Langmuir case the loading approaches monolayer coverage; \(W=k{{\left( \frac{p}{{{p}_{0}}} \right)}^{{1 / n}}} \) , such that k and n are fitting parameters.
 
Literatur
1.
Zurück zum Zitat Keller GE, Anderson RA, Yon CM (1987) In: Rousseau RW (ed) Handbook of separation process technology. Wiley, New York Keller GE, Anderson RA, Yon CM (1987) In: Rousseau RW (ed) Handbook of separation process technology. Wiley, New York
2.
Zurück zum Zitat Reprinted from Unit Operations of Chemical Engineering, 7 th Ed., McCabe WL, Smith JC, Harriott P, Copyright (2005), with permission from McGraw-Hill Companies, Inc. Reprinted from Unit Operations of Chemical Engineering, 7 th Ed., McCabe WL, Smith JC, Harriott P, Copyright (2005), with permission from McGraw-Hill Companies, Inc.
3.
Zurück zum Zitat Reprinted with permission of John Wiley & Sons, Inc., Ruthven DM (1997) Encyclopedia of separation technology, vol I. Adsorption, gas separation Reprinted with permission of John Wiley & Sons, Inc., Ruthven DM (1997) Encyclopedia of separation technology, vol I. Adsorption, gas separation
4.
Zurück zum Zitat Reprinted from Characterization of porous solids III, Jagiello J, Bandosz TJ, Putyera K, Schwarz JA Adsorption energy and structural heterogeneity of activated carbons, Copyright (1994), with permission from Elsevier Reprinted from Characterization of porous solids III, Jagiello J, Bandosz TJ, Putyera K, Schwarz JA Adsorption energy and structural heterogeneity of activated carbons, Copyright (1994), with permission from Elsevier
5.
Zurück zum Zitat With kind permission from Springer Science + Business Media B.V., Springer and Kluwer Academic Pub, Characterization of porous solids and powders: surface area, pore size, and density, Lowell S, Shields JE, Thomas MA, Thommes M (2004) 39 With kind permission from Springer Science + Business Media B.V., Springer and Kluwer Academic Pub, Characterization of porous solids and powders: surface area, pore size, and density, Lowell S, Shields JE, Thomas MA, Thommes M (2004) 39
6.
Zurück zum Zitat Parra JB, Pis JJ, De Sousa JC, Pajares JA, Bansai RC (1996) Effect of coal preoxidation on the development of microporosity in activated carbons. Carbon 34(6):783–787 Parra JB, Pis JJ, De Sousa JC, Pajares JA, Bansai RC (1996) Effect of coal preoxidation on the development of microporosity in activated carbons. Carbon 34(6):783–787
7.
Zurück zum Zitat Sing KSW, Everett DG, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (2008) In: Ertl H et al (eds) Reporting physisorption data for gas/solid systems. Handbook of heterogeneous catalysis, pp 1217–1230. Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission Sing KSW, Everett DG, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (2008) In: Ertl H et al (eds) Reporting physisorption data for gas/solid systems. Handbook of heterogeneous catalysis, pp 1217–1230. Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission
8.
Zurück zum Zitat Reprinted with permission from Ind Eng Chem Res, Lively RP, Chance RR, Kelley BT, Deckman HW, Drese JH, Jones CW, Koros WJ Hollow fiber adsorbents for CO 2 removal from flue gas (Copyright 2009). American Chemical Society Reprinted with permission from Ind Eng Chem Res, Lively RP, Chance RR, Kelley BT, Deckman HW, Drese JH, Jones CW, Koros WJ Hollow fiber adsorbents for CO 2 removal from flue gas (Copyright 2009). American Chemical Society
9.
Zurück zum Zitat Courtesy of Christopher E. Wilmer, Northwestern University (2011) Courtesy of Christopher E. Wilmer, Northwestern University (2011)
10.
Zurück zum Zitat Yang RT (2003) Adsorbents: fundamentals and applications. Wiley, Hoboken, p 415 Yang RT (2003) Adsorbents: fundamentals and applications. Wiley, Hoboken, p 415
11.
Zurück zum Zitat Medek J (1977) Possibility of micropore analysis of coal and coke from the carbon dioxide isotherm. Fuel 56(2):131–133 Medek J (1977) Possibility of micropore analysis of coal and coke from the carbon dioxide isotherm. Fuel 56(2):131–133
12.
Zurück zum Zitat Shen D, Bülow M, Siperstein F, Engelhard M, Myers AL (2000) Comparison of experimental techniques for measuring isosteric heat of adsorption. Adsorption 6(4):275–286 Shen D, Bülow M, Siperstein F, Engelhard M, Myers AL (2000) Comparison of experimental techniques for measuring isosteric heat of adsorption. Adsorption 6(4):275–286
13.
Zurück zum Zitat Yang Q, Zhong C, Chen JF (2008) Computational study of CO 2 storage in metal-organic frameworks. J Phys Chem C 112(5):1562–1569 Yang Q, Zhong C, Chen JF (2008) Computational study of CO 2 storage in metal-organic frameworks. J Phys Chem C 112(5):1562–1569
14.
Zurück zum Zitat (a) Furukawa H, Ko N, Go YB, Aratani N, Choi SB, Choi E, Yazaydin AÖ, Snurr RQ, O’Keeffe M, Kim J (2010) Ultrahigh porosity in metal-organic frameworks. Science 329(5990):424; (b) Farha OK, Yazaydın AÖ, Eryazici I, Malliakas CD, Hauser BG, Kanatzidis MG, Nguyen SBT, Snurr RQ, Hupp JT (2010) De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities. Nat Chem 2(11):944–948 (a) Furukawa H, Ko N, Go YB, Aratani N, Choi SB, Choi E, Yazaydin AÖ, Snurr RQ, O’Keeffe M, Kim J (2010) Ultrahigh porosity in metal-organic frameworks. Science 329(5990):424; (b) Farha OK, Yazaydın AÖ, Eryazici I, Malliakas CD, Hauser BG, Kanatzidis MG, Nguyen SBT, Snurr RQ, Hupp JT (2010) De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities. Nat Chem 2(11):944–948
15.
Zurück zum Zitat (a) Green DW (2008) Perry’s chemical engineers’ handbook. McGraw-Hill, New York; (b) Hagen J (2006) Industrial catalysis: a practical approach, 2nd edn. Wiley-VCH Verlag GmbH &Co, Weinheim, p 525; (c) Rubel AM, Stencel JM (1996) Effect of pressure on NO x adsorption by activated carbons. Energy Fuels 10(3):704–708; (d) Moon SI, Extrand CW (2011) Hydrogen chloride and ammonia permeation resistance of tetrafluoroethylene-perfluoroalkoxy copolymers. Ind Eng Chem Res 50(5), pp 2905–2909; (e) Baker RW (2004) Membrane technology and applications, 2nd edn. Wiley, Chichester (a) Green DW (2008) Perry’s chemical engineers’ handbook. McGraw-Hill, New York; (b) Hagen J (2006) Industrial catalysis: a practical approach, 2nd edn. Wiley-VCH Verlag GmbH &Co, Weinheim, p 525; (c) Rubel AM, Stencel JM (1996) Effect of pressure on NO x adsorption by activated carbons. Energy Fuels 10(3):704–708; (d) Moon SI, Extrand CW (2011) Hydrogen chloride and ammonia permeation resistance of tetrafluoroethylene-perfluoroalkoxy copolymers. Ind Eng Chem Res 50(5), pp 2905–2909; (e) Baker RW (2004) Membrane technology and applications, 2nd edn. Wiley, Chichester
16.
Zurück zum Zitat (a) Lide DR (2008) CRC handbook of chemistry and physics. CRC Press, Boca Raton, p 2736; (b) Ruthven DM (1984) Principles of adsorption and adsorption processes. Wiley, New York, p 433 (a) Lide DR (2008) CRC handbook of chemistry and physics. CRC Press, Boca Raton, p 2736; (b) Ruthven DM (1984) Principles of adsorption and adsorption processes. Wiley, New York, p 433
17.
Zurück zum Zitat (a) Ruthven DM (1997) Encyclopedia of separation technology. Wiley, New York; (b) Buckingham AD (1959) Molecular quadrupole moments. Q Rev Chem Soc 13(3):183–214; (c) Stogryn DE, Stogryn AP (1966) Molecular multipole moments. Mol Phys 11(4):371–393; (d) Prausnitz JM, Lichtenthaler RN, de Azevedo EG (1986) Molecular thermodynamics of fluid-phase equilibria. Prentice-Hall, Upper Saddle River (a) Ruthven DM (1997) Encyclopedia of separation technology. Wiley, New York; (b) Buckingham AD (1959) Molecular quadrupole moments. Q Rev Chem Soc 13(3):183–214; (c) Stogryn DE, Stogryn AP (1966) Molecular multipole moments. Mol Phys 11(4):371–393; (d) Prausnitz JM, Lichtenthaler RN, de Azevedo EG (1986) Molecular thermodynamics of fluid-phase equilibria. Prentice-Hall, Upper Saddle River
18.
Zurück zum Zitat Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems, with special reference to the determination of surface area and porosity (recommendations 1984). Pure Appl Chem 57(4):603–619 Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems, with special reference to the determination of surface area and porosity (recommendations 1984). Pure Appl Chem 57(4):603–619
19.
Zurück zum Zitat Thorny A, Duval X (1994) Stepwise isotherms and phase transitions in physisorbed films. Surf Sci 299:415–425 Thorny A, Duval X (1994) Stepwise isotherms and phase transitions in physisorbed films. Surf Sci 299:415–425
20.
Zurück zum Zitat Polley MH, Schaeffer WD, Smith WR (1953) Development of stepwise isotherms on carbon black surfaces. J Phys Chem US 57(4):469–471 Polley MH, Schaeffer WD, Smith WR (1953) Development of stepwise isotherms on carbon black surfaces. J Phys Chem US 57(4):469–471
21.
Zurück zum Zitat Greenhalgh E, Redman E (1967) Stepped isotherms on carbons. J Phys Chem US 71(4):1151–1152 Greenhalgh E, Redman E (1967) Stepped isotherms on carbons. J Phys Chem US 71(4):1151–1152
22.
Zurück zum Zitat Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40(9):361–1403 Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40(9):361–1403
23.
Zurück zum Zitat Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60(2):309–319 Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60(2):309–319
24.
Zurück zum Zitat De Boer JH (1968) Dynamical character of adsorption, 2nd edn. Oxford University Press, London, p 256 De Boer JH (1968) Dynamical character of adsorption, 2nd edn. Oxford University Press, London, p 256
25.
Zurück zum Zitat Lowell S, Shields JE, Thomas MA, Thommes M (2004) Characterization of porous solids and powders: surface area, pore size, and density. Kluwer, Dordrecht, p 347 CrossRef Lowell S, Shields JE, Thomas MA, Thommes M (2004) Characterization of porous solids and powders: surface area, pore size, and density. Kluwer, Dordrecht, p 347 CrossRef
26.
Zurück zum Zitat Thiele EW (1939) Relation between catalytic activity and size of particle. Ind Eng Chem 31(7):916–920 Thiele EW (1939) Relation between catalytic activity and size of particle. Ind Eng Chem 31(7):916–920
27.
Zurück zum Zitat Juttner F (1909) Reaktionskinetik und Diffusion. Z Elektrochem Angew P 15 6:169–170 Juttner F (1909) Reaktionskinetik und Diffusion. Z Elektrochem Angew P 15 6:169–170
28.
Zurück zum Zitat (a) Rowsell JLC, Spencer EC, Eckert J, Howard JAK, Yaghi OM (2005) Gas adsorption sites in a large-pore metal-organic framework. Science 309(5739):1350; (b) Collins DJ, Zhou HC (2007) Hydrogen storage in metalñorganic frameworks. J Mater Chem 17(30):3154–3160; (c) D’alessandro DM, Smit B, Long JR (2010) Carbon dioxide capture: prospects for new materials. Angew Chem Int Ed 49:6058–6082 (a) Rowsell JLC, Spencer EC, Eckert J, Howard JAK, Yaghi OM (2005) Gas adsorption sites in a large-pore metal-organic framework. Science 309(5739):1350; (b) Collins DJ, Zhou HC (2007) Hydrogen storage in metalñorganic frameworks. J Mater Chem 17(30):3154–3160; (c) D’alessandro DM, Smit B, Long JR (2010) Carbon dioxide capture: prospects for new materials. Angew Chem Int Ed 49:6058–6082
29.
Zurück zum Zitat (a) Deng S (2006) In: Lee S (ed) Encyclopedia of chemical processing, vol 5. Taylor & Francis Group, New York 2006; (b) Tan X, Liu S, Li K (2001) Preparation and characterization of inorganic hollow fiber membranes. J Membr Sci 188(1):87–95 (a) Deng S (2006) In: Lee S (ed) Encyclopedia of chemical processing, vol 5. Taylor & Francis Group, New York 2006; (b) Tan X, Liu S, Li K (2001) Preparation and characterization of inorganic hollow fiber membranes. J Membr Sci 188(1):87–95
30.
Zurück zum Zitat The Techno Source. http://​www.​thetechnosource.​net/​adsorbents-dessicants.​html The Techno Source. http://​www.​thetechnosource.​net/​adsorbents-dessicants.​html
31.
Zurück zum Zitat (a) Kim S, Ida J, Guliants VV, Lin JYS (2005) Tailoring pore properties of MCM-48 silica for selective adsorption of CO 2. J Phys Chem B 109(13):6287–6293; (b) Sjostrom S, Krutka H (2010) Evaluation of solid sorbents as a retrofit technology for CO 2 capture. Fuel 89(6):1298–1306; (c) Sjostrom S, Krutka H, Starns T, Campbell T (2011) Pilot test results of post-combustion CO 2 capture using solid sorbents. Energy Proc 4:1584–1592 (a) Kim S, Ida J, Guliants VV, Lin JYS (2005) Tailoring pore properties of MCM-48 silica for selective adsorption of CO 2. J Phys Chem B 109(13):6287–6293; (b) Sjostrom S, Krutka H (2010) Evaluation of solid sorbents as a retrofit technology for CO 2 capture. Fuel 89(6):1298–1306; (c) Sjostrom S, Krutka H, Starns T, Campbell T (2011) Pilot test results of post-combustion CO 2 capture using solid sorbents. Energy Proc 4:1584–1592
32.
Zurück zum Zitat (a) McKenzie AL, Fishel CT, Davis RJ (1992) Investigation of the surface structure and basic properties of calcined hydrotalcites. J Catal 138(2):547–561; (b) Occelli ML, Olivier J, Auroux A, Kalwei M, Eckert H (2003) Basicity and porosity of a calcined hydrotalcite-type material from nitrogen porosimetry and adsorption microcalorimetry methods. Chem Mater 15(22):4231–4238; (c) Choi S, Drese JH, Jones CW (2009) Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem 2(9):796–854 (a) McKenzie AL, Fishel CT, Davis RJ (1992) Investigation of the surface structure and basic properties of calcined hydrotalcites. J Catal 138(2):547–561; (b) Occelli ML, Olivier J, Auroux A, Kalwei M, Eckert H (2003) Basicity and porosity of a calcined hydrotalcite-type material from nitrogen porosimetry and adsorption microcalorimetry methods. Chem Mater 15(22):4231–4238; (c) Choi S, Drese JH, Jones CW (2009) Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem 2(9):796–854
33.
Zurück zum Zitat (a) Lapkin A, Bozkaya B, Mays T, Borello L, Edler K, Crittenden B (2003) Preparation and characterisation of chemisorbents based on heteropolyacids supported on synthetic mesoporous carbons and silica. Catal Today 81(4):611–621; (b) Wang S, Yan S, Ma X, Gong J (2011) Recent advances in capture of carbon dioxide using alkali-metal-based oxides. Energy Environ Sci 4:3805–3819 (a) Lapkin A, Bozkaya B, Mays T, Borello L, Edler K, Crittenden B (2003) Preparation and characterisation of chemisorbents based on heteropolyacids supported on synthetic mesoporous carbons and silica. Catal Today 81(4):611–621; (b) Wang S, Yan S, Ma X, Gong J (2011) Recent advances in capture of carbon dioxide using alkali-metal-based oxides. Energy Environ Sci 4:3805–3819
34.
Zurück zum Zitat Parra JB, Pis JJ, De Sousa JC, Pajares JA, Bansal RC (1996) Effect of coal preoxidation on the development of microporosity in activated carbons. Carbon 34(6):783–787 Parra JB, Pis JJ, De Sousa JC, Pajares JA, Bansal RC (1996) Effect of coal preoxidation on the development of microporosity in activated carbons. Carbon 34(6):783–787
35.
Zurück zum Zitat Lewis WK, Gilliland ER, Chertow B, Cadogan WP (1950) Pure gas isotherms. Ind Eng Chem 42(7):1326–1332 Lewis WK, Gilliland ER, Chertow B, Cadogan WP (1950) Pure gas isotherms. Ind Eng Chem 42(7):1326–1332
36.
Zurück zum Zitat (a) Nandi SP, Walker Jr PL (1975) Carbon molecular sieves for the concentration of oxygen from air. Fuel 54(3):169–178; (b) Koresh J, Soffer A (1980) Study of molecular sieve carbons. Part 1—Pore structure, gradual pore opening and mechanism of molecular sieving. J Chem Soc Farad Trans 1 76:2457–2471 (a) Nandi SP, Walker Jr PL (1975) Carbon molecular sieves for the concentration of oxygen from air. Fuel 54(3):169–178; (b) Koresh J, Soffer A (1980) Study of molecular sieve carbons. Part 1—Pore structure, gradual pore opening and mechanism of molecular sieving. J Chem Soc Farad Trans 1 76:2457–2471
37.
Zurück zum Zitat Gan H, Nandi SP, Walker Jr PL (1972) Nature of the porosity in American coals. Fuel 51(4):272–277 Gan H, Nandi SP, Walker Jr PL (1972) Nature of the porosity in American coals. Fuel 51(4):272–277
38.
Zurück zum Zitat (a) Jüntgen H, Seewald H (1975) Charakterisierung der Porenstruktur mikroporser Adsorbentien aus Kohlenstoff Ber Bunsenges. Phys Chem 79(9):734–738; (b) Moore SV, Trimm DL (1977) The preparation of carbon molecular sieves by pore blocking. Carbon 15(3):177–180 (a) Jüntgen H, Seewald H (1975) Charakterisierung der Porenstruktur mikroporser Adsorbentien aus Kohlenstoff Ber Bunsenges. Phys Chem 79(9):734–738; (b) Moore SV, Trimm DL (1977) The preparation of carbon molecular sieves by pore blocking. Carbon 15(3):177–180
39.
Zurück zum Zitat Juntgen H (1977) New applications for carbonaceous adsorbents. Carbon 15(5):273–283 Juntgen H (1977) New applications for carbonaceous adsorbents. Carbon 15(5):273–283
40.
Zurück zum Zitat Walton KS, Abney MB, Douglas LeVan M (2006) CO 2 adsorption in Y and X zeolites modified by alkali metal cation exchange. Micropor Mesopor Mater 91(1–3):78–84 Walton KS, Abney MB, Douglas LeVan M (2006) CO 2 adsorption in Y and X zeolites modified by alkali metal cation exchange. Micropor Mesopor Mater 91(1–3):78–84
41.
Zurück zum Zitat Britt D, Furukawa H, Wang B, Glover TG, Yaghi OM (2009) Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites. Proc Natl Acad Sci U S A 106(49):20637–20640 Britt D, Furukawa H, Wang B, Glover TG, Yaghi OM (2009) Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites. Proc Natl Acad Sci U S A 106(49):20637–20640
42.
Zurück zum Zitat Banerjee R, Furukawa H, Britt D, Knobler C, OíKeeffe M, Yaghi OM (2009) Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties. J Am Chem Soc 131(11):3875–3877 Banerjee R, Furukawa H, Britt D, Knobler C, OíKeeffe M, Yaghi OM (2009) Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties. J Am Chem Soc 131(11):3875–3877
43.
Zurück zum Zitat (a) Bae YS, Snurr RQ (2011) Development and evaluation of porous materials for carbon dioxide separation and capture. Angew Chem Int Edit 50:11586–11596; (b) Davis ME (2002) Ordered porous materials for emerging applications. Nature 417(6891):813–821; (c) James SL (2003) Metal-organic frameworks. Chem Soc Rev 32(5):276–288; (d) Rosseinsky MJ (2004) Recent developments in metal-organic framework chemistry: design, discovery, permanent porosity and flexibility: metal-organic open frameworks. Micropor Mesopor Mater 73(1–2):15–30; (e) Rowsell JLC, Yaghi OM (2004) Metal-organic frameworks: a new class of porous materials. Micropor Mesopor Mater 73(1–2):3–14; (f) Mueller U, Schubert M, Teich F, Puetter H, Schierle-Arndt K, Pastre J (2006) Metal-organic frameworks-prospective industrial applications. J Mater Chem 16(7):626–636; (g) Keskin S, Liu J, Rankin RB, Johnson JK, Sholl DS (2008) Progress, opportunities, and challenges for applying atomically detailed modeling to molecular adsorption and transport in metal-organic framework materials. Ind Eng Chem Res 48(5):2355–2371 (a) Bae YS, Snurr RQ (2011) Development and evaluation of porous materials for carbon dioxide separation and capture. Angew Chem Int Edit 50:11586–11596; (b) Davis ME (2002) Ordered porous materials for emerging applications. Nature 417(6891):813–821; (c) James SL (2003) Metal-organic frameworks. Chem Soc Rev 32(5):276–288; (d) Rosseinsky MJ (2004) Recent developments in metal-organic framework chemistry: design, discovery, permanent porosity and flexibility: metal-organic open frameworks. Micropor Mesopor Mater 73(1–2):15–30; (e) Rowsell JLC, Yaghi OM (2004) Metal-organic frameworks: a new class of porous materials. Micropor Mesopor Mater 73(1–2):3–14; (f) Mueller U, Schubert M, Teich F, Puetter H, Schierle-Arndt K, Pastre J (2006) Metal-organic frameworks-prospective industrial applications. J Mater Chem 16(7):626–636; (g) Keskin S, Liu J, Rankin RB, Johnson JK, Sholl DS (2008) Progress, opportunities, and challenges for applying atomically detailed modeling to molecular adsorption and transport in metal-organic framework materials. Ind Eng Chem Res 48(5):2355–2371
44.
Zurück zum Zitat Lively RP, Chance RR, Kelley BT, Deckman HW, Drese JH, Jones CW, Koros WJ (2009) Hollow fiber adsorbents for CO 2 removal from flue gas. Ind Eng Chem Res 48(15):7314–7324 Lively RP, Chance RR, Kelley BT, Deckman HW, Drese JH, Jones CW, Koros WJ (2009) Hollow fiber adsorbents for CO 2 removal from flue gas. Ind Eng Chem Res 48(15):7314–7324
45.
Zurück zum Zitat Dubinin MM, Radushkevich LV (1966) Evaluation of microporous materials with a new isotherm. Dokl Akad Nauk SSSR 55:331–347 Dubinin MM, Radushkevich LV (1966) Evaluation of microporous materials with a new isotherm. Dokl Akad Nauk SSSR 55:331–347
46.
Zurück zum Zitat Dubinin MM, Asthakov VA (1970) Prediction of gas-phase adsorption isotherms. Adv Chem Ser 102:69–81 Dubinin MM, Asthakov VA (1970) Prediction of gas-phase adsorption isotherms. Adv Chem Ser 102:69–81
47.
Zurück zum Zitat Horvath G, Kawazoe K (1983) Method for the calculation of effective pore size distribution in molecular sieve carbon. J Chem Eng Jpn 16(6):470–475 Horvath G, Kawazoe K (1983) Method for the calculation of effective pore size distribution in molecular sieve carbon. J Chem Eng Jpn 16(6):470–475
48.
Zurück zum Zitat Thommes M (2010) Phsical adsorption characterization of nanoporous materials. Chemie Ingenieur Techni 82:1056–1073 Thommes M (2010) Phsical adsorption characterization of nanoporous materials. Chemie Ingenieur Techni 82:1056–1073
49.
Zurück zum Zitat (a) Ravikovitch PI, Vishnyakov A, Russo R, Neimark AV (2000) Unified approach to pore size characterization of microporous carbonaceous materials from N 2, Ar, and CO 2 adsorption isotherms. Langmuir 16(5):2311–2320; (b) Cazorla-Amoros D, Alcaniz-Monge J, De la Casa-Lillo MA, Linares-Solano A (1998) CO 2 as an adsorptive to characterize carbon molecular sieves and activated carbons. Langmuir 14(16):4589–4596; (c) Cazorla-Amorüs D, Alcaòiz-Monge J, Linares-Solano A (1996) Characterization of activated carbon fibers by CO 2 adsorption. Langmuir 12(11):2820–2824 (a) Ravikovitch PI, Vishnyakov A, Russo R, Neimark AV (2000) Unified approach to pore size characterization of microporous carbonaceous materials from N 2, Ar, and CO 2 adsorption isotherms. Langmuir 16(5):2311–2320; (b) Cazorla-Amoros D, Alcaniz-Monge J, De la Casa-Lillo MA, Linares-Solano A (1998) CO 2 as an adsorptive to characterize carbon molecular sieves and activated carbons. Langmuir 14(16):4589–4596; (c) Cazorla-Amorüs D, Alcaòiz-Monge J, Linares-Solano A (1996) Characterization of activated carbon fibers by CO 2 adsorption. Langmuir 12(11):2820–2824
50.
Zurück zum Zitat Kuwabara H, Suzuki T, Kaneko K (1991) Ultramicropores in microporous carbon fibres evidenced by helium adsorption at 4.2 K. J Chem Soc Farad T 87(12):1915–1916 Kuwabara H, Suzuki T, Kaneko K (1991) Ultramicropores in microporous carbon fibres evidenced by helium adsorption at 4.2 K. J Chem Soc Farad T 87(12):1915–1916
51.
Zurück zum Zitat Manovic V, Anthony EJ (2009) Screening of binders for pelletization of CaO-based sorbents for CO 2 capture. Energy Fuels 23(10):4797–4804 Manovic V, Anthony EJ (2009) Screening of binders for pelletization of CaO-based sorbents for CO 2 capture. Energy Fuels 23(10):4797–4804
52.
Zurück zum Zitat Yue MB, Sun LB, Cao Y, Wang ZJ, Wang Y, Yu Q, Zhu JH (2008) Promoting the CO 2 adsorption in the amine-containing SBA-15 by hydroxyl group. Micropor Mesopor Mater 114(1–3):74–81 Yue MB, Sun LB, Cao Y, Wang ZJ, Wang Y, Yu Q, Zhu JH (2008) Promoting the CO 2 adsorption in the amine-containing SBA-15 by hydroxyl group. Micropor Mesopor Mater 114(1–3):74–81
53.
Zurück zum Zitat Xu X, Song C, Andresen JM, Miller BG, Scaroni AW (2002) Novel polyethylenimine-modified mesoporous molecular sieve of MCM-41 type as high-capacity adsorbent for CO 2 capture. Energy Fuels 16(6):1463–1469 Xu X, Song C, Andresen JM, Miller BG, Scaroni AW (2002) Novel polyethylenimine-modified mesoporous molecular sieve of MCM-41 type as high-capacity adsorbent for CO 2 capture. Energy Fuels 16(6):1463–1469
54.
Zurück zum Zitat (a) Scott DS, Dullien FAL (1962) Diffusion of ideal gases in capillaries and porous solids. Am Inst Chem Eng 8(1):113–117; (b) Evans III RB, Watson GM, Mason EA (1961) Gaseous diffusion in porous media at uniform pressure. J Chem Phys 35:2076; (c) Rothfeld LB (1963) Gaseous counter diffusion in catalyst pellets. Am Inst Chem Eng 9(1):19–24 (a) Scott DS, Dullien FAL (1962) Diffusion of ideal gases in capillaries and porous solids. Am Inst Chem Eng 8(1):113–117; (b) Evans III RB, Watson GM, Mason EA (1961) Gaseous diffusion in porous media at uniform pressure. J Chem Phys 35:2076; (c) Rothfeld LB (1963) Gaseous counter diffusion in catalyst pellets. Am Inst Chem Eng 9(1):19–24
55.
Zurück zum Zitat Maxwell JC (1860) Illustrations of the dynamical theory of gases. Philos Mag 19(1860):19–32 Maxwell JC (1860) Illustrations of the dynamical theory of gases. Philos Mag 19(1860):19–32
56.
Zurück zum Zitat (a) Mason EA, Evans III RB, Watson GM (1963) Gaseous diffusion in porous media. III. Thermal transpiration. J Chem Phys 38:1808; (b) Jackson R (1977) Transport in porous catalysts. Elsevier, Amsterdam, p 197; (c) Cunningham RE, Williams RJJ (1980) Diffusion in gases and porous media. Plenum Press, New York (a) Mason EA, Evans III RB, Watson GM (1963) Gaseous diffusion in porous media. III. Thermal transpiration. J Chem Phys 38:1808; (b) Jackson R (1977) Transport in porous catalysts. Elsevier, Amsterdam, p 197; (c) Cunningham RE, Williams RJJ (1980) Diffusion in gases and porous media. Plenum Press, New York
57.
Zurück zum Zitat Kärger J, Ruthven DM (1992) Diffusion in zeolites and other microporous solids. Wiley, New York, p 605 Kärger J, Ruthven DM (1992) Diffusion in zeolites and other microporous solids. Wiley, New York, p 605
58.
Zurück zum Zitat Carman PC, Raal FA (1951) Diffusion and flow of gases and vapours through micropores. III. Surface diffusion coefficients and activation energies. Proc R Soc Lond A Mater 209(1096):38 Carman PC, Raal FA (1951) Diffusion and flow of gases and vapours through micropores. III. Surface diffusion coefficients and activation energies. Proc R Soc Lond A Mater 209(1096):38
59.
Zurück zum Zitat Weisz PB (1975) Diffusion transport in chemical systems—key phenomena and criteria. Ber Bunsenges Phys Chem 79(9):798–806 Weisz PB (1975) Diffusion transport in chemical systems—key phenomena and criteria. Ber Bunsenges Phys Chem 79(9):798–806
60.
Zurück zum Zitat (a) Wakao N, Funazkri T (1978) Effect of fluid dispersion coefficients on particle-to-fluid mass transfer coefficients in packed beds correlation of sherwood numbers. Chem Eng Sci 33(10):1375–1384; (b) Wakao N, Kaguei S (1982) Heat and mass transfer in packed beds. Gordon and Breach, Science Publishers, Inc., New York, p 365 (a) Wakao N, Funazkri T (1978) Effect of fluid dispersion coefficients on particle-to-fluid mass transfer coefficients in packed beds correlation of sherwood numbers. Chem Eng Sci 33(10):1375–1384; (b) Wakao N, Kaguei S (1982) Heat and mass transfer in packed beds. Gordon and Breach, Science Publishers, Inc., New York, p 365
61.
Zurück zum Zitat Glueckauf E (1955) Theory of chromatography. Part 10. Formulae for diffusion into spheres and their application to chromatography. Trans Faraday Soc 51:1540–1551 Glueckauf E (1955) Theory of chromatography. Part 10. Formulae for diffusion into spheres and their application to chromatography. Trans Faraday Soc 51:1540–1551
62.
Zurück zum Zitat McCabe WL, Smith JC, Harriott P (2005) Unit operations of chemical engineering, 7th edn. McGraw-Hill, New York McCabe WL, Smith JC, Harriott P (2005) Unit operations of chemical engineering, 7th edn. McGraw-Hill, New York
63.
Zurück zum Zitat Luss D (1986) In: Carberry J, Varma A (eds) Chemical reaction and reactor engineering, vol 26. Chemical Industries, New York, p 239 Luss D (1986) In: Carberry J, Varma A (eds) Chemical reaction and reactor engineering, vol 26. Chemical Industries, New York, p 239
64.
Zurück zum Zitat Carberry JJ, Kulkarni AA (1973) The non-isothermal catalytic effectiveness factor for monolith supported catalysts. J Catal 31(1):41–50 Carberry JJ, Kulkarni AA (1973) The non-isothermal catalytic effectiveness factor for monolith supported catalysts. J Catal 31(1):41–50
65.
Zurück zum Zitat (a) Carberry JJ (1975) On the relative importance of external-internal temperature gradients in heterogeneous catalysis. Ind Eng Chem Fund 14(2):129–131; (b) Dullien FAL (1975) New network permeability model of porous media. AIChE J 21(2):299–307 (a) Carberry JJ (1975) On the relative importance of external-internal temperature gradients in heterogeneous catalysis. Ind Eng Chem Fund 14(2):129–131; (b) Dullien FAL (1975) New network permeability model of porous media. AIChE J 21(2):299–307
66.
Zurück zum Zitat Langer G, Roethe A, Roethe KP, Gelbin D (1978) Heat and mass transfer in packed beds–III. Axial mass dispersion. Int J Heat Mass Trans 21(6):751–759 Langer G, Roethe A, Roethe KP, Gelbin D (1978) Heat and mass transfer in packed beds–III. Axial mass dispersion. Int J Heat Mass Trans 21(6):751–759
67.
Zurück zum Zitat Hall KR, Eagleton LC, Acrivos A, Vermeulen T (1966) Pore- and solid-diffusion kinetics in fixed-bed adsorption under constant-pattern conditions. Ind Eng Chem Fund 5(2):212–223 Hall KR, Eagleton LC, Acrivos A, Vermeulen T (1966) Pore- and solid-diffusion kinetics in fixed-bed adsorption under constant-pattern conditions. Ind Eng Chem Fund 5(2):212–223
68.
Zurück zum Zitat Collins JJ (1967) The LUB/equilibrium section concept for fixed-bed adsorption. In Chemical engineering progress symposium, Science Press, pp 31–35 Collins JJ (1967) The LUB/equilibrium section concept for fixed-bed adsorption. In Chemical engineering progress symposium, Science Press, pp 31–35
69.
Zurück zum Zitat Acharya A, BeVier WE (1985) Attrition resistant molecular sieve. Union Carbide Corporation, Danbury Acharya A, BeVier WE (1985) Attrition resistant molecular sieve. Union Carbide Corporation, Danbury
70.
Zurück zum Zitat Keller GEI, Anderson RA, Yon CM (1987) In: Rousseau RW (ed) Handbook of separation process technology. Wiley, New York, pp 644–696 Keller GEI, Anderson RA, Yon CM (1987) In: Rousseau RW (ed) Handbook of separation process technology. Wiley, New York, pp 644–696
71.
Zurück zum Zitat Poiseuille JLM (1846) Recherches experimentales aur le mouvements les liquides dans les tubes de tres petits diametres. Inst France Acad Sci 9:433–545 Poiseuille JLM (1846) Recherches experimentales aur le mouvements les liquides dans les tubes de tres petits diametres. Inst France Acad Sci 9:433–545
72.
Zurück zum Zitat Darcy H (1856) Les fontaines publiques de la ville de Dijon. Victor Dalmont, Paris, p 674 Darcy H (1856) Les fontaines publiques de la ville de Dijon. Victor Dalmont, Paris, p 674
73.
Zurück zum Zitat Kozeny J (1927) Über kapillare Leitung des Wassers im Boden. In: Sitzungsberichte der Wiener Akademie der Wissenschaften, Vienna, 1927, vol 139(Kl.abt.IIa), pp 271–306 Kozeny J (1927) Über kapillare Leitung des Wassers im Boden. In: Sitzungsberichte der Wiener Akademie der Wissenschaften, Vienna, 1927, vol 139(Kl.abt.IIa), pp 271–306
74.
Zurück zum Zitat Carman PC (1939) Permeability of saturated sands, soils and clays. J Agric Sci 29(02):262–273 Carman PC (1939) Permeability of saturated sands, soils and clays. J Agric Sci 29(02):262–273
75.
Zurück zum Zitat Burke SP, Plummer WB (1928) Gas flow through packed columns 1. Ind Eng Chem 20(11):1196–1200 Burke SP, Plummer WB (1928) Gas flow through packed columns 1. Ind Eng Chem 20(11):1196–1200
76.
Zurück zum Zitat Ergun S (1952) Fluid flow through packed columns. Chem Eng Prog 48:89 Ergun S (1952) Fluid flow through packed columns. Chem Eng Prog 48:89
77.
Zurück zum Zitat Chilton TH, Colburn AP (1931) II-Pressure drop in packed tubes. Ind Eng Chem 23(8):913–919 Chilton TH, Colburn AP (1931) II-Pressure drop in packed tubes. Ind Eng Chem 23(8):913–919
78.
Zurück zum Zitat (a) Furnas CC (1929) The flow of gases through beds of broken solids. Bureau of Mines, Washington, DC, p 164; (b) Leva M (1949) Fluid flow through packed beds. Chem Eng 56(5):115 (a) Furnas CC (1929) The flow of gases through beds of broken solids. Bureau of Mines, Washington, DC, p 164; (b) Leva M (1949) Fluid flow through packed beds. Chem Eng 56(5):115
79.
Zurück zum Zitat (a) Clausse M, Bonjour J, Meunier F (2003) Influence of the presence of CO 2 in the feed of an indirect heating TSA process for VOC removal. Adsorption 9(1):77–85; (b) Bonjour J, Chalfen JB, Meunier F (2002) Temperature swing adsorption process with indirect cooling and heating. Ind Eng Chem 41(23):5802–5811; (c) Merel J, Clausse M, Meunier F (2008) Experimental investigation on CO 2 post-combustion capture by indirect thermal swing adsorption using 13X and 5 A zeolites. Ind Eng Chem 47(1):209–215 (a) Clausse M, Bonjour J, Meunier F (2003) Influence of the presence of CO 2 in the feed of an indirect heating TSA process for VOC removal. Adsorption 9(1):77–85; (b) Bonjour J, Chalfen JB, Meunier F (2002) Temperature swing adsorption process with indirect cooling and heating. Ind Eng Chem 41(23):5802–5811; (c) Merel J, Clausse M, Meunier F (2008) Experimental investigation on CO 2 post-combustion capture by indirect thermal swing adsorption using 13X and 5 A zeolites. Ind Eng Chem 47(1):209–215
80.
Zurück zum Zitat Pugsley T, Berruti F, Chakma A (1994) Computer simulation of a novel circulating fluidized bed pressure-temperature swing adsorber for recovering carbon dioxide from flue gases. Chem Eng Sci 49(24):4465–4481 Pugsley T, Berruti F, Chakma A (1994) Computer simulation of a novel circulating fluidized bed pressure-temperature swing adsorber for recovering carbon dioxide from flue gases. Chem Eng Sci 49(24):4465–4481
81.
Zurück zum Zitat Suzuki T, Sakoda A, Suzuki M, Izumi J (1997) Recovery of carbon dioxide from stack gas by piston-driven ultra-rapid PSA. J Chem Eng Jpn 30(6):1026–1033 Suzuki T, Sakoda A, Suzuki M, Izumi J (1997) Recovery of carbon dioxide from stack gas by piston-driven ultra-rapid PSA. J Chem Eng Jpn 30(6):1026–1033
82.
Zurück zum Zitat Park JH, Beum HT, Kim JN, Cho SH (2002) Numerical analysis on the power consumption of the PSA process for recovering CO 2 from flue gas. Ind Eng Chem 41(16):4122–4131 Park JH, Beum HT, Kim JN, Cho SH (2002) Numerical analysis on the power consumption of the PSA process for recovering CO 2 from flue gas. Ind Eng Chem 41(16):4122–4131
83.
Zurück zum Zitat Liang Z, Marshall M, Chaffee AL (2009) CO 2 adsorption-based separation by metal organic framework (Cu-BTC) versus zeolite (13X). Energ Fuel 23(5):2785–2789 Liang Z, Marshall M, Chaffee AL (2009) CO 2 adsorption-based separation by metal organic framework (Cu-BTC) versus zeolite (13X). Energ Fuel 23(5):2785–2789
84.
Zurück zum Zitat Ruthven DM (1984) Principles of adsorption and adsorption processes. Wiley, NewYork Ruthven DM (1984) Principles of adsorption and adsorption processes. Wiley, NewYork
85.
Zurück zum Zitat Britt D, Furukawa H, Wang B, Glover TG, Yaghi OM (2009) Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites. Proc Natl Acad Sci U S A 106(49):20637–20640 Britt D, Furukawa H, Wang B, Glover TG, Yaghi OM (2009) Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites. Proc Natl Acad Sci U S A 106(49):20637–20640
86.
Zurück zum Zitat Liu J, Culp JT, Natesakhawat S, Bockrath BC, Zande B, Sankar SG, Garberoglio G, Johnson JK (2007) Experimental and theoretical studies of gas adsorption in Cu 3 (BTC) 2: an effective activation procedure. J Phys Chem C 111(26):9305–9313 Liu J, Culp JT, Natesakhawat S, Bockrath BC, Zande B, Sankar SG, Garberoglio G, Johnson JK (2007) Experimental and theoretical studies of gas adsorption in Cu 3 (BTC) 2: an effective activation procedure. J Phys Chem C 111(26):9305–9313
87.
Zurück zum Zitat Zheng F, Tran DN, Busche BJ, Fryxell GE, Addleman RS, Zemanian TS, Aardahl CL (2005) Ethylenediamine-modified SBA-15 as regenerable CO 2 sorbent. Ind Eng Chem Res 44(9):3099–3105 Zheng F, Tran DN, Busche BJ, Fryxell GE, Addleman RS, Zemanian TS, Aardahl CL (2005) Ethylenediamine-modified SBA-15 as regenerable CO 2 sorbent. Ind Eng Chem Res 44(9):3099–3105
Metadaten
Titel
Adsorption
verfasst von
Prof. Jennifer Wilcox
Copyright-Jahr
2012
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4614-2215-0_4