Skip to main content

2019 | OriginalPaper | Buchkapitel

11. Big Data for Fraud Detection

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Fraud is domain-specific, and there is no one-solution-fits-all method among fraud detection techniques. To make this chapter more specific and concrete, we provide examples concerning a common type of fraud which is food fraud. Food fraud has irreversible effects since it imposes risks to human life. The aim of this chapter is thus to present a conceptual and methodological solution for real-time fraud detection that can be implemented in the food sector by global food producers, regulatory bodies, or retailers but is generalizable to other domains.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Barnett, V., & Lewis, T. (1994). Outliers in statistical data. 3rd edition, John Wiley & Sons, Chichester, UK, (pp. 584), ISBN 0-471-93094-6. Barnett, V., & Lewis, T. (1994). Outliers in statistical data. 3rd edition, John Wiley & Sons, Chichester, UK, (pp. 584), ISBN 0-471-93094-6.
Zurück zum Zitat Blakeborough, L., & Giro Correira, S. (2017). The scale and nature of fraud: A review of evidence. ISBN 978-1-78655-682-0 (evidence review undertaken by Home Office Analysis and Insight to bring together what is known about the scale and nature of fraud affecting individuals and businesses in the UK) Blakeborough, L., & Giro Correira, S. (2017). The scale and nature of fraud: A review of evidence. ISBN 978-1-78655-682-0 (evidence review undertaken by Home Office Analysis and Insight to bring together what is known about the scale and nature of fraud affecting individuals and businesses in the UK)
Zurück zum Zitat Button, M., Lewis, C., & Tapley, J. (2009). Fraud typologies and the victims of fraud: literature review. London: National Fraud Authority, 40 p. Button, M., Lewis, C., & Tapley, J. (2009). Fraud typologies and the victims of fraud: literature review. London: National Fraud Authority, 40 p.
Zurück zum Zitat Button, M., Lewis, C., & Tapley, J. (2014). Not a victimless crime: The impact of fraud on individual victims and their families. Security Journal, 27(1), 36–54.CrossRef Button, M., Lewis, C., & Tapley, J. (2014). Not a victimless crime: The impact of fraud on individual victims and their families. Security Journal, 27(1), 36–54.CrossRef
Zurück zum Zitat Cerioli, A., & Farcomeni, A. (2011). Error rates for multivariate outlier detection. Computational Statistics & Data Analysis, 55(1), 544–553.CrossRef Cerioli, A., & Farcomeni, A. (2011). Error rates for multivariate outlier detection. Computational Statistics & Data Analysis, 55(1), 544–553.CrossRef
Zurück zum Zitat Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly detection: A survey. ACM Computing Surveys (CSUR), 41(3), 15.CrossRef Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly detection: A survey. ACM Computing Surveys (CSUR), 41(3), 15.CrossRef
Zurück zum Zitat Cressey, D. R. (1950). The criminal violation of financial trust. American Sociological Review, 15(6), 738–743.CrossRef Cressey, D. R. (1950). The criminal violation of financial trust. American Sociological Review, 15(6), 738–743.CrossRef
Zurück zum Zitat Filzmoser, P., & Hron, K. (2008). Outlier detection for compositional data using robust methods. Mathematical Geosciences, 40(3), 233–248.CrossRef Filzmoser, P., & Hron, K. (2008). Outlier detection for compositional data using robust methods. Mathematical Geosciences, 40(3), 233–248.CrossRef
Zurück zum Zitat Filzmoser, P., Garrett, R. G., & Reimann, C. (2005). Multivariate outlier detection in exploration geochemistry. Computers & Geosciences, 31(5), 579–587.CrossRef Filzmoser, P., Garrett, R. G., & Reimann, C. (2005). Multivariate outlier detection in exploration geochemistry. Computers & Geosciences, 31(5), 579–587.CrossRef
Zurück zum Zitat Filzmoser, P., Maronna, R., & Werner, M. (2008). Outlier identification in high dimensions. Computational Statistics & Data Analysis, 52(3), 1694–1711.CrossRef Filzmoser, P., Maronna, R., & Werner, M. (2008). Outlier identification in high dimensions. Computational Statistics & Data Analysis, 52(3), 1694–1711.CrossRef
Zurück zum Zitat Garrett, R. G. (1989). The chi-square plot: A tool for multivariate outlier recognition. Journal of Geochemical Exploration, 32(1–3), 319–341.CrossRef Garrett, R. G. (1989). The chi-square plot: A tool for multivariate outlier recognition. Journal of Geochemical Exploration, 32(1–3), 319–341.CrossRef
Zurück zum Zitat Gogoi, P., Borah, B., & Bhattacharyya, D. K. (2010). Anomaly detection analysis of intrusion data using supervised & unsupervised approach. Journal of Convergence Information Technology, 5(1), 95–110.CrossRef Gogoi, P., Borah, B., & Bhattacharyya, D. K. (2010). Anomaly detection analysis of intrusion data using supervised & unsupervised approach. Journal of Convergence Information Technology, 5(1), 95–110.CrossRef
Zurück zum Zitat Hudson, A., Thomas, M., & Brereton, P. (2016). Food incidents: Lessons from the past and anticipating the future. New Food, 19, 35–39. Hudson, A., Thomas, M., & Brereton, P. (2016). Food incidents: Lessons from the past and anticipating the future. New Food, 19, 35–39.
Zurück zum Zitat Johnson, R. A., & Wichern, D. W. (2002). Applied multivariate statistical analysis (Vol. 5). Upper Saddle River, NJ: Prentice Hall. Johnson, R. A., & Wichern, D. W. (2002). Applied multivariate statistical analysis (Vol. 5). Upper Saddle River, NJ: Prentice Hall.
Zurück zum Zitat Kassem, R., & Higson, A. (2012). The new fraud triangle model. Journal of Emerging Trends in Economics and Management Sciences, 3(3), 191. Kassem, R., & Higson, A. (2012). The new fraud triangle model. Journal of Emerging Trends in Economics and Management Sciences, 3(3), 191.
Zurück zum Zitat Lane, T., & Brodley, C. E. (1997). Sequence matching and learning in anomaly detection for computer security. In AAAI Workshop: AI Approaches to Fraud Detection and Risk Management, pp. 43–49. Lane, T., & Brodley, C. E. (1997). Sequence matching and learning in anomaly detection for computer security. In AAAI Workshop: AI Approaches to Fraud Detection and Risk Management, pp. 43–49.
Zurück zum Zitat Matsumura, E. M., & Tucker, R. R. (1992). Fraud detection: A theoretical foundation. Accounting Review, 753–782. Matsumura, E. M., & Tucker, R. R. (1992). Fraud detection: A theoretical foundation. Accounting Review, 753–782.
Zurück zum Zitat Patcha, A., & Park, J.-M. (2007). An overview of anomaly detection techniques: Existing solutions and latest technological trends. Computer Networks, 51(12), 3448–3470.CrossRef Patcha, A., & Park, J.-M. (2007). An overview of anomaly detection techniques: Existing solutions and latest technological trends. Computer Networks, 51(12), 3448–3470.CrossRef
Zurück zum Zitat R Core Team. (2014). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. R Core Team. (2014). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.
Zurück zum Zitat Riani, M., Atkinson, A. C., & Cerioli, A. (2009). Finding an unknown number of multivariate outliers. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 71(2), 447–466.CrossRef Riani, M., Atkinson, A. C., & Cerioli, A. (2009). Finding an unknown number of multivariate outliers. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 71(2), 447–466.CrossRef
Zurück zum Zitat Rosseeuw, P. J., & Van Zomeren, B. C. (1990). Unmasking multivariate outliers and leverate points. Journal of the American Statistical Association, 85, 633–639.CrossRef Rosseeuw, P. J., & Van Zomeren, B. C. (1990). Unmasking multivariate outliers and leverate points. Journal of the American Statistical Association, 85, 633–639.CrossRef
Zurück zum Zitat Rousseeuw, P. J. (1985). Multivariate estimation with high breakdown point. Mathematical Statistics and Applications, 8, 283–297.CrossRef Rousseeuw, P. J. (1985). Multivariate estimation with high breakdown point. Mathematical Statistics and Applications, 8, 283–297.CrossRef
Zurück zum Zitat Spink, J., & Moyer, D. C. (2011). Defining the public health threat of food fraud. Journal of Food Science, 76(9), R157–R163.CrossRef Spink, J., & Moyer, D. C. (2011). Defining the public health threat of food fraud. Journal of Food Science, 76(9), R157–R163.CrossRef
Zurück zum Zitat Tennyson, S. (2008). Moral, social, and economic dimensions of insurance claims fraud. Social Research, 1181–1204. Tennyson, S. (2008). Moral, social, and economic dimensions of insurance claims fraud. Social Research, 1181–1204.
Zurück zum Zitat Wang, C., Viswanathan, K., Choudur, L., Talwar, V., Satterfield, W., & Schwan, K. (2011). Statistical techniques for online anomaly detection in data centers. In 12th IFIP/IEEE International Symposium on Integrated Network Management (IM 2011) and Workshops (pp. 385–392). IEEE. Wang, C., Viswanathan, K., Choudur, L., Talwar, V., Satterfield, W., & Schwan, K. (2011). Statistical techniques for online anomaly detection in data centers. In 12th IFIP/IEEE International Symposium on Integrated Network Management (IM 2011) and Workshops (pp. 385–392). IEEE.
Zurück zum Zitat Wilks, T. J., & Zimbelman, M. F. (2004). Using game theory and strategic reasoning concepts to prevent and detect fraud. Accounting Horizons, 18(3), 173–184.CrossRef Wilks, T. J., & Zimbelman, M. F. (2004). Using game theory and strategic reasoning concepts to prevent and detect fraud. Accounting Horizons, 18(3), 173–184.CrossRef
Metadaten
Titel
Big Data for Fraud Detection
verfasst von
Vahid Mojtahed
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-22605-3_11

Premium Partner