Skip to main content

Tipp

Weitere Kapitel dieses Buchs durch Wischen aufrufen

Erschienen in:
Buchtitelbild

2014 | OriginalPaper | Buchkapitel

Buckyballs

verfasst von : Juan L. Delgado, Salvatore Filippone, Francesco Giacalone, Ma Ángeles Herranz, Beatriz Illescas, Emilio M. Pérez, Nazario Martín

Erschienen in: Polyarenes II

Verlag: Springer International Publishing

share
TEILEN

Abstract

Buckyballs represent a new and fascinating molecular allotropic form of carbon that has received a lot of attention by the chemical community during the last two decades. The unabating interest on this singular family of highly strained carbon spheres has allowed the establishing of the fundamental chemical reactivity of these carbon cages and, therefore, a huge variety of fullerene derivatives involving [60] and [70]fullerenes, higher fullerenes, and endohedral fullerenes have been prepared. Much less is known, however, of the chemistry of the uncommon non-IPR fullerenes which currently represent a scientific curiosity and which could pave the way to a range of new fullerenes. In this review on buckyballs we have mainly focused on the most recent and novel covalent chemistry of fullerenes involving metal catalysis and asymmetric synthesis, as well as on some of the most significant advances in supramolecular chemistry, namely H-bonded fullerene assemblies and the search for efficient concave receptors for the convex surface of fullerenes. Furthermore, we have also described the recent advances in the macromolecular chemistry of fullerenes, that is, those polymer molecules endowed with fullerenes which have been classified according to their chemical structures. This review is completed with the study of endohedral fullerenes, a new family of fullerenes in which the carbon cage of the fullerene contains a metal, molecule, or metal complex in the inner cavity. The presence of these species affords new fullerenes with completely different properties and chemical reactivity, thus opening a new avenue in which a more precise control of the photophysical and redox properties of fullerenes is possible. The use of fullerenes for organic electronics, namely in photovoltaic applications and molecular wires, complements the study and highlights the interest in these carbon allotropes for realistic practical applications. We have pointed out the so-called non-IPR fullerenes – those that do not follow the isolated pentagon rule – as the most intriguing class of fullerenes which, up to now, have only shown the tip of the huge iceberg behind the examples reported in the literature. The number of possible non-IPR carbon cages is almost infinite and the near future will show us whether they will become a reality.
Fußnoten
1
All through the article we will report binding constants as logarithms, and without an error interval, for simplicity. The reader can refer to the original publications for these data.
 
Literatur
1.
Zurück zum Zitat Kroto HW, Heath JR, O’Brien SC et al (1985) C 60: buckminsterfullerene. Nature 318:162–163 Kroto HW, Heath JR, O’Brien SC et al (1985) C 60: buckminsterfullerene. Nature 318:162–163
2.
Zurück zum Zitat Cami J, Bernard-Salas J, Peeters E et al (2010) Detection of C 60 and C 70 in a young planetary nebula. Science 329:1180–1182 Cami J, Bernard-Salas J, Peeters E et al (2010) Detection of C 60 and C 70 in a young planetary nebula. Science 329:1180–1182
3.
Zurück zum Zitat Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58 Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58
4.
Zurück zum Zitat Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–605 Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–605
5.
Zurück zum Zitat Bethune DS, Kiang CH, de Vries MS et al (1993) Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layer walls. Nature 363:605–607 Bethune DS, Kiang CH, de Vries MS et al (1993) Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layer walls. Nature 363:605–607
6.
Zurück zum Zitat Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669 Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669
7.
Zurück zum Zitat Delgado JL, Herranz MA, Martín N (2008) The nanoforms of carbon. J Mater Chem 18:1417–1426 Delgado JL, Herranz MA, Martín N (2008) The nanoforms of carbon. J Mater Chem 18:1417–1426
8.
Zurück zum Zitat Akasaka T, Nagase S (2002) Endofullerenes: a new family of carbon cluster. Kluwer, Dordrecht Akasaka T, Nagase S (2002) Endofullerenes: a new family of carbon cluster. Kluwer, Dordrecht
9.
Zurück zum Zitat Kroto HW (1997) Symmetry, space, stars, and C 60. Angew Chem Int Ed 36:1578–1593 Kroto HW (1997) Symmetry, space, stars, and C 60. Angew Chem Int Ed 36:1578–1593
10.
Zurück zum Zitat Smalley RE (1997) Discovering the fullerrenes. Angew Chem Int Ed 36:1594–1601 Smalley RE (1997) Discovering the fullerrenes. Angew Chem Int Ed 36:1594–1601
11.
Zurück zum Zitat Curl RF (1997) Dawn of the fullerenes: conjecture and experiment. Angew Chem Int Ed 36:1566–1576 Curl RF (1997) Dawn of the fullerenes: conjecture and experiment. Angew Chem Int Ed 36:1566–1576
12.
Zurück zum Zitat Martín N (2006) New challenges in fullerene chemistry. Chem Commun 2093–2104 Martín N (2006) New challenges in fullerene chemistry. Chem Commun 2093–2104
13.
Zurück zum Zitat Krätschmer W, Lamb LD, Fostiropoulos K et al (1990) Solid C 60: a new form of carbon. Nature 347:354–358 Krätschmer W, Lamb LD, Fostiropoulos K et al (1990) Solid C 60: a new form of carbon. Nature 347:354–358
14.
Zurück zum Zitat Jones DEH (1966) Hollow molecules. New Sci 32:245 Jones DEH (1966) Hollow molecules. New Sci 32:245
15.
Zurück zum Zitat Chuvilin A, Kaiser U, Bichoutskaia E et al (2010) Direct transformation of graphene to fullerene. Nat Chem 2:450–453 Chuvilin A, Kaiser U, Bichoutskaia E et al (2010) Direct transformation of graphene to fullerene. Nat Chem 2:450–453
16.
Zurück zum Zitat Kroto HW (1987) The stability of the fullerenes C n, with n = 24, 28, 32, 36, 50, 60 and 70. Nature 329:529–531 Kroto HW (1987) The stability of the fullerenes C n, with n = 24, 28, 32, 36, 50, 60 and 70. Nature 329:529–531
17.
Zurück zum Zitat Haddon RC (1992) Electronic structure, conductivity, and superconductivity of alkali metal doped C 60. Acc Chem Res 25:127–133 Haddon RC (1992) Electronic structure, conductivity, and superconductivity of alkali metal doped C 60. Acc Chem Res 25:127–133
18.
Zurück zum Zitat Hirsch A, Chen Z, Jiao H (2000) Spherical aromaticity in I h symmetrical fullerenes: the 2(N + 1) 2 rule. Angew Chem Int Ed 39:3915–3917 Hirsch A, Chen Z, Jiao H (2000) Spherical aromaticity in I h symmetrical fullerenes: the 2(N + 1) 2 rule. Angew Chem Int Ed 39:3915–3917
19.
Zurück zum Zitat Guldi DM, Martín N (eds) (2002) Fullerenes: from synthesis to optoelectronic properties. Kluwer Academic, Dordrecht Guldi DM, Martín N (eds) (2002) Fullerenes: from synthesis to optoelectronic properties. Kluwer Academic, Dordrecht
20.
Zurück zum Zitat Hirsch A, Brettreich M (2005) Fullerenes, chemistry and reactions. Wiley-VCH, Weinheim Hirsch A, Brettreich M (2005) Fullerenes, chemistry and reactions. Wiley-VCH, Weinheim
21.
Zurück zum Zitat Langa F, Nierengarten JF (eds) (2012) Fullerenes: principles and applications. Royal Society of Chemistry, Cambridge Langa F, Nierengarten JF (eds) (2012) Fullerenes: principles and applications. Royal Society of Chemistry, Cambridge
22.
Zurück zum Zitat Haddon RC, Brus LE, Raghavachari K (1986) Electronic structure and bonding in icosahedral carbon cluster (C 60). Chem Phys Lett 125:459–464 Haddon RC, Brus LE, Raghavachari K (1986) Electronic structure and bonding in icosahedral carbon cluster (C 60). Chem Phys Lett 125:459–464
23.
Zurück zum Zitat Xie Q, Perez-Cordero E, Echegoyen L (1992) Electrochemical detection of C 60 and C 70: enhanced stability of fullerides in solution. J Am Chem Soc 114:3978–3980 Xie Q, Perez-Cordero E, Echegoyen L (1992) Electrochemical detection of C 60 and C 70: enhanced stability of fullerides in solution. J Am Chem Soc 114:3978–3980
24.
Zurück zum Zitat Martin N, Altable M, Filippone S et al (2006) Thermal [2+2] intramolecular cycloadditions of fuller-1,6-enynes. Angew Chem Int Ed 45:1439–1442 Martin N, Altable M, Filippone S et al (2006) Thermal [2+2] intramolecular cycloadditions of fuller-1,6-enynes. Angew Chem Int Ed 45:1439–1442
25.
Zurück zum Zitat Altable M, Filippone S, Martin-Domenech A et al (2006) Intramolecular ene reaction of 1,6-fullerenynes: a new synthesis of allenes. Org Lett 8:5959–5962 Altable M, Filippone S, Martin-Domenech A et al (2006) Intramolecular ene reaction of 1,6-fullerenynes: a new synthesis of allenes. Org Lett 8:5959–5962
26.
Zurück zum Zitat Li H, Risko C, Seo JH et al (2011) Fullerene–carbene Lewis acid–base adducts. J Am Chem Soc 133:12410–12413 Li H, Risko C, Seo JH et al (2011) Fullerene–carbene Lewis acid–base adducts. J Am Chem Soc 133:12410–12413
27.
Zurück zum Zitat Cozzi F, Powell WH, Thilgen C (2005) Numbering of fullerenes. Pure Appl Chem 77:843–923 Cozzi F, Powell WH, Thilgen C (2005) Numbering of fullerenes. Pure Appl Chem 77:843–923
28.
Zurück zum Zitat Komatsu K, Murata Y, Takimoto N et al (1994) Synthesis and properties of the first acetylene derivatives of C 60. J Org Chem 59:6101–6102 Komatsu K, Murata Y, Takimoto N et al (1994) Synthesis and properties of the first acetylene derivatives of C 60. J Org Chem 59:6101–6102
29.
Zurück zum Zitat Nagashima H, Terasaki H, Kimura E et al (1994) Silylmethylations of C 60 with Grignard reagents: selective synthesis of HC 60CH 2SiMe 2Y and C 60(CH 2SiMe 2Y) 2 with selection of solvents. J Org Chem 59:1246–1248 Nagashima H, Terasaki H, Kimura E et al (1994) Silylmethylations of C 60 with Grignard reagents: selective synthesis of HC 60CH 2SiMe 2Y and C 60(CH 2SiMe 2Y) 2 with selection of solvents. J Org Chem 59:1246–1248
30.
Zurück zum Zitat Hirsch A, Soi A, Karfunhel HR (1992) Titration of C 60: a method for the synthesis of organofullerenes. Angew Chem Int Ed 31:766–768 Hirsch A, Soi A, Karfunhel HR (1992) Titration of C 60: a method for the synthesis of organofullerenes. Angew Chem Int Ed 31:766–768
31.
Zurück zum Zitat Sawamura M, Iikura H, Nakamura E (1996) The first pentahaptofullerene metal complexes. J Am Chem Soc 118:12850–12851 Sawamura M, Iikura H, Nakamura E (1996) The first pentahaptofullerene metal complexes. J Am Chem Soc 118:12850–12851
32.
Zurück zum Zitat Matsuo Y, Nakamura E (2008) Selective multiaddition of organocopper reagents to fullerenes. Chem Rev 108:3016–3028 Matsuo Y, Nakamura E (2008) Selective multiaddition of organocopper reagents to fullerenes. Chem Rev 108:3016–3028
33.
Zurück zum Zitat Martin N, Altable M, Filippone S et al. (2004) Highly efficient Pauson–Khand reaction with C 60: regioselective synthesis of unprecedented cis-1 biscycloadducts. Chem Commun 1338–1339 Martin N, Altable M, Filippone S et al. (2004) Highly efficient Pauson–Khand reaction with C 60: regioselective synthesis of unprecedented cis-1 biscycloadducts. Chem Commun 1338–1339
34.
Zurück zum Zitat Martín N, Altable M, Filippone S et al (2005) Regioselective intramolecular Pauson–Khand reactions of C 60: an electrochemical study and theoretical underpinning. Chemistry 11:2716–2729 Martín N, Altable M, Filippone S et al (2005) Regioselective intramolecular Pauson–Khand reactions of C 60: an electrochemical study and theoretical underpinning. Chemistry 11:2716–2729
35.
Zurück zum Zitat Nambo M, Noyori R, Itami K (2007) Rh-catalyzed arylation and alkenylation of C 60 using organoboron compounds. J Am Chem Soc 129:8080–8081 Nambo M, Noyori R, Itami K (2007) Rh-catalyzed arylation and alkenylation of C 60 using organoboron compounds. J Am Chem Soc 129:8080–8081
36.
Zurück zum Zitat Nambo M, Segawa Y, Wakamiya A et al (2011) Selective introduction of organic groups to C 60 and C 70 using organoboron compounds and rhodium catalyst: a new synthetic approach to organo(hydro)fullerenes. Chem Asian J 6:590–598 Nambo M, Segawa Y, Wakamiya A et al (2011) Selective introduction of organic groups to C 60 and C 70 using organoboron compounds and rhodium catalyst: a new synthetic approach to organo(hydro)fullerenes. Chem Asian J 6:590–598
37.
Zurück zum Zitat Lu S, Jin T, Bao M et al (2011) Cobalt-catalyzed hydroalkylation of [60]fullerene with active alkyl bromides: selective synthesis of monoalkylated fullerenes. J Am Chem Soc 133:12842–12848 Lu S, Jin T, Bao M et al (2011) Cobalt-catalyzed hydroalkylation of [60]fullerene with active alkyl bromides: selective synthesis of monoalkylated fullerenes. J Am Chem Soc 133:12842–12848
38.
Zurück zum Zitat Xiao Z, Matsuo Y, Nakamura E (2010) Copper-catalyzed formal [4+2] annulation between alkyne and fullerene bromide. J Am Chem Soc 132:12234–12236 Xiao Z, Matsuo Y, Nakamura E (2010) Copper-catalyzed formal [4+2] annulation between alkyne and fullerene bromide. J Am Chem Soc 132:12234–12236
39.
Zurück zum Zitat Zhu B, Wang G-W (2009) Palladium-catalyzed heteroannulation of [60]fullerene with anilides via C–H bond activation. Org Lett 11:4334–4337 Zhu B, Wang G-W (2009) Palladium-catalyzed heteroannulation of [60]fullerene with anilides via C–H bond activation. Org Lett 11:4334–4337
40.
Zurück zum Zitat Thilgen C, Gosse I, Diederich F (2003) Chirality in fullerene chemistry. Top Stereochem 23:1–124 Thilgen C, Gosse I, Diederich F (2003) Chirality in fullerene chemistry. Top Stereochem 23:1–124
41.
Zurück zum Zitat Thilgen C, Diederich F (2006) Structural aspects of fullerene chemistry: a journey through fullerene chirality. Chem Rev 106:5049–5135 Thilgen C, Diederich F (2006) Structural aspects of fullerene chemistry: a journey through fullerene chirality. Chem Rev 106:5049–5135
42.
Zurück zum Zitat Nishimura T (2004) Macromolecular helicity induction on a poly(phenylacetylene) with C 2-symmetric chiral [60]fullerene-bisadducts. J Am Chem Soc 126:11711–11717 Nishimura T (2004) Macromolecular helicity induction on a poly(phenylacetylene) with C 2-symmetric chiral [60]fullerene-bisadducts. J Am Chem Soc 126:11711–11717
43.
Zurück zum Zitat Friedman SH, Ganapathi PS, Rubin Y et al (1998) Optimizing the binding of fullerene inhibitors of the HIV-1 protease through predicted increases in hydrophobic desolvation. J Med Chem 41:2424–2429 Friedman SH, Ganapathi PS, Rubin Y et al (1998) Optimizing the binding of fullerene inhibitors of the HIV-1 protease through predicted increases in hydrophobic desolvation. J Med Chem 41:2424–2429
44.
Zurück zum Zitat Hizume Y, Tashiro K, Charvet R et al (2010) Chiroselective assembly of a chiral porphyrin–fullerene dyad: photoconductive nanofiber with a top-class ambipolar charge-carrier mobility. J Am Chem Soc 132:6628–6629 Hizume Y, Tashiro K, Charvet R et al (2010) Chiroselective assembly of a chiral porphyrin–fullerene dyad: photoconductive nanofiber with a top-class ambipolar charge-carrier mobility. J Am Chem Soc 132:6628–6629
45.
Zurück zum Zitat Filippone S, Maroto EE, Martín-Domenech A et al (2009) An efficient approach to chiral fullerene derivatives by catalytic enantioselective 1,3-dipolar cycloadditions. Nat Chem 1:578–582 Filippone S, Maroto EE, Martín-Domenech A et al (2009) An efficient approach to chiral fullerene derivatives by catalytic enantioselective 1,3-dipolar cycloadditions. Nat Chem 1:578–582
46.
Zurück zum Zitat Maroto EE, Filippone S, Martin-Domenech A et al (2012) Switching the stereoselectivity: (fullero)pyrrolidines “a la carte”. J Am Chem Soc 134:12936–12938 Maroto EE, Filippone S, Martin-Domenech A et al (2012) Switching the stereoselectivity: (fullero)pyrrolidines “a la carte”. J Am Chem Soc 134:12936–12938
47.
Zurück zum Zitat Maroto EE, de Cózar A, Filippone S et al (2011) Hierarchical selectivity in fullerenes: site-, regio-, diastereo-, and enantiocontrol of the 1,3-dipolar cycloaddition to C70. Angew Chem Int Ed 50:6060–6064 Maroto EE, de Cózar A, Filippone S et al (2011) Hierarchical selectivity in fullerenes: site-, regio-, diastereo-, and enantiocontrol of the 1,3-dipolar cycloaddition to C70. Angew Chem Int Ed 50:6060–6064
48.
Zurück zum Zitat Sawai K, Takano Y, Izquierdo M et al (2011) Enantioselective synthesis of endohedral metallofullerenes. J Am Chem Soc 133:17746–17752 Sawai K, Takano Y, Izquierdo M et al (2011) Enantioselective synthesis of endohedral metallofullerenes. J Am Chem Soc 133:17746–17752
49.
Zurück zum Zitat Bosi S, Da Ros T, Spalluto G et al (2003) Fullerene derivatives: an attractive tool for biological applications. Eur J Med Chem 38:913–923 Bosi S, Da Ros T, Spalluto G et al (2003) Fullerene derivatives: an attractive tool for biological applications. Eur J Med Chem 38:913–923
50.
Zurück zum Zitat Prato M, Martín N (eds) (2002) Special issue: Functionalised fullerenes. J Mater Chem 12:1931–2159 Prato M, Martín N (eds) (2002) Special issue: Functionalised fullerenes. J Mater Chem 12:1931–2159
51.
Zurück zum Zitat Manoharan M, de Proft F, Geerlings P (2000) Aromaticity interplay between quinodimethanes and C60 in Diels–Alder reactions: insights from a theoretical study. J Org Chem 65:6132–6137 Manoharan M, de Proft F, Geerlings P (2000) Aromaticity interplay between quinodimethanes and C60 in Diels–Alder reactions: insights from a theoretical study. J Org Chem 65:6132–6137
52.
Zurück zum Zitat Kräutler B, Maynollo J (1995) A highly symmetric sixfold cycloaddition product of fullerene C 60. Angew Chem Int Ed Engl 34:87–88 Kräutler B, Maynollo J (1995) A highly symmetric sixfold cycloaddition product of fullerene C 60. Angew Chem Int Ed Engl 34:87–88
53.
Zurück zum Zitat Herranz MA, Martín N, Ramey J et al (2002) Thermally reversible C 60-based donor–acceptor ensembles. Chem Commun 2002:2968–2969 Herranz MA, Martín N, Ramey J et al (2002) Thermally reversible C 60-based donor–acceptor ensembles. Chem Commun 2002:2968–2969
54.
Zurück zum Zitat Bingel C (1993) Cyclopropanierung von fullerenen. Chem Ber 126:1957–1959 Bingel C (1993) Cyclopropanierung von fullerenen. Chem Ber 126:1957–1959
55.
Zurück zum Zitat Kessinger R, Crassous J, Herrmann A et al (1998) Preparation of enantiomerically pure C 76 with a general electrochemical method for the removal of di(alkoxycarbonyl)methano bridges from methanofullerenes: the retro-Bingel reaction. Angew Chem Int Ed 37:1919–1922 Kessinger R, Crassous J, Herrmann A et al (1998) Preparation of enantiomerically pure C 76 with a general electrochemical method for the removal of di(alkoxycarbonyl)methano bridges from methanofullerenes: the retro-Bingel reaction. Angew Chem Int Ed 37:1919–1922
56.
Zurück zum Zitat Kessinger R, Fender NS, Echegoyen LE et al (2000) Selective electrolytic removal of bis(alkoxycarbonyl)methano addends from C 60 bis-adducts and electrochemical stability of C 70 derivatives. Chemistry 6:2184–2192 Kessinger R, Fender NS, Echegoyen LE et al (2000) Selective electrolytic removal of bis(alkoxycarbonyl)methano addends from C 60 bis-adducts and electrochemical stability of C 70 derivatives. Chemistry 6:2184–2192
57.
Zurück zum Zitat Moonen NNP, Thilgen C, Echegoyen L et al (2000) The chemical retro-Bingel reaction: selective removal of bis(alkoxycarbonyl)methano addends from C 60 and C 70 with amalgamated magnesium. Chem Commun 5:335–336 Moonen NNP, Thilgen C, Echegoyen L et al (2000) The chemical retro-Bingel reaction: selective removal of bis(alkoxycarbonyl)methano addends from C 60 and C 70 with amalgamated magnesium. Chem Commun 5:335–336
58.
Zurück zum Zitat Prato M, Maggini M (1998) Fulleropyrrolidines: a family of full-fledged fullerene derivatives. Acc Chem Res 31:519–526 Prato M, Maggini M (1998) Fulleropyrrolidines: a family of full-fledged fullerene derivatives. Acc Chem Res 31:519–526
59.
Zurück zum Zitat Martín N, Altable M, Filippone S et al (2006) Retro-cycloaddition reaction of pyrrolidinofullerenes. Angew Chem Int Ed 45:110–114 Martín N, Altable M, Filippone S et al (2006) Retro-cycloaddition reaction of pyrrolidinofullerenes. Angew Chem Int Ed 45:110–114
60.
Zurück zum Zitat Brunetti FG, Herrero MA, Muñoz JM et al (2007) Reversible microwave-assisted cycloaddition of aziridines to carbon nanotubes. J Am Chem Soc 129:14580–14581 Brunetti FG, Herrero MA, Muñoz JM et al (2007) Reversible microwave-assisted cycloaddition of aziridines to carbon nanotubes. J Am Chem Soc 129:14580–14581
61.
Zurück zum Zitat Guryanov I, Montellano Lopez A, Carraro M et al (2009) Metal-free, retro-cycloaddition of fulleropyrrolidines in ionic liquids under microwave irradiation. Chem Commun 3940–3942 Guryanov I, Montellano Lopez A, Carraro M et al (2009) Metal-free, retro-cycloaddition of fulleropyrrolidines in ionic liquids under microwave irradiation. Chem Commun 3940–3942
62.
Zurück zum Zitat Filippone S, Izquierdo Barroso M, Martín-Domenech A et al (2008) On the mechanism of the thermal retrocycloaddition of pyrrolidinofullerenes (retro-Prato reaction). Chemistry 14:5198–5206 Filippone S, Izquierdo Barroso M, Martín-Domenech A et al (2008) On the mechanism of the thermal retrocycloaddition of pyrrolidinofullerenes (retro-Prato reaction). Chemistry 14:5198–5206
63.
Zurück zum Zitat Lukoyanova O, Cardona CM, Altable M et al (2006) Selective electrochemical retro-cycloaddition reaction of pyrrolidinofullerenes. Angew Chem Int Ed 45:7430–7433 Lukoyanova O, Cardona CM, Altable M et al (2006) Selective electrochemical retro-cycloaddition reaction of pyrrolidinofullerenes. Angew Chem Int Ed 45:7430–7433
64.
Zurück zum Zitat Martín N, Altable M, Filippone S et al (2007) Highly efficient retro-cycloaddition reaction of isoxazolino[4,5:1,2][60]- and -[70]fullerenes. J Org Chem 72:3840–3846 Martín N, Altable M, Filippone S et al (2007) Highly efficient retro-cycloaddition reaction of isoxazolino[4,5:1,2][60]- and -[70]fullerenes. J Org Chem 72:3840–3846
65.
Zurück zum Zitat Delgado JL, Oswald F, Cardinali F et al (2008) On the thermal stability of [60]fullerene cycloadducts: retro-cycloaddition reaction of 2-pyrazolino[4,5:1,2][60]-fullerenes. J Org Chem 73:3184–3188 Delgado JL, Oswald F, Cardinali F et al (2008) On the thermal stability of [60]fullerene cycloadducts: retro-cycloaddition reaction of 2-pyrazolino[4,5:1,2][60]-fullerenes. J Org Chem 73:3184–3188
66.
Zurück zum Zitat Olah GA, Bucsi I, Lambert C et al (1991) Polyarenefullerenes, C 60(H-Ar) n, obtained by acid-catalyzed fullerenation of aromatics. J Am Chem Soc 113:9387–9388 Olah GA, Bucsi I, Lambert C et al (1991) Polyarenefullerenes, C 60(H-Ar) n, obtained by acid-catalyzed fullerenation of aromatics. J Am Chem Soc 113:9387–9388
67.
Zurück zum Zitat Giacalone F, Martín N (2006) Fullerene polymers: synthesis and properties. Chem Rev 106:5136–5190 Giacalone F, Martín N (2006) Fullerene polymers: synthesis and properties. Chem Rev 106:5136–5190
68.
Zurück zum Zitat Giacalone F, Martín N (eds) (2009) Fullerene polymers: synthesis, properties and applications. Wiley VCH, Weinheim Giacalone F, Martín N (eds) (2009) Fullerene polymers: synthesis, properties and applications. Wiley VCH, Weinheim
69.
Zurück zum Zitat Giacalone F, Martín N (2010) New concepts and applications in the macromolecular chemistry of fullerenes. Adv Mater 22:4220–4248 Giacalone F, Martín N (2010) New concepts and applications in the macromolecular chemistry of fullerenes. Adv Mater 22:4220–4248
70.
Zurück zum Zitat Special issue on polymeric fullerenes (1997) Appl Phys A: Mater Sci Process 64:223–330 Special issue on polymeric fullerenes (1997) Appl Phys A: Mater Sci Process 64:223–330
71.
Zurück zum Zitat Sundqvist B (1999) Fullerenes under high pressures. Adv Phys 48:1 Sundqvist B (1999) Fullerenes under high pressures. Adv Phys 48:1
72.
Zurück zum Zitat Rao AM, Zhou P, Wang K-A et al (1993) Photo-induced polymerization of solid C 60 films. Science 259:955–957 Rao AM, Zhou P, Wang K-A et al (1993) Photo-induced polymerization of solid C 60 films. Science 259:955–957
73.
Zurück zum Zitat Iwasa Y, Arima T, Fleming RM et al (1994) New phases of C 60 synthesized at high-pressure. Science 264:1570–1572 Iwasa Y, Arima T, Fleming RM et al (1994) New phases of C 60 synthesized at high-pressure. Science 264:1570–1572
74.
Zurück zum Zitat Takahashi N, Dock H, Matsuzawa N et al (1993) Plasma‐polymerized C 60/C 70 mixture films: electric conductivity and structure. J Appl Phys 74:5790–5798 Takahashi N, Dock H, Matsuzawa N et al (1993) Plasma‐polymerized C 60/C 70 mixture films: electric conductivity and structure. J Appl Phys 74:5790–5798
75.
Zurück zum Zitat Nuñez-Regueiro M, Marques L, Hodeau JL et al (1995) Polymerized fullerite structures. Phys Rev Lett 74:278–281 Nuñez-Regueiro M, Marques L, Hodeau JL et al (1995) Polymerized fullerite structures. Phys Rev Lett 74:278–281
76.
Zurück zum Zitat Rao AM, Eklund PC, Venkateswaran UD et al (1997) Properties of C 60 polymerized under high pressure and temperature. Appl Phys A: Mater Sci Process 64:231–2239 Rao AM, Eklund PC, Venkateswaran UD et al (1997) Properties of C 60 polymerized under high pressure and temperature. Appl Phys A: Mater Sci Process 64:231–2239
77.
Zurück zum Zitat Fedurco M, Costa DA, Balch AL et al (1995) Electrochemical synthesis of a redox-active polymer based on buckminsterfullerene epoxide. Angew Chem Int Ed Engl 34:194–196 Fedurco M, Costa DA, Balch AL et al (1995) Electrochemical synthesis of a redox-active polymer based on buckminsterfullerene epoxide. Angew Chem Int Ed Engl 34:194–196
78.
Zurück zum Zitat Winkler K, Costa DA, Balch AL et al (1995) A study of fullerene epoxide electroreduction and electropolymerization processes. J Phys Chem 99:17431–17436 Winkler K, Costa DA, Balch AL et al (1995) A study of fullerene epoxide electroreduction and electropolymerization processes. J Phys Chem 99:17431–17436
79.
Zurück zum Zitat Liu B, Bunker CE, Sun T-P (1996) Preparation and characterization of soluble pendant [60]fullerene-polystyrene polymers. Chem Commun 1241–1242 Liu B, Bunker CE, Sun T-P (1996) Preparation and characterization of soluble pendant [60]fullerene-polystyrene polymers. Chem Commun 1241–1242
80.
Zurück zum Zitat Stalmach U, de Boer B, Videlot C et al (2000) Semiconducting diblock copolymers synthesized by means of controlled radical polymerization techniques. J Am Chem Soc 122:5464–5472 Stalmach U, de Boer B, Videlot C et al (2000) Semiconducting diblock copolymers synthesized by means of controlled radical polymerization techniques. J Am Chem Soc 122:5464–5472
81.
Zurück zum Zitat Zheng JW, Goh SH, Lee SY (2000) Miscibility of C 60-containing poly(methyl methacrylate)/poly(vinylidene fluoride) blends. J Appl Polym Sci 75:1393–1396 Zheng JW, Goh SH, Lee SY (2000) Miscibility of C 60-containing poly(methyl methacrylate)/poly(vinylidene fluoride) blends. J Appl Polym Sci 75:1393–1396
82.
Zurück zum Zitat Wang C, Tao Z, Yang W et al (2001) Synthesis and photoconductivity study of C 60-containing styrene/acrylamide copolymers. Macromol Rapid Commun 22:98–103 Wang C, Tao Z, Yang W et al (2001) Synthesis and photoconductivity study of C 60-containing styrene/acrylamide copolymers. Macromol Rapid Commun 22:98–103
83.
Zurück zum Zitat Gutiérrez-Nava M, Masson P, Nierengarten J-F (2003) Synthesis of copolymers alternating oligophenylenevinylene subunits and fullerene moieties. Tetrahedron Lett 44:4487–4490 Gutiérrez-Nava M, Masson P, Nierengarten J-F (2003) Synthesis of copolymers alternating oligophenylenevinylene subunits and fullerene moieties. Tetrahedron Lett 44:4487–4490
84.
Zurück zum Zitat Vitalini D, Mineo P, Iudicelli V et al (2000) Preparation of functionalized copolymers by thermal processes: porphyrination and fullerenation of a commercial polycarbonate. Macromolecules 33:7300–7309 Vitalini D, Mineo P, Iudicelli V et al (2000) Preparation of functionalized copolymers by thermal processes: porphyrination and fullerenation of a commercial polycarbonate. Macromolecules 33:7300–7309
85.
Zurück zum Zitat Kraus A, Müllen K (1999) [60]Fullerene-containing poly(dimethylsiloxane)s: easy access to soluble polymers with high fullerene content. Macromolecules 32:4214–4219 Kraus A, Müllen K (1999) [60]Fullerene-containing poly(dimethylsiloxane)s: easy access to soluble polymers with high fullerene content. Macromolecules 32:4214–4219
86.
Zurück zum Zitat Ungurenasu C, Pienteala M (2007) Syntheses and characterization of water-soluble C 60–curdlan sulfates for biological applications. J Polym Sci Part A: Polym Chem 45:3124–3128 Ungurenasu C, Pienteala M (2007) Syntheses and characterization of water-soluble C 60–curdlan sulfates for biological applications. J Polym Sci Part A: Polym Chem 45:3124–3128
87.
Zurück zum Zitat Cravino A, Sariciftci NS (2002) Double-cable polymers for fullerene based organic optoelectronic applications. J Mater Chem 12:1931–1943 Cravino A, Sariciftci NS (2002) Double-cable polymers for fullerene based organic optoelectronic applications. J Mater Chem 12:1931–1943
88.
Zurück zum Zitat Cravino A, Sariciftci NS (2003) Organic electronics: molecules as bipolar conductors. Nat Mater 2:360–361 Cravino A, Sariciftci NS (2003) Organic electronics: molecules as bipolar conductors. Nat Mater 2:360–361
89.
Zurück zum Zitat Kawase T (2012) Receptors for pristine fullerenes based on concave-convex π-π interactions. In: Martín N, Nierengarten J-F (eds) Supramolecular chemistry of fullerenes and carbon nanotubes. Wiley-VCH, Weinheim, pp 55–78 (Chap. 3) Kawase T (2012) Receptors for pristine fullerenes based on concave-convex π-π interactions. In: Martín N, Nierengarten J-F (eds) Supramolecular chemistry of fullerenes and carbon nanotubes. Wiley-VCH, Weinheim, pp 55–78 (Chap. 3)
90.
Zurück zum Zitat Martín N, Nierengarten J-F (2012) Supramolecular chemistry of fullerenes and carbon nanotubes. Wiley-VCH, Weinheim Martín N, Nierengarten J-F (2012) Supramolecular chemistry of fullerenes and carbon nanotubes. Wiley-VCH, Weinheim
91.
Zurück zum Zitat Sterescu DM, Stamatialis DF, Mendes E, Wibbenhorst M, Wessling M (2006) Fullerene-modified poly(2,6-dimethyl-1,4-phenylene oxide) gas separation membranes: why binding is better than dispersing. Macromolecules 39:9234–9242 Sterescu DM, Stamatialis DF, Mendes E, Wibbenhorst M, Wessling M (2006) Fullerene-modified poly(2,6-dimethyl-1,4-phenylene oxide) gas separation membranes: why binding is better than dispersing. Macromolecules 39:9234–9242
92.
Zurück zum Zitat Vinogradova LV, Polotskaya GA, Shevtsova AA et al (2009) Gas-separating properties of membranes based on star-shaped fullerene (C 60)-containing polystyrenes. Polym Sci Ser A 51:209–215 Vinogradova LV, Polotskaya GA, Shevtsova AA et al (2009) Gas-separating properties of membranes based on star-shaped fullerene (C 60)-containing polystyrenes. Polym Sci Ser A 51:209–215
93.
Zurück zum Zitat Wang H, DeSousa R, Gasa J et al (2007) Fabrication of new fullerene composite materials and their application in proton exchange membrane fuel cells. J Membr Sci 289:277–283 Wang H, DeSousa R, Gasa J et al (2007) Fabrication of new fullerene composite materials and their application in proton exchange membrane fuel cells. J Membr Sci 289:277–283
94.
Zurück zum Zitat Chen X, Gholamkhass B, Han X et al (2007) Polythiophene- graft-styrene and polythiophene- graft-(styrene- graft-C 60) copolymers. Macromol Rapid Commun 28:1792–1797 Chen X, Gholamkhass B, Han X et al (2007) Polythiophene- graft-styrene and polythiophene- graft-(styrene- graft-C 60) copolymers. Macromol Rapid Commun 28:1792–1797
95.
Zurück zum Zitat Nanjo M, Cyr PW, Liu K et al (2008) Donor–acceptor C 60-containing polyferrocenylsilanes: synthesis, characterization, and applications in photodiode devices. Adv Funct Mater 18:470–477 Nanjo M, Cyr PW, Liu K et al (2008) Donor–acceptor C 60-containing polyferrocenylsilanes: synthesis, characterization, and applications in photodiode devices. Adv Funct Mater 18:470–477
96.
Zurück zum Zitat Ling Q-D, Lim S-L, Song Y et al (2007) Nonvolatile polymer memory device based on bistable electrical switching in a thin film of poly( N-vinylcarbazole) with covalently bonded C 60. Langmuir 23:312–319 Ling Q-D, Lim S-L, Song Y et al (2007) Nonvolatile polymer memory device based on bistable electrical switching in a thin film of poly( N-vinylcarbazole) with covalently bonded C 60. Langmuir 23:312–319
97.
Zurück zum Zitat Tutt LW, Kost A (1992) Optical limiting performance of C 60 and C 70 solutions. Nature 356:225–226 Tutt LW, Kost A (1992) Optical limiting performance of C 60 and C 70 solutions. Nature 356:225–226
98.
Zurück zum Zitat Cha M, Sariciftci NS, Heeger AJ et al (1995) Enhanced nonlinear absorption and optical limiting in semiconducting polymer/methanofullerene charge transfer films. Appl Phys Lett 67:3850–3852 Cha M, Sariciftci NS, Heeger AJ et al (1995) Enhanced nonlinear absorption and optical limiting in semiconducting polymer/methanofullerene charge transfer films. Appl Phys Lett 67:3850–3852
99.
Zurück zum Zitat Maggini M, Scorrano G, Prato M et al (1995) C 60 derivatives embedded in sol–gel silica films. Adv Mater 7:404–406 Maggini M, Scorrano G, Prato M et al (1995) C 60 derivatives embedded in sol–gel silica films. Adv Mater 7:404–406
100.
Zurück zum Zitat Bunker CE, Lawson GE, Sun YP (1995) Fullerene-styrene random copolymers. Novel optical properties. Macromolecules 28:3744–3746 Bunker CE, Lawson GE, Sun YP (1995) Fullerene-styrene random copolymers. Novel optical properties. Macromolecules 28:3744–3746
101.
Zurück zum Zitat Kojima Y, Matsuoka T, Takahashi H et al (1995) Optical limiting property of polystyrene-bound C 60. Macromolecules 28:8868–8869 Kojima Y, Matsuoka T, Takahashi H et al (1995) Optical limiting property of polystyrene-bound C 60. Macromolecules 28:8868–8869
102.
Zurück zum Zitat Lu Z, Goh SH, Lee SY et al (1999) Synthesis, characterization and nonlinear optical properties of copolymers of benzylaminofullerene with methyl methacrylate or ethyl methacrylate. Polymer 40:2863–2867 Lu Z, Goh SH, Lee SY et al (1999) Synthesis, characterization and nonlinear optical properties of copolymers of benzylaminofullerene with methyl methacrylate or ethyl methacrylate. Polymer 40:2863–2867
103.
Zurück zum Zitat Sun YP, Riggs JE (1997) Non-linear absorptions in pendant [60]fullerene–polystyrene polymers. J Chem Soc Faraday Trans 93:1965–1969 Sun YP, Riggs JE (1997) Non-linear absorptions in pendant [60]fullerene–polystyrene polymers. J Chem Soc Faraday Trans 93:1965–1969
104.
Zurück zum Zitat Tang BZ, Xu HY, Lam JWY et al (2000) C 60-containing poly(1-phenyl-1-alkynes): synthesis, light emission, and optical limiting. Chem Mater 12:1446–1449 Tang BZ, Xu HY, Lam JWY et al (2000) C 60-containing poly(1-phenyl-1-alkynes): synthesis, light emission, and optical limiting. Chem Mater 12:1446–1449
105.
Zurück zum Zitat Li FY, Li YL, Guo ZX et al (2000) Synthesis and optical limiting properties of polycarbonates containing fullerene derivative. J Phys Chem Solids 61:1101–1103 Li FY, Li YL, Guo ZX et al (2000) Synthesis and optical limiting properties of polycarbonates containing fullerene derivative. J Phys Chem Solids 61:1101–1103
106.
Zurück zum Zitat Celli A, Marchese P, Vannini M et al (2011) Synthesis of novel fullerene-functionalized polysulfones for optical limiting applications. React Funct Polym 71:641–647 Celli A, Marchese P, Vannini M et al (2011) Synthesis of novel fullerene-functionalized polysulfones for optical limiting applications. React Funct Polym 71:641–647
107.
Zurück zum Zitat Mroz P, Tegos GP, Gali H et al (2007) Photodynamic therapy with fullerenes. Photochem Photobiol Sci 6:1139–1149 Mroz P, Tegos GP, Gali H et al (2007) Photodynamic therapy with fullerenes. Photochem Photobiol Sci 6:1139–1149
108.
Zurück zum Zitat Liu Y, Wang H, Liang P et al (2004) Water-soluble supramolecular fullerene assembly mediated by metallobridged β-cyclodextrins. Angew Chem Int Ed 43:2690–2694 Liu Y, Wang H, Liang P et al (2004) Water-soluble supramolecular fullerene assembly mediated by metallobridged β-cyclodextrins. Angew Chem Int Ed 43:2690–2694
109.
Zurück zum Zitat Samal S, Choi B-J, Geckeler KE (2001) DNA-cleavage by fullerene-based synzymes. Macromol Biosci 1:329–331 Samal S, Choi B-J, Geckeler KE (2001) DNA-cleavage by fullerene-based synzymes. Macromol Biosci 1:329–331
110.
Zurück zum Zitat Liu J, Ohta S, Sonoda A et al (2007) Preparation of PEG-conjugated fullerene containing Gd 3+ ions for photodynamic therapy. J Control Release 117:104–110 Liu J, Ohta S, Sonoda A et al (2007) Preparation of PEG-conjugated fullerene containing Gd 3+ ions for photodynamic therapy. J Control Release 117:104–110
111.
Zurück zum Zitat Stoilova O, Jérôme C, Detrembleur C et al (2007) C 60-containing nanostructured polymeric materials with potential biomedical applications. Polymer 48:1835–1843 Stoilova O, Jérôme C, Detrembleur C et al (2007) C 60-containing nanostructured polymeric materials with potential biomedical applications. Polymer 48:1835–1843
112.
Zurück zum Zitat Drees M, Hoppe H, Winder C et al (2005) Stabilization of the nanomorphology of polymer–fullerene “bulk heterojunction” blends using a novel polymerizable fullerene derivative. J Mater Chem 15:5158–5163 Drees M, Hoppe H, Winder C et al (2005) Stabilization of the nanomorphology of polymer–fullerene “bulk heterojunction” blends using a novel polymerizable fullerene derivative. J Mater Chem 15:5158–5163
113.
Zurück zum Zitat Sivula K, Ball ZT, Watanabe N et al (2006) Amphiphilic diblock copolymer compatibilizers and their effect on the morphology and performance of polythiophene:fullerene solar cells. Adv Mater 18:206–210 Sivula K, Ball ZT, Watanabe N et al (2006) Amphiphilic diblock copolymer compatibilizers and their effect on the morphology and performance of polythiophene:fullerene solar cells. Adv Mater 18:206–210
114.
Zurück zum Zitat Yang C, Lee JK, Heeger AJ et al (2009) Well-defined donor–acceptor rod–coil diblock copolymers based on P3HT containing C 60: the morphology and role as a surfactant in bulk-heterojunction solar cells. J Mater Chem 19:5416–5423 Yang C, Lee JK, Heeger AJ et al (2009) Well-defined donor–acceptor rod–coil diblock copolymers based on P3HT containing C 60: the morphology and role as a surfactant in bulk-heterojunction solar cells. J Mater Chem 19:5416–5423
115.
Zurück zum Zitat Hsieh C-H, Cheng Y-J, Li P-J et al (2010) Highly efficient and stable inverted polymer solar cells integrated with a cross-linked fullerene material as an interlayer. J Am Chem Soc 132:4887–4893 Hsieh C-H, Cheng Y-J, Li P-J et al (2010) Highly efficient and stable inverted polymer solar cells integrated with a cross-linked fullerene material as an interlayer. J Am Chem Soc 132:4887–4893
116.
Zurück zum Zitat Cheng Y-J, Hsieh C-H, He Y et al (2010) Combination of indene-C 60 bis-adduct and cross-linked fullerene interlayer leading to highly efficient inverted polymer solar cells. J Am Chem Soc 132:17381–17383 Cheng Y-J, Hsieh C-H, He Y et al (2010) Combination of indene-C 60 bis-adduct and cross-linked fullerene interlayer leading to highly efficient inverted polymer solar cells. J Am Chem Soc 132:17381–17383
117.
Zurück zum Zitat Jeffery GA (1997) An introduction to hydrogen bonding. Oxford University Press, Oxford Jeffery GA (1997) An introduction to hydrogen bonding. Oxford University Press, Oxford
118.
Zurück zum Zitat Collins AF, Critchley C (2005) Artificial photosynthesis: from basic biology to industrial applications. Wiley, Weinheim Collins AF, Critchley C (2005) Artificial photosynthesis: from basic biology to industrial applications. Wiley, Weinheim
119.
Zurück zum Zitat Delgado JL, Bouit PA, Filippone S et al (2010) Organic photovoltaics: a chemical approach. Chem Commun 46:4853–4865 Delgado JL, Bouit PA, Filippone S et al (2010) Organic photovoltaics: a chemical approach. Chem Commun 46:4853–4865
120.
Zurück zum Zitat Pinzón JR, Villalta-Cerdas A, Echegoyen L (2012) Fullerenes, carbon nanotubes, and graphene for molecular electronics. Top Curr Chem 312:127–174 Pinzón JR, Villalta-Cerdas A, Echegoyen L (2012) Fullerenes, carbon nanotubes, and graphene for molecular electronics. Top Curr Chem 312:127–174
121.
Zurück zum Zitat Diederich F, Echegoyen L, Gómez-López M et al (1999) The self-assembly of fullerene-containing [2]pseudorotaxanes: formation of a supramolecular C 60 dimer. J Chem Soc Perkin Trans 2:1577–1586 Diederich F, Echegoyen L, Gómez-López M et al (1999) The self-assembly of fullerene-containing [2]pseudorotaxanes: formation of a supramolecular C 60 dimer. J Chem Soc Perkin Trans 2:1577–1586
122.
Zurück zum Zitat Rispens MT, Sánchez L, Knol J et al (2001) Supramolecular organization of fullerenes by quadruple hydrogen bonding. Chem Commun 161–162 Rispens MT, Sánchez L, Knol J et al (2001) Supramolecular organization of fullerenes by quadruple hydrogen bonding. Chem Commun 161–162
123.
Zurück zum Zitat González JJ, González S, Priego E et al (2001) A new approach to supramolecular C 60-dimers based in quadruple hydrogen bonding. Chem Commun 163–164 González JJ, González S, Priego E et al (2001) A new approach to supramolecular C 60-dimers based in quadruple hydrogen bonding. Chem Commun 163–164
124.
Zurück zum Zitat Da Ros T, Guldi DM, Morales AF et al (2003) Hydrogen bond-assembled fullerene molecular shuttle. Org Lett 5:689–691 Da Ros T, Guldi DM, Morales AF et al (2003) Hydrogen bond-assembled fullerene molecular shuttle. Org Lett 5:689–691
125.
Zurück zum Zitat Mateo-Alonso A, Fioravanti G, Marcaccio M et al (2006) Reverse shuttling in a fullerene-stoppered rotaxane. Org Lett 8:5173–5176 Mateo-Alonso A, Fioravanti G, Marcaccio M et al (2006) Reverse shuttling in a fullerene-stoppered rotaxane. Org Lett 8:5173–5176
126.
Zurück zum Zitat Mateo-Alonso A, Brough P, Prato M (2007) Stabilization of fulleropyrrolidine N-oxides through intrarotaxane hydrogen bonding. Chem Commun 1412–1414 Mateo-Alonso A, Brough P, Prato M (2007) Stabilization of fulleropyrrolidine N-oxides through intrarotaxane hydrogen bonding. Chem Commun 1412–1414
127.
Zurück zum Zitat Mateo-Alonso A, Fioravanti G, Marcaccio M et al (2007) An electrochemically driven molecular shuttle controlled and monitored by C 60. Chem Commun 1945–1947 Mateo-Alonso A, Fioravanti G, Marcaccio M et al (2007) An electrochemically driven molecular shuttle controlled and monitored by C 60. Chem Commun 1945–1947
128.
Zurück zum Zitat Scarel F, Valenti G, Gaikwad S et al (2012) A molecular shuttle driven by fullerene radical-anion recognition. Chemistry 44:14063–14068 Scarel F, Valenti G, Gaikwad S et al (2012) A molecular shuttle driven by fullerene radical-anion recognition. Chemistry 44:14063–14068
129.
Zurück zum Zitat Guldi DM, Ramey J, Martínez-Díaz MV et al (2002) Reversible zinc phthalocyanine fullerene ensembles. Chem Commun 2774–2775 Guldi DM, Ramey J, Martínez-Díaz MV et al (2002) Reversible zinc phthalocyanine fullerene ensembles. Chem Commun 2774–2775
130.
Zurück zum Zitat Sánchez L, Sierra M, Martín N et al (2006) Exceptionally strong electronic communication through hydrogen bonds in porphyrin–C 60 pairs. Angew Chem Int Ed 45:4637–4641 Sánchez L, Sierra M, Martín N et al (2006) Exceptionally strong electronic communication through hydrogen bonds in porphyrin–C 60 pairs. Angew Chem Int Ed 45:4637–4641
131.
Zurück zum Zitat Sessler JL, Jayawickramarajah J, Gouloumis A et al (2005) Synthesis and photophysics of a porphyrin-fullerene dyad assembled through Watson–Crick hydrogen bonding. Chem Commun 1892–1894 Sessler JL, Jayawickramarajah J, Gouloumis A et al (2005) Synthesis and photophysics of a porphyrin-fullerene dyad assembled through Watson–Crick hydrogen bonding. Chem Commun 1892–1894
132.
Zurück zum Zitat Torres T, Gouloumis A, Sánchez-García D et al (2007) Photophysical characterization of a cytidine-guanosine tethered phthalocyanine-fullerene dyad. Chem Commun 292–294 Torres T, Gouloumis A, Sánchez-García D et al (2007) Photophysical characterization of a cytidine-guanosine tethered phthalocyanine-fullerene dyad. Chem Commun 292–294
133.
Zurück zum Zitat Wessendorf F, Gnichwitz J-F, Sarova GH et al (2007) Implementation of a Hamilton-receptor-based hydrogen-bonding motif toward a new electron donor-acceptor prototype: electron versus energy transfer. J Am Chem Soc 129:16057–16071 Wessendorf F, Gnichwitz J-F, Sarova GH et al (2007) Implementation of a Hamilton-receptor-based hydrogen-bonding motif toward a new electron donor-acceptor prototype: electron versus energy transfer. J Am Chem Soc 129:16057–16071
134.
Zurück zum Zitat Maurer K, Grimm B, Wessendorf F et al (2010) Self-assembling depsipeptide dendrimers and dendritic fullerenes with new cis- and trans-symmetric Hamilton receptor functionalized Zn–porphyrins: synthesis, photophysical properties and cooperativity phenomena. Eur J Org Chem 5010–5029 Maurer K, Grimm B, Wessendorf F et al (2010) Self-assembling depsipeptide dendrimers and dendritic fullerenes with new cis- and trans-symmetric Hamilton receptor functionalized Zn–porphyrins: synthesis, photophysical properties and cooperativity phenomena. Eur J Org Chem 5010–5029
135.
Zurück zum Zitat Grimm B, Schornbaum J, Jasch H et al (2012) Step-by-step self-assembled hybrids that feature control over energy and charge transfer. Proc Natl Acad Sci U S A 109:15565–15571 Grimm B, Schornbaum J, Jasch H et al (2012) Step-by-step self-assembled hybrids that feature control over energy and charge transfer. Proc Natl Acad Sci U S A 109:15565–15571
136.
Zurück zum Zitat Santos J, Grimm B, Illescas BM et al (2008) Cooperativity between π-π and H-bonding interactions – a supramolecular complex formed by C 60 and exTTF. Chem Commun 5993–5995 Santos J, Grimm B, Illescas BM et al (2008) Cooperativity between π-π and H-bonding interactions – a supramolecular complex formed by C 60 and exTTF. Chem Commun 5993–5995
137.
Zurück zum Zitat Huang C-H, McClenaghan ND, Kuhn A et al (2005) Enhanced photovoltaic response in hydrogen-bonded all-organic devices. Org Lett 7:3409–3412 Huang C-H, McClenaghan ND, Kuhn A et al (2005) Enhanced photovoltaic response in hydrogen-bonded all-organic devices. Org Lett 7:3409–3412
138.
Zurück zum Zitat Chu C-C, Raffy G, Ray D et al (2010) Self-assembly of supramolecular fullerene ribbons via hydrogen-bonding interactions and their impact on fullerene electronic interactions and charge carrier mobility. J Am Chem Soc 132:12717–12723 Chu C-C, Raffy G, Ray D et al (2010) Self-assembly of supramolecular fullerene ribbons via hydrogen-bonding interactions and their impact on fullerene electronic interactions and charge carrier mobility. J Am Chem Soc 132:12717–12723
139.
Zurück zum Zitat Pérez EM, Martín N (2008) Curves ahead: molecular receptors for fullerenes based on concave-convex complementarity. Chem Soc Rev 37:1512–1519 Pérez EM, Martín N (2008) Curves ahead: molecular receptors for fullerenes based on concave-convex complementarity. Chem Soc Rev 37:1512–1519
140.
Zurück zum Zitat Tashiro K, Aida T (2007) Metalloporphyrin hosts for supramolecular chemistry of fullerenes. Chem Soc Rev 36:189–197 Tashiro K, Aida T (2007) Metalloporphyrin hosts for supramolecular chemistry of fullerenes. Chem Soc Rev 36:189–197
141.
Zurück zum Zitat Kawase T, Kurata H (2006) Ball-, bowl-, and belt-shaped conjugated systems and their complexing abilities: exploration of the concave-convex π−π interaction. Chem Rev 106:5250–5273 Kawase T, Kurata H (2006) Ball-, bowl-, and belt-shaped conjugated systems and their complexing abilities: exploration of the concave-convex π−π interaction. Chem Rev 106:5250–5273
142.
Zurück zum Zitat Mizyed S, Georghiou PE, Bancu M et al (2001) Embracing C 60 with multiarmed geodesic partners. J Am Chem Soc 123:12770–12774 Mizyed S, Georghiou PE, Bancu M et al (2001) Embracing C 60 with multiarmed geodesic partners. J Am Chem Soc 123:12770–12774
143.
Zurück zum Zitat Sygula A, Fronczek FR, Sygula R et al (2007) A double concave hydrocarbon buckycatcher. J Am Chem Soc 129:3842–3843 Sygula A, Fronczek FR, Sygula R et al (2007) A double concave hydrocarbon buckycatcher. J Am Chem Soc 129:3842–3843
144.
Zurück zum Zitat Pérez EM, Martín N (2010) Molecular tweezers for fullerenes. Pure Appl Chem 82:523–533 Pérez EM, Martín N (2010) Molecular tweezers for fullerenes. Pure Appl Chem 82:523–533
145.
Zurück zum Zitat Kawase T, Darabi HR, Oda M (1996) Cyclic [6]- and [8]paraphenylacetylenes. Angew Chem Int Ed 35:2664–2666 Kawase T, Darabi HR, Oda M (1996) Cyclic [6]- and [8]paraphenylacetylenes. Angew Chem Int Ed 35:2664–2666
146.
Zurück zum Zitat Kawase T, Tanaka K, Fujiwara N et al (2003) Complexation of a carbon nanoring with fullerenes. Angew Chem Int Ed 42:1624–1628 Kawase T, Tanaka K, Fujiwara N et al (2003) Complexation of a carbon nanoring with fullerenes. Angew Chem Int Ed 42:1624–1628
147.
Zurück zum Zitat Kawase T, Tanaka K, Seirai Y et al (2003) Complexation of carbon nanorings with fullerenes: supramolecular dynamics and structural tuning for a fullerene sensor. Angew Chem Int Ed 42:5597–5600 Kawase T, Tanaka K, Seirai Y et al (2003) Complexation of carbon nanorings with fullerenes: supramolecular dynamics and structural tuning for a fullerene sensor. Angew Chem Int Ed 42:5597–5600
148.
Zurück zum Zitat Omachi H, Segawa Y, Itami K (2012) Synthesis of cycloparaphenylenes and related carbon nanorings: a step toward the controlled synthesis of carbon nanotubes. Acc Chem Res 45:1378–1389 Omachi H, Segawa Y, Itami K (2012) Synthesis of cycloparaphenylenes and related carbon nanorings: a step toward the controlled synthesis of carbon nanotubes. Acc Chem Res 45:1378–1389
149.
Zurück zum Zitat Iwamoto T, Watanabe Y, Sadahiro T et al (2011) Size-selective encapsulation of C 60 by [10]cycloparaphenylene: formation of the shortest fullerene-peapod. Angew Chem Int Ed 50:8342–8344 Iwamoto T, Watanabe Y, Sadahiro T et al (2011) Size-selective encapsulation of C 60 by [10]cycloparaphenylene: formation of the shortest fullerene-peapod. Angew Chem Int Ed 50:8342–8344
150.
Zurück zum Zitat Xia J, Bacon JW, Jasti R (2012) Gram-scale synthesis and crystal structures of [8]- and [10]CPP, and the solid-state structure of C 60·[10]CPP. Chem Sci 3:3018–3021 Xia J, Bacon JW, Jasti R (2012) Gram-scale synthesis and crystal structures of [8]- and [10]CPP, and the solid-state structure of C 60·[10]CPP. Chem Sci 3:3018–3021
151.
Zurück zum Zitat Pérez EM, Sánchez L, Fernández G et al (2006) exTTF as a building block for fullerene receptors. Unexpected solvent-dependent positive homotropic cooperativity. J Am Chem Soc 128:7172–7173 Pérez EM, Sánchez L, Fernández G et al (2006) exTTF as a building block for fullerene receptors. Unexpected solvent-dependent positive homotropic cooperativity. J Am Chem Soc 128:7172–7173
152.
Zurück zum Zitat Gayathri SS, Wielopolski M, Pérez EM et al (2009) Discrete supramolecular donor-acceptor complexes. Angew Chem Int Ed 48:815–819 Gayathri SS, Wielopolski M, Pérez EM et al (2009) Discrete supramolecular donor-acceptor complexes. Angew Chem Int Ed 48:815–819
153.
Zurück zum Zitat Pérez EM, Capodilupo AL, Fernández G et al (2008) Weighting non-covalent forces in the molecular recognition of C 60. Relevance of concave-convex complementarity. Chem Commun 4567–4569 Pérez EM, Capodilupo AL, Fernández G et al (2008) Weighting non-covalent forces in the molecular recognition of C 60. Relevance of concave-convex complementarity. Chem Commun 4567–4569
154.
Zurück zum Zitat Pérez EM, Martín N (2012) Chiral recognition of carbon nanoforms. Org Biomol Chem 10:3577–3583 Pérez EM, Martín N (2012) Chiral recognition of carbon nanoforms. Org Biomol Chem 10:3577–3583
155.
Zurück zum Zitat Pérez EM, Sierra M, Sánchez L et al (2007) Concave tetrathiafulvalene-type donors as supramolecular partners for fullerenes. Angew Chem Int Ed 46:1847–1851 Pérez EM, Sierra M, Sánchez L et al (2007) Concave tetrathiafulvalene-type donors as supramolecular partners for fullerenes. Angew Chem Int Ed 46:1847–1851
156.
Zurück zum Zitat Haino T, Yanase M, Fukazawa Y (1998) Fullerenes enclosed in bridged calix[5]arenes. Angew Chem Int Ed 37:997–998 Haino T, Yanase M, Fukazawa Y (1998) Fullerenes enclosed in bridged calix[5]arenes. Angew Chem Int Ed 37:997–998
157.
Zurück zum Zitat Uno H, Furukawa M, Fujimoto A et al (2011) Porphyrin molecular tweezers for fullerenes. J Porphyr Phthalocyanins 15:951–963 Uno H, Furukawa M, Fujimoto A et al (2011) Porphyrin molecular tweezers for fullerenes. J Porphyr Phthalocyanins 15:951–963
158.
Zurück zum Zitat Sun D, Tham FS, Reed CA et al (2000) Porphyrin-fullerene host-guest chemistry. J Am Chem Soc 122:10704–10705 Sun D, Tham FS, Reed CA et al (2000) Porphyrin-fullerene host-guest chemistry. J Am Chem Soc 122:10704–10705
159.
Zurück zum Zitat Sun D, Tham FS, Reed CA et al (2002) Supramolecular fullerene-porphyrin chemistry. Fullerene complexation by metalated “jaws porphyrin” hosts. J Am Chem Soc 124:6604–6612 Sun D, Tham FS, Reed CA et al (2002) Supramolecular fullerene-porphyrin chemistry. Fullerene complexation by metalated “jaws porphyrin” hosts. J Am Chem Soc 124:6604–6612
160.
Zurück zum Zitat Hosseini A, Taylor S, Accorsi G et al (2006) Calix[4]arene-linked bisporphyrin hosts for fullerenes: binding strength, solvation effects, and porphyrin-fullerene charge transfer bands. J Am Chem Soc 128:15903–15913 Hosseini A, Taylor S, Accorsi G et al (2006) Calix[4]arene-linked bisporphyrin hosts for fullerenes: binding strength, solvation effects, and porphyrin-fullerene charge transfer bands. J Am Chem Soc 128:15903–15913
161.
Zurück zum Zitat Ayabe M, Ikeda A, Shinkai S et al (2002) A novel [60]fullerene receptor with a Pd(II)-switched bisporphyrin cleft. Chem Commun 1032–1033 Ayabe M, Ikeda A, Shinkai S et al (2002) A novel [60]fullerene receptor with a Pd(II)-switched bisporphyrin cleft. Chem Commun 1032–1033
162.
Zurück zum Zitat Fernández G, Pérez EM, Sánchez L et al (2008) Self-organization of electroactive materials: a head-to-tail donor-acceptor supramolecular polymer. Angew Chem Int Ed 47:1094–1097 Fernández G, Pérez EM, Sánchez L et al (2008) Self-organization of electroactive materials: a head-to-tail donor-acceptor supramolecular polymer. Angew Chem Int Ed 47:1094–1097
163.
Zurück zum Zitat Fernández G, Pérez EM, Sánchez L et al (2008) An electroactive dynamically polydisperse supramolecular dendrimer. J Am Chem Soc 130:2410–2411 Fernández G, Pérez EM, Sánchez L et al (2008) An electroactive dynamically polydisperse supramolecular dendrimer. J Am Chem Soc 130:2410–2411
164.
Zurück zum Zitat Santos J, Pérez EM, Illescas BM et al (2011) Linear and hyperbranched electron-acceptor supramolecular oligomers. Chem Asian J 6:1848–1853 Santos J, Pérez EM, Illescas BM et al (2011) Linear and hyperbranched electron-acceptor supramolecular oligomers. Chem Asian J 6:1848–1853
165.
Zurück zum Zitat Fernández G, Sánchez L, Pérez EM et al (2008) Large exTTF-based dendrimers. Self-assembly and peripheral cooperative multiencapsulation of C 60. J Am Chem Soc 130:10674–10683 Fernández G, Sánchez L, Pérez EM et al (2008) Large exTTF-based dendrimers. Self-assembly and peripheral cooperative multiencapsulation of C 60. J Am Chem Soc 130:10674–10683
166.
Zurück zum Zitat Canevet D, Pérez EM, Martín N (2011) Wraparound hosts for fullerenes: tailored macrocycles and cages. Angew Chem Int Ed 50:9248–9259 Canevet D, Pérez EM, Martín N (2011) Wraparound hosts for fullerenes: tailored macrocycles and cages. Angew Chem Int Ed 50:9248–9259
167.
Zurück zum Zitat Tashiro K, Aida T, Zheng J-Y et al (1999) A cyclic dimer of metalloporphyrin forms a highly stable inclusion complex with C 60. J Am Chem Soc 121:9477–9478 Tashiro K, Aida T, Zheng J-Y et al (1999) A cyclic dimer of metalloporphyrin forms a highly stable inclusion complex with C 60. J Am Chem Soc 121:9477–9478
168.
Zurück zum Zitat Yanagisawa M, Tashiro K, Yamasaki M et al (2007) Hosting fullerenes by dynamic bond formation with an iridium porphyrin cyclic dimer: a “chemical friction” for rotary guest motions. J Am Chem Soc 129:11912–11913 Yanagisawa M, Tashiro K, Yamasaki M et al (2007) Hosting fullerenes by dynamic bond formation with an iridium porphyrin cyclic dimer: a “chemical friction” for rotary guest motions. J Am Chem Soc 129:11912–11913
169.
Zurück zum Zitat Gil-Ramírez G, Karlen SD, Shundo A et al (2010) A cyclic porphyrin trimer as a receptor for fullerenes. Org Lett 12:3544–3547 Gil-Ramírez G, Karlen SD, Shundo A et al (2010) A cyclic porphyrin trimer as a receptor for fullerenes. Org Lett 12:3544–3547
170.
Zurück zum Zitat Song J, Aratani N, Shinokubo H et al (2010) A porphyrin nanobarrel that encapsulates C 60. J Am Chem Soc 132:16356–16357 Song J, Aratani N, Shinokubo H et al (2010) A porphyrin nanobarrel that encapsulates C 60. J Am Chem Soc 132:16356–16357
171.
Zurück zum Zitat Zheng J-Y, Tashiro K et al (2001) Cyclic dimers of metalloporphyrins as tunable hosts for fullerenes: a remarkable effect of rhodium(III). Angew Chem Int Ed 40:1857–1861 Zheng J-Y, Tashiro K et al (2001) Cyclic dimers of metalloporphyrins as tunable hosts for fullerenes: a remarkable effect of rhodium(III). Angew Chem Int Ed 40:1857–1861
172.
Zurück zum Zitat Isla H, Gallego M, Pérez EM et al (2010) A bis-exTTF macrocyclic receptor that associates C 60 with micromolar affinity. J Am Chem Soc 132:1772–1773 Isla H, Gallego M, Pérez EM et al (2010) A bis-exTTF macrocyclic receptor that associates C 60 with micromolar affinity. J Am Chem Soc 132:1772–1773
173.
Zurück zum Zitat Canevet D, Gallego M, Isla H et al (2011) Macrocyclic hosts for fullerenes: extreme changes in binding abilities with small structural variations. J Am Chem Soc 133:3184–3190 Canevet D, Gallego M, Isla H et al (2011) Macrocyclic hosts for fullerenes: extreme changes in binding abilities with small structural variations. J Am Chem Soc 133:3184–3190
174.
Zurück zum Zitat Akasaka T, Wudl F, Nagase S (2010) Chemistry of nanocarbons. Wiley-VCH, Chichester Akasaka T, Wudl F, Nagase S (2010) Chemistry of nanocarbons. Wiley-VCH, Chichester
175.
Zurück zum Zitat Yamada M, Akasaka T, Nagase S (2010) Endohedral metal atoms in pristine and functionalized fullerene cages. Acc Chem Res 43:92–102 Yamada M, Akasaka T, Nagase S (2010) Endohedral metal atoms in pristine and functionalized fullerene cages. Acc Chem Res 43:92–102
176.
Zurück zum Zitat Lu X, Akasaka T, Nagase S (2012) Chemistry of endohedral metallofullerenes: the role of metals. Chem Commun 47:5942–5957 Lu X, Akasaka T, Nagase S (2012) Chemistry of endohedral metallofullerenes: the role of metals. Chem Commun 47:5942–5957
177.
Zurück zum Zitat Rodríguez-Fortea A, Balch AL, Poblet JM (2011) Endohedral metallofullerenes: a unique host-guest association. Chem Soc Rev 40:3551–3563 Rodríguez-Fortea A, Balch AL, Poblet JM (2011) Endohedral metallofullerenes: a unique host-guest association. Chem Soc Rev 40:3551–3563
178.
Zurück zum Zitat Dunsch L, Yang S (2007) Metal nitride cluster fullerenes: their current state and future prospects. Small 3:1298–1320 Dunsch L, Yang S (2007) Metal nitride cluster fullerenes: their current state and future prospects. Small 3:1298–1320
179.
Zurück zum Zitat Stevenson S, Mackey MA, Stuart MA et al (2008) A distorted tetrahedral metal oxide cluster inside an icosahedral carbon cage. Synthesis, isolation, and structural characterization of Sc 4(mu 3-O) 2@I h-C 80. J Am Chem Soc 130:11844–11845 Stevenson S, Mackey MA, Stuart MA et al (2008) A distorted tetrahedral metal oxide cluster inside an icosahedral carbon cage. Synthesis, isolation, and structural characterization of Sc 4(mu 3-O) 2@I h-C 80. J Am Chem Soc 130:11844–11845
180.
Zurück zum Zitat Chaur MN, Melin F, Ortiz AL et al (2009) Chemical, electrochemical, and structural properties of endohedral metallofullerenes. Angew Chem Int Ed 48:7514–7538 Chaur MN, Melin F, Ortiz AL et al (2009) Chemical, electrochemical, and structural properties of endohedral metallofullerenes. Angew Chem Int Ed 48:7514–7538
181.
Zurück zum Zitat Saunders M, Jiménez-Vázquez HA, Cross RJ et al (1993) Stable compounds of helium and neon. He@C 60 and Ne@C 60. Science 259:1428–1430 Saunders M, Jiménez-Vázquez HA, Cross RJ et al (1993) Stable compounds of helium and neon. He@C 60 and Ne@C 60. Science 259:1428–1430
182.
Zurück zum Zitat Kurotobi K, Murata Y (2011) A single molecule of water encapsulated in fullerene C 60. Science 333:613–616 Kurotobi K, Murata Y (2011) A single molecule of water encapsulated in fullerene C 60. Science 333:613–616
183.
Zurück zum Zitat Campanera JM, Bo C, Olmstead MM et al (2002) Bonding within the endohedral fullerenes Sc 3N@C 78 and Sc 3N@C 80 as determined by density functional calculations and reexamination of the crystal structure of {Sc 3N@C 78}·Co(OEP)}·1.5(C 6H 6)·0.3(CHCl 3). J Phys Chem A 106:12356–12364 Campanera JM, Bo C, Olmstead MM et al (2002) Bonding within the endohedral fullerenes Sc 3N@C 78 and Sc 3N@C 80 as determined by density functional calculations and reexamination of the crystal structure of {Sc 3N@C 78}·Co(OEP)}·1.5(C 6H 6)·0.3(CHCl 3). J Phys Chem A 106:12356–12364
184.
Zurück zum Zitat Aoyagi S, Nishibori E, Sawa H et al (2010) A layered ionic crystal of polar Li@C 60 superatoms. Nat Chem 2:678–683 Aoyagi S, Nishibori E, Sawa H et al (2010) A layered ionic crystal of polar Li@C 60 superatoms. Nat Chem 2:678–683
185.
Zurück zum Zitat Aoyagi S, Sado Y, Nishibori E et al (2012) Rock-salt-type crystal of thermally contracted C 60 with encapsulated lithium cation. Angew Chem Int Ed 51:3377–3381 Aoyagi S, Sado Y, Nishibori E et al (2012) Rock-salt-type crystal of thermally contracted C 60 with encapsulated lithium cation. Angew Chem Int Ed 51:3377–3381
186.
Zurück zum Zitat Chai Y, Guo T, Jin C et al (1991) Fullerenes with metals inside. J Phys Chem 95:7564–7568 Chai Y, Guo T, Jin C et al (1991) Fullerenes with metals inside. J Phys Chem 95:7564–7568
187.
Zurück zum Zitat Nagase S, Kobayashi K (1994) The ionization energies and electron affinities of endohedral metallofullerenes MC 82(M = Sc, Y, La): density functional calculations. J Chem Soc Chem Commun 1837–1838 Nagase S, Kobayashi K (1994) The ionization energies and electron affinities of endohedral metallofullerenes MC 82(M = Sc, Y, La): density functional calculations. J Chem Soc Chem Commun 1837–1838
188.
Zurück zum Zitat Tsuchiya T, Sato K, Kurihara H et al (2006) Spin-site exchange system constructed from endohedral metallofullerenes and organic donors. J Am Chem Soc 128:14418–14419 Tsuchiya T, Sato K, Kurihara H et al (2006) Spin-site exchange system constructed from endohedral metallofullerenes and organic donors. J Am Chem Soc 128:14418–14419
189.
Zurück zum Zitat Sato S, Seki S, Honsho Y et al (2011) Semi-metallic single-component crystal of soluble La@C 82 derivative with high electron mobility. J Am Chem Soc 133:2766–2771 Sato S, Seki S, Honsho Y et al (2011) Semi-metallic single-component crystal of soluble La@C 82 derivative with high electron mobility. J Am Chem Soc 133:2766–2771
190.
Zurück zum Zitat Feng L, Tsuchiya T, Wakahara T et al (2006) Synthesis and characterization of a bisadduct of La@C 82. J Am Chem Soc 128:5990–5991 Feng L, Tsuchiya T, Wakahara T et al (2006) Synthesis and characterization of a bisadduct of La@C 82. J Am Chem Soc 128:5990–5991
191.
Zurück zum Zitat Wakahara T, Yamada M, Takahashi S et al (2007) Two-dimensional hopping motion of encapsulated La atoms in silylated La 2@C 80. Chem Commun 2680–2682 Wakahara T, Yamada M, Takahashi S et al (2007) Two-dimensional hopping motion of encapsulated La atoms in silylated La 2@C 80. Chem Commun 2680–2682
192.
Zurück zum Zitat Yamada M, Mizorogi N, Tsuchiya T et al (2009) Synthesis and characterization of the D 5h isomer of the endohedral dimetallofullerene Ce 2@C 80: two-dimensional circulation of encapsulated metal atoms inside a fullerene cage. Chemistry 15:9486–9493 Yamada M, Mizorogi N, Tsuchiya T et al (2009) Synthesis and characterization of the D 5h isomer of the endohedral dimetallofullerene Ce 2@C 80: two-dimensional circulation of encapsulated metal atoms inside a fullerene cage. Chemistry 15:9486–9493
193.
Zurück zum Zitat Stevenson S, Rice G, Glass T et al (1999) Small-bandgap endohedral metallofullerenes in high yield and purity. Nature 401:55–57 Stevenson S, Rice G, Glass T et al (1999) Small-bandgap endohedral metallofullerenes in high yield and purity. Nature 401:55–57
194.
Zurück zum Zitat Popov AA, Dunsch L (2007) Structure, stability, and cluster-cage interactions in nitride clusterfullerenes M 3N@C 2n (M = Sc, Y; 2n = 68–98): a density functional theory study. J Am Chem Soc 129:11835–11849 Popov AA, Dunsch L (2007) Structure, stability, and cluster-cage interactions in nitride clusterfullerenes M 3N@C 2n (M = Sc, Y; 2n = 68–98): a density functional theory study. J Am Chem Soc 129:11835–11849
195.
Zurück zum Zitat Rodríguez-Fortea A, Alegret N, Balch AL et al (2010) The maximum pentagon separation rule provides a guideline for the structures of endohedral metallofullerenes. Nat Chem 2:955–961 Rodríguez-Fortea A, Alegret N, Balch AL et al (2010) The maximum pentagon separation rule provides a guideline for the structures of endohedral metallofullerenes. Nat Chem 2:955–961
196.
Zurück zum Zitat Stevenson S, Phillips JP, Reid JE et al (2004) Pyramidalization of Gd 3N inside a C 80 cage. The synthesis and structure of Gd 3N@C 80. Chem Commun 2814–2815 Stevenson S, Phillips JP, Reid JE et al (2004) Pyramidalization of Gd 3N inside a C 80 cage. The synthesis and structure of Gd 3N@C 80. Chem Commun 2814–2815
197.
Zurück zum Zitat Chaur MN, Melin F, Elliott B et al (2007) Gd 3N@C 2n (n = 40, 42, and 44): remarkably low HOMO-LUMO gap and unusual electrochemical reversibility of Gd 3N@C 88. J Am Chem Soc 129:14826–14829 Chaur MN, Melin F, Elliott B et al (2007) Gd 3N@C 2n (n = 40, 42, and 44): remarkably low HOMO-LUMO gap and unusual electrochemical reversibility of Gd 3N@C 88. J Am Chem Soc 129:14826–14829
198.
Zurück zum Zitat Chaur MN, Melin F, Ashby J et al (2008) Lanthanum nitride endohedral fullerenes La 3N@C 2n (43< or =n< or =55): preferential formation of La 3N@C 96. Chemistry 14:8213–8219 Chaur MN, Melin F, Ashby J et al (2008) Lanthanum nitride endohedral fullerenes La 3N@C 2n (43< or =n< or =55): preferential formation of La 3N@C 96. Chemistry 14:8213–8219
199.
Zurück zum Zitat Cao B, Wakahara T, Maeda Y et al (2004) Lanthanum endohedral metallofulleropyrrolidines: synthesis, isolation, and EPR characterization. Chemistry 10:716–720 Cao B, Wakahara T, Maeda Y et al (2004) Lanthanum endohedral metallofulleropyrrolidines: synthesis, isolation, and EPR characterization. Chemistry 10:716–720
200.
Zurück zum Zitat Cardona CM, Kitaygorodskiy A, Echegoyen L (2005) Trimetallic nitride endohedral metallofullerenes: reactivity dictated by the encapsulated metal cluster. J Am Chem Soc 127:10448–10453 Cardona CM, Kitaygorodskiy A, Echegoyen L (2005) Trimetallic nitride endohedral metallofullerenes: reactivity dictated by the encapsulated metal cluster. J Am Chem Soc 127:10448–10453
201.
Zurück zum Zitat Yamada M, Someya C, Wakahara T et al (2008) Metal atoms collinear with the spiro carbon of 6,6-open adducts, M 2@C 80(Ad) (M = La and Ce, Ad = adamantylidene). J Am Chem Soc 130:1171–1176 Yamada M, Someya C, Wakahara T et al (2008) Metal atoms collinear with the spiro carbon of 6,6-open adducts, M 2@C 80(Ad) (M = La and Ce, Ad = adamantylidene). J Am Chem Soc 130:1171–1176
202.
Zurück zum Zitat Shustova NB, Popov AA, Mackey MA et al (2007) Radical trifluoromethylation of Sc 3N@C 80. J Am Chem Soc 129:11676–11677 Shustova NB, Popov AA, Mackey MA et al (2007) Radical trifluoromethylation of Sc 3N@C 80. J Am Chem Soc 129:11676–11677
203.
Zurück zum Zitat Shu C, Cai T, Xu L et al (2007) Manganese(III)-catalyzed free radical reactions on trimetallic nitride endohedral metallofullerenes. J Am Chem Soc 129:15710–15717 Shu C, Cai T, Xu L et al (2007) Manganese(III)-catalyzed free radical reactions on trimetallic nitride endohedral metallofullerenes. J Am Chem Soc 129:15710–15717
204.
Zurück zum Zitat Iezzi EB, Duchamp JC, Harich K (2002) A symmetric derivative of the trimetallic nitride endohedral metallofullerene, Sc 3N@C 80. J Am Chem Soc 124:524–525 Iezzi EB, Duchamp JC, Harich K (2002) A symmetric derivative of the trimetallic nitride endohedral metallofullerene, Sc 3N@C 80. J Am Chem Soc 124:524–525
205.
Zurück zum Zitat Lee HM, Olmstead MM, Iezzi E et al (2002) Crystallographic characterization and structural analysis of the first organic functionalization product of the endohedral fullerene Sc 3N@C 80. J Am Chem Soc 124:3494–3495 Lee HM, Olmstead MM, Iezzi E et al (2002) Crystallographic characterization and structural analysis of the first organic functionalization product of the endohedral fullerene Sc 3N@C 80. J Am Chem Soc 124:3494–3495
206.
Zurück zum Zitat Ge Z, Duchamp JC, Cai T et al (2005) Purification of endohedral trimetallic nitride fullerenes in a single, facile step. J Am Chem Soc 127:16292–16298 Ge Z, Duchamp JC, Cai T et al (2005) Purification of endohedral trimetallic nitride fullerenes in a single, facile step. J Am Chem Soc 127:16292–16298
207.
Zurück zum Zitat Cai T, Ge Z, Iezzi EB et al (2005) Synthesis and characterization of the first trimetallic nitride templated pyrrolidino endohedral metallofullerenes. Chem Commun 3594–3596 Cai T, Ge Z, Iezzi EB et al (2005) Synthesis and characterization of the first trimetallic nitride templated pyrrolidino endohedral metallofullerenes. Chem Commun 3594–3596
208.
Zurück zum Zitat Wakahara T, Iiduka Y, Ikenaga O et al (2006) Characterization of the bis-silylated endofullerene Sc 3N@C 80. J Am Chem Soc 128:9919–9925 Wakahara T, Iiduka Y, Ikenaga O et al (2006) Characterization of the bis-silylated endofullerene Sc 3N@C 80. J Am Chem Soc 128:9919–9925
209.
Zurück zum Zitat Yamada M, Minowa M, Sato S et al (2011) Regioselective cycloaddition of La 2@ I h -C 80 with tetracyanoethylene oxide: formation of an endohedral dimetallofullerene adduct featuring enhanced electron-accepting character. J Am Chem Soc 33:3796–3799 Yamada M, Minowa M, Sato S et al (2011) Regioselective cycloaddition of La 2@ I h -C 80 with tetracyanoethylene oxide: formation of an endohedral dimetallofullerene adduct featuring enhanced electron-accepting character. J Am Chem Soc 33:3796–3799
210.
Zurück zum Zitat Liu T-X, Wei T, Zhu S-E et al (2012) Azide addition to an endohedral metallofullerene: formation of azafulleroids of Sc 3N@ I h -C 80. J Am Chem Soc 134:11956–11959 Liu T-X, Wei T, Zhu S-E et al (2012) Azide addition to an endohedral metallofullerene: formation of azafulleroids of Sc 3N@ I h -C 80. J Am Chem Soc 134:11956–11959
211.
Zurück zum Zitat Yamada M, Nakahodo T, Wakahara T et al (2005) Positional control of encapsulated atoms inside a fullerene cage by exohedral addition. J Am Chem Soc 127:14570–14571 Yamada M, Nakahodo T, Wakahara T et al (2005) Positional control of encapsulated atoms inside a fullerene cage by exohedral addition. J Am Chem Soc 127:14570–14571
212.
Zurück zum Zitat Yamada M, Wakahara T, Nakahodo T et al (2006) Synthesis and structural characterization of endohedral pyrrolidinodimetallofullerene: La 2@C 80(CH 2) 2NTrt. J Am Chem Soc 128:1402–1403 Yamada M, Wakahara T, Nakahodo T et al (2006) Synthesis and structural characterization of endohedral pyrrolidinodimetallofullerene: La 2@C 80(CH 2) 2NTrt. J Am Chem Soc 128:1402–1403
213.
Zurück zum Zitat Cardona CM, Elliott B, Echegoyen L (2006) Unexpected chemical and electrochemical properties of M 3N@C 80 (M = Sc, Y, Er). J Am Chem Soc 128:6480–6485 Cardona CM, Elliott B, Echegoyen L (2006) Unexpected chemical and electrochemical properties of M 3N@C 80 (M = Sc, Y, Er). J Am Chem Soc 128:6480–6485
214.
Zurück zum Zitat Rodríguez-Fortea A, Campanera JM, Cardona CM et al (2006) Dancing on a fullerene surface: isomerization of Y 3N@(N-ethylpyrrolidino-C 80) from the 6,6 to the 5,6 regioisomers. Angew Chem Int Ed 45:8176–8180 Rodríguez-Fortea A, Campanera JM, Cardona CM et al (2006) Dancing on a fullerene surface: isomerization of Y 3N@(N-ethylpyrrolidino-C 80) from the 6,6 to the 5,6 regioisomers. Angew Chem Int Ed 45:8176–8180
215.
Zurück zum Zitat Pinzón JR, Plonska-Brzezinska ME, Cardona CM et al (2008) Sc 3N@C 80-ferrocene electron-donor/acceptor conjugates as promising materials for photovoltaic applications. Angew Chem Int Ed 47:4173–4176 Pinzón JR, Plonska-Brzezinska ME, Cardona CM et al (2008) Sc 3N@C 80-ferrocene electron-donor/acceptor conjugates as promising materials for photovoltaic applications. Angew Chem Int Ed 47:4173–4176
216.
Zurück zum Zitat Takano Y, Herranz MA, Martín N et al (2010) Donor-acceptor conjugates of lanthanum endohedral metallofullerene and π-extended tetrathiafulvalene. J Am Chem Soc 132:8048–8055 Takano Y, Herranz MA, Martín N et al (2010) Donor-acceptor conjugates of lanthanum endohedral metallofullerene and π-extended tetrathiafulvalene. J Am Chem Soc 132:8048–8055
217.
Zurück zum Zitat Li FF, Pinzón JR, Mercado BQ et al (2011) [2+2]Cycloaddition reaction to Sc 3N@ I h -C 80. The formation of very stable [5,6]- and [6,6]-adducts. J Am Chem Soc 133:1563–1571 Li FF, Pinzón JR, Mercado BQ et al (2011) [2+2]Cycloaddition reaction to Sc 3N@ I h -C 80. The formation of very stable [5,6]- and [6,6]-adducts. J Am Chem Soc 133:1563–1571
218.
Zurück zum Zitat Wang GW, Liu TX, Jiao M et al (2011) The cycloaddition reaction of I h -Sc 3N@C 80 with 2-amino-4,5-diisopropoxybenzoic acid and isoamyl nitrite to produce an open-cage metallofullerene. Angew Chem Int Ed 50:4658–4662 Wang GW, Liu TX, Jiao M et al (2011) The cycloaddition reaction of I h -Sc 3N@C 80 with 2-amino-4,5-diisopropoxybenzoic acid and isoamyl nitrite to produce an open-cage metallofullerene. Angew Chem Int Ed 50:4658–4662
219.
Zurück zum Zitat Lukoyanova O, Cardona CM, Rivera J et al (2007) Open rather than closed malonate methano-fullerene derivatives. The formation of methanofulleroid adducts of Y 3N@C 80. J Am Chem Soc 129:10423–10430 Lukoyanova O, Cardona CM, Rivera J et al (2007) Open rather than closed malonate methano-fullerene derivatives. The formation of methanofulleroid adducts of Y 3N@C 80. J Am Chem Soc 129:10423–10430
220.
Zurück zum Zitat Cai T, Xu L, Shu C et al (2008) Selective formation of a symmetric Sc3N@C78 bisadduct: adduct docking controlled by an internal trimetallic nitride cluster. J Am Chem Soc 130:2136–2137 Cai T, Xu L, Shu C et al (2008) Selective formation of a symmetric Sc3N@C78 bisadduct: adduct docking controlled by an internal trimetallic nitride cluster. J Am Chem Soc 130:2136–2137
221.
Zurück zum Zitat Rudolf M, Wolfrum S, Guldi DM et al (2012) Endohedral metallofullerenes–filled fullerene derivatives towards multifunctional reaction center mimics. Chemistry 8:5136–48 Rudolf M, Wolfrum S, Guldi DM et al (2012) Endohedral metallofullerenes–filled fullerene derivatives towards multifunctional reaction center mimics. Chemistry 8:5136–48
222.
Zurück zum Zitat Feng L, Rudolf M, Wolfrum S et al (2012) A paradigmatic change: linking fullerenes to electron acceptors. J Am Chem Soc 34:12190–12197 Feng L, Rudolf M, Wolfrum S et al (2012) A paradigmatic change: linking fullerenes to electron acceptors. J Am Chem Soc 34:12190–12197
223.
Zurück zum Zitat Li FF, Rodríguez-Fortea A, Poblet JM et al (2011) Reactivity of metallic nitride endohedral metallofullerene anions: electrochemical synthesis of a Lu 3N@ I h -C 80 derivative. J Am Chem Soc 133:2760–2765 Li FF, Rodríguez-Fortea A, Poblet JM et al (2011) Reactivity of metallic nitride endohedral metallofullerene anions: electrochemical synthesis of a Lu 3N@ I h -C 80 derivative. J Am Chem Soc 133:2760–2765
224.
Zurück zum Zitat Li FF, Rodríguez-Fortea A, Peng P et al (2012) Electrosynthesis of a Sc 3N@ I h -C 80 methano derivative from trianionic Sc 3N@ Ih-C 80. J Am Chem Soc 134:480–7487 Li FF, Rodríguez-Fortea A, Peng P et al (2012) Electrosynthesis of a Sc 3N@ I h -C 80 methano derivative from trianionic Sc 3N@ Ih-C 80. J Am Chem Soc 134:480–7487
225.
Zurück zum Zitat Tsuchiya T, Wielopolski M, Sakuma N et al (2011) Stable radical anions inside fullerene cages: formation of reversible electron transfer systems. J Am Chem Soc 133:13280–13283 Tsuchiya T, Wielopolski M, Sakuma N et al (2011) Stable radical anions inside fullerene cages: formation of reversible electron transfer systems. J Am Chem Soc 133:13280–13283
226.
Zurück zum Zitat Armaroli N, Balzani V (2007) The future of energy supply: challenges and opportunities. Angew Chem Int Ed 46:52–66 Armaroli N, Balzani V (2007) The future of energy supply: challenges and opportunities. Angew Chem Int Ed 46:52–66
227.
Zurück zum Zitat Chapin DM, Fuller CS, Pearson GL (1954) A new silicon p‐ n junction photocell for converting solar radiation into electrical power. J Appl Chem 25:676–678 Chapin DM, Fuller CS, Pearson GL (1954) A new silicon pn junction photocell for converting solar radiation into electrical power. J Appl Chem 25:676–678
228.
Zurück zum Zitat Rispens MT, Hummelen JC (2002) Fullerenes: from synthesis to optoelectronic properties. In: Guldi DM, Martín N (eds) Photovoltaic applications. Kluwer Academic, Dordrech, pp 387–435 (Chap. 12) Rispens MT, Hummelen JC (2002) Fullerenes: from synthesis to optoelectronic properties. In: Guldi DM, Martín N (eds) Photovoltaic applications. Kluwer Academic, Dordrech, pp 387–435 (Chap. 12)
229.
Zurück zum Zitat Hummelen JC, Knight BW, LePeq F et al (1995) Preparation and characterization of fulleroid and methanofullerene derivatives. J Org Chem 60:532–538 Hummelen JC, Knight BW, LePeq F et al (1995) Preparation and characterization of fulleroid and methanofullerene derivatives. J Org Chem 60:532–538
230.
Zurück zum Zitat Yu G, Gao J, Hummelen JC et al (1995) Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270:1789–1791 Yu G, Gao J, Hummelen JC et al (1995) Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270:1789–1791
231.
Zurück zum Zitat Zhang Y, Yip HL, Acton O et al (2009) A simple and effective way of achieving highly efficient and thermally stable bulk-heterojunction polymer solar cells using amorphous fullerene derivatives as electron acceptor. Chem Mater 21:2598–2600 Zhang Y, Yip HL, Acton O et al (2009) A simple and effective way of achieving highly efficient and thermally stable bulk-heterojunction polymer solar cells using amorphous fullerene derivatives as electron acceptor. Chem Mater 21:2598–2600
232.
Zurück zum Zitat Lenes L, Wetzelaer GJAH, Kooistra FB et al (2008) Fullerene bisadducts for enhanced open-circuit voltages and efficiencies in polymer solar cells. Adv Mater 20:2116–2119 Lenes L, Wetzelaer GJAH, Kooistra FB et al (2008) Fullerene bisadducts for enhanced open-circuit voltages and efficiencies in polymer solar cells. Adv Mater 20:2116–2119
233.
Zurück zum Zitat Wienk MM, Kroon JM, Verhees WJH et al (2003) Efficient methano[70]fullerene/MDMO-PPV bulk heterojunction photovoltaic cells. Angew Chem Int Ed 42:3371–3375 Wienk MM, Kroon JM, Verhees WJH et al (2003) Efficient methano[70]fullerene/MDMO-PPV bulk heterojunction photovoltaic cells. Angew Chem Int Ed 42:3371–3375
234.
Zurück zum Zitat Park SH, Roy A, Beaupré S et al (2009) Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nat Photonics 3:297–302 Park SH, Roy A, Beaupré S et al (2009) Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nat Photonics 3:297–302
235.
Zurück zum Zitat Kooistra FB, Mihailetchi VD, Popescu LM et al (2006) New C 84 derivative and its application in a bulk heterojunction solar cell. Chem Mater 18:3068–3073 Kooistra FB, Mihailetchi VD, Popescu LM et al (2006) New C 84 derivative and its application in a bulk heterojunction solar cell. Chem Mater 18:3068–3073
236.
Zurück zum Zitat Li CZ, Yip HL, Jen AKY (2012) Functional fullerenes for organic photovoltaics. J Mater Chem 22:4161–4177 Li CZ, Yip HL, Jen AKY (2012) Functional fullerenes for organic photovoltaics. J Mater Chem 22:4161–4177
237.
Zurück zum Zitat Riedel I, von Hauff E, Parisi J et al (2005) Diphenylmethanofullerenes: new and efficient acceptors in bulk-heterojunction solar cells. Adv Funct Mater 15:1979–1987 Riedel I, von Hauff E, Parisi J et al (2005) Diphenylmethanofullerenes: new and efficient acceptors in bulk-heterojunction solar cells. Adv Funct Mater 15:1979–1987
238.
Zurück zum Zitat Riedel I, Martín N, Giacalone F et al (2004) Polymer solar cells with novel fullerene-based acceptor. Thin Solid Films 451:43–47 Riedel I, Martín N, Giacalone F et al (2004) Polymer solar cells with novel fullerene-based acceptor. Thin Solid Films 451:43–47
239.
Zurück zum Zitat Backer S, Sivula K, Kavulak DF et al (2007) High efficiency organic photovoltaics incorporating a new family of soluble fullerene derivatives. Chem Mater 19:2927–2929 Backer S, Sivula K, Kavulak DF et al (2007) High efficiency organic photovoltaics incorporating a new family of soluble fullerene derivatives. Chem Mater 19:2927–2929
240.
Zurück zum Zitat He Y, Chen HY, Hou J et al (2010) Indene–C 60 bisadduct: a new acceptor for high-performance polymer solar cells. J Am Chem Soc 132:1377–1382 He Y, Chen HY, Hou J et al (2010) Indene–C 60 bisadduct: a new acceptor for high-performance polymer solar cells. J Am Chem Soc 132:1377–1382
241.
Zurück zum Zitat Weiss EA, Wasielewski MR, Ratner MA (2005) Molecules as wires: molecule-assisted movement of charge and energy. Top Curr Chem 257:103–133 Weiss EA, Wasielewski MR, Ratner MA (2005) Molecules as wires: molecule-assisted movement of charge and energy. Top Curr Chem 257:103–133
242.
Zurück zum Zitat Guldi DM, Illescas BM, Atienza CM et al (2009) Fullerene for organic electronics. Chem Soc Rev 38:1587–1597 Guldi DM, Illescas BM, Atienza CM et al (2009) Fullerene for organic electronics. Chem Soc Rev 38:1587–1597
243.
Zurück zum Zitat Ito O, Yamanaka K (2009) Roles of molecular wires between fullerenes and electron donors in photoinduced electron transfer. Bull Chem Soc Jpn 82:316–332 Ito O, Yamanaka K (2009) Roles of molecular wires between fullerenes and electron donors in photoinduced electron transfer. Bull Chem Soc Jpn 82:316–332
244.
Zurück zum Zitat Vail SA, Schuster DI, Guldi DM et al (2006) Energy and electron transfer in beta-alkynyl-linked porphyrin-[60]fullerene dyads. J Phys Chem B 110:14155–14166 Vail SA, Schuster DI, Guldi DM et al (2006) Energy and electron transfer in beta-alkynyl-linked porphyrin-[60]fullerene dyads. J Phys Chem B 110:14155–14166
245.
Zurück zum Zitat Vail SA, Krawczuk PJ, Guldi DM et al (2005) Energy and electron transfer in polyacetylene-linked zinc–porphyrin–[60]fullerene molecular wires. Chemistry 11:3375–3388 Vail SA, Krawczuk PJ, Guldi DM et al (2005) Energy and electron transfer in polyacetylene-linked zinc–porphyrin–[60]fullerene molecular wires. Chemistry 11:3375–3388
246.
Zurück zum Zitat Tashiro K, Sato A, Yuzawa T et al (2006) Long-range photoinduced electron transfer mediated by oligo-p-phenylenebutadiynylene conjugated bridges. Chem Lett 35:518–519 Tashiro K, Sato A, Yuzawa T et al (2006) Long-range photoinduced electron transfer mediated by oligo-p-phenylenebutadiynylene conjugated bridges. Chem Lett 35:518–519
247.
Zurück zum Zitat Lembo A, Tagliatesta P, Guldi DM et al (2009) Porphyrin-β-oligo-ethynylenephenylene-[60]fullerene triads: synthesis and electrochemical and photophysical characterization of the new porphyrin-oligo-PPE-[60]fullerene systems. J Phys Chem A 113:1779–1793 Lembo A, Tagliatesta P, Guldi DM et al (2009) Porphyrin-β-oligo-ethynylenephenylene-[60]fullerene triads: synthesis and electrochemical and photophysical characterization of the new porphyrin-oligo-PPE-[60]fullerene systems. J Phys Chem A 113:1779–1793
248.
Zurück zum Zitat Giacalone F, Segura JL, Martín N et al (2004) Exceptionally small attenuation factors in molecular wires. J Am Chem Soc 126:5340–5341 Giacalone F, Segura JL, Martín N et al (2004) Exceptionally small attenuation factors in molecular wires. J Am Chem Soc 126:5340–5341
249.
Zurück zum Zitat Giacalone F, Segura JL, Martín N et al (2005) Probing molecular wires: synthesis, structural, and electronic study of donor-acceptor assemblies exhibiting long-range electron transfer. Chemistry 11:4819–4834 Giacalone F, Segura JL, Martín N et al (2005) Probing molecular wires: synthesis, structural, and electronic study of donor-acceptor assemblies exhibiting long-range electron transfer. Chemistry 11:4819–4834
250.
Zurück zum Zitat de la Torre G, Giacalone F, Segura JL et al (2005) Electronic communication through π-conjugated wires in covalently linked porphyrin/C 60 ensembles. Chemistry 11:12671280 de la Torre G, Giacalone F, Segura JL et al (2005) Electronic communication through π-conjugated wires in covalently linked porphyrin/C 60 ensembles. Chemistry 11:12671280
251.
Zurück zum Zitat Molina-Ontoria A, Wielopolski M, Gebhardt J (2011) [2,2′]Paracyclophane-based π-conjugaed molecular wires reveal molecular-junction behavior. J Am Chem Soc 133:2370–2373 Molina-Ontoria A, Wielopolski M, Gebhardt J (2011) [2,2′]Paracyclophane-based π-conjugaed molecular wires reveal molecular-junction behavior. J Am Chem Soc 133:2370–2373
252.
Zurück zum Zitat Atienza-Castellanos C, Wielopolski M, Guldi DM et al (2007) Determination of the attenuation factor in fluorene-based molecular wires. Chem Commun 5164–5166 Atienza-Castellanos C, Wielopolski M, Guldi DM et al (2007) Determination of the attenuation factor in fluorene-based molecular wires. Chem Commun 5164–5166
253.
Zurück zum Zitat Wielopolski M, Santos J, Illescas BM et al (2011) Vinyl spacers – tuning electron transfer through fluorene-based molecular wires. Energy Environ Sci 4:765–771 Wielopolski M, Santos J, Illescas BM et al (2011) Vinyl spacers – tuning electron transfer through fluorene-based molecular wires. Energy Environ Sci 4:765–771
254.
Zurück zum Zitat Ikemoto J, Takimiya K, Aso Y et al (2002) Porphyrin–oligothiophene–fullerene triads as an efficient intramolecular electron-transfer system. Org Lett 4:309–311 Ikemoto J, Takimiya K, Aso Y et al (2002) Porphyrin–oligothiophene–fullerene triads as an efficient intramolecular electron-transfer system. Org Lett 4:309–311
255.
Zurück zum Zitat Nakamura T, Fujitsuka M, Araki Y et al (2004) Photoinduced electron transfer in porphyrin-oligothiophene-fullerene linked triads by excitation of a porphyrin moiety. J Phys Chem B 108:10700–10710 Nakamura T, Fujitsuka M, Araki Y et al (2004) Photoinduced electron transfer in porphyrin-oligothiophene-fullerene linked triads by excitation of a porphyrin moiety. J Phys Chem B 108:10700–10710
256.
Zurück zum Zitat Wessendorf F, Grimm B, Guldi DM et al (2010) Pairing fullerenes and porphyrins: supramolecular wires that exhibit charge transfer activity. J Am Chem Soc 132:10786–10795 Wessendorf F, Grimm B, Guldi DM et al (2010) Pairing fullerenes and porphyrins: supramolecular wires that exhibit charge transfer activity. J Am Chem Soc 132:10786–10795
257.
Zurück zum Zitat Schmalz TG, Seitz WA, Klein DJ et al (1986) C 60 carbon cages. Chem Phys Lett 130:203–207 Schmalz TG, Seitz WA, Klein DJ et al (1986) C 60 carbon cages. Chem Phys Lett 130:203–207
258.
Zurück zum Zitat Schein S, Friedrich TA (2008) A geometric constraint, the head-to-tail exclusion rule, may be the basis for the isolated-pentagon rule in fullerenes with more than 60 vertices. Proc Natl Acad Sci U S A 105:19142–19147 Schein S, Friedrich TA (2008) A geometric constraint, the head-to-tail exclusion rule, may be the basis for the isolated-pentagon rule in fullerenes with more than 60 vertices. Proc Natl Acad Sci U S A 105:19142–19147
259.
Zurück zum Zitat Tan T-Z, Li J, Zhu F et al (2010) Chlorofullerenes featuring triple sequentially fused pentagons. Nat Chem 2:269–273 Tan T-Z, Li J, Zhu F et al (2010) Chlorofullerenes featuring triple sequentially fused pentagons. Nat Chem 2:269–273
260.
Zurück zum Zitat Martín N (2011) Fullerene C 72C l4: the exception that proves the rule? Angew Chem Int Ed 50:5431–5433 Martín N (2011) Fullerene C 72C l4: the exception that proves the rule? Angew Chem Int Ed 50:5431–5433
261.
Zurück zum Zitat Tan Y-Z, Xie S-Y, Huang R-B et al (2009) The stabilization of fused-pentagon fullerene molecules. Nat Chem 1:450–460 Tan Y-Z, Xie S-Y, Huang R-B et al (2009) The stabilization of fused-pentagon fullerene molecules. Nat Chem 1:450–460
262.
Zurück zum Zitat Wang CR, Kai T, Tomiyama T et al (2000) Materials science – C 66 fullerene encaging a scandium dimer. Nature 408:426–427 Wang CR, Kai T, Tomiyama T et al (2000) Materials science – C 66 fullerene encaging a scandium dimer. Nature 408:426–427
263.
Zurück zum Zitat Stevenson S, Fowler PW, Heine T et al (2000) Materials science: a stable non-classical metallofullerene family. Nature 408:427–428 Stevenson S, Fowler PW, Heine T et al (2000) Materials science: a stable non-classical metallofullerene family. Nature 408:427–428
264.
Zurück zum Zitat Beavers CM, Zuo TM, Duchamp JC et al (2006) Tb 3N@C 84: an improbable, egg-shaped endohedral fullerene that violates the isolated pentagon rule. J Am Chem Soc 128:11352–11353 Beavers CM, Zuo TM, Duchamp JC et al (2006) Tb 3N@C 84: an improbable, egg-shaped endohedral fullerene that violates the isolated pentagon rule. J Am Chem Soc 128:11352–11353
265.
Zurück zum Zitat Yang SF, Popov AA, Dunsch L (2007) Violating the isolated pentagon rule (IPR): the endohedral non-IPR C 70 cage of Sc 3N@C 70. Angew Chem Int Ed 46:1256–1259 Yang SF, Popov AA, Dunsch L (2007) Violating the isolated pentagon rule (IPR): the endohedral non-IPR C 70 cage of Sc 3N@C 70. Angew Chem Int Ed 46:1256–1259
266.
Zurück zum Zitat Ma YH, Wang TS, Wu JY et al (2011) Size effect of endohedral cluster on fullerene cage: preparation and structural studies of Y 3N@C 78-C 2. Nanoscale 3:4955–4957 Ma YH, Wang TS, Wu JY et al (2011) Size effect of endohedral cluster on fullerene cage: preparation and structural studies of Y 3N@C 78-C 2. Nanoscale 3:4955–4957
267.
Zurück zum Zitat Shi ZQ, Wu X, Wang CR et al (2006) Isolation and characterization of Sc 2C 2@C 68: a metal-carbide endofullerene with a non-IPR carbon cage. Angew Chem Int Ed 45:2107–2111 Shi ZQ, Wu X, Wang CR et al (2006) Isolation and characterization of Sc 2C 2@C 68: a metal-carbide endofullerene with a non-IPR carbon cage. Angew Chem Int Ed 45:2107–2111
268.
Zurück zum Zitat Wu JY, Wang TS, Ma YH et al (2011) Synthesis, isolation, characterization, and theoretical studies of Sc 3NC@C 78-C 2. J Phys Chem C 115:23755–23759 Wu JY, Wang TS, Ma YH et al (2011) Synthesis, isolation, characterization, and theoretical studies of Sc 3NC@C 78-C 2. J Phys Chem C 115:23755–23759
269.
Zurück zum Zitat Campanera JM, Bo C, Poblet JM (2005) General rule for the stabilization of fullerene cages encapsulating trimetallic nitride templates. Angew Chem Int Ed 44:7230–7233 Campanera JM, Bo C, Poblet JM (2005) General rule for the stabilization of fullerene cages encapsulating trimetallic nitride templates. Angew Chem Int Ed 44:7230–7233
270.
Zurück zum Zitat Summerscales OT, Cloke FGN (2006) The organometallic chemistry of pentalene. Coord Chem Rev 250:1122–1140 Summerscales OT, Cloke FGN (2006) The organometallic chemistry of pentalene. Coord Chem Rev 250:1122–1140
271.
Zurück zum Zitat Xie SY, Gao F, Lu X et al (2004) Capturing the labile fullerene[50] as C 50Cl 10. Science 304:699–699 Xie SY, Gao F, Lu X et al (2004) Capturing the labile fullerene[50] as C 50Cl 10. Science 304:699–699
272.
Zurück zum Zitat Wang CR, Shi ZQ, Wan LJ et al (2006) C64H4: production, isolation, and structural characterizations of a stable unconventional fulleride. J Am Chem Soc 128:6605–6610 Wang CR, Shi ZQ, Wan LJ et al (2006) C64H4: production, isolation, and structural characterizations of a stable unconventional fulleride. J Am Chem Soc 128:6605–6610
273.
Zurück zum Zitat Li B, Shu CY, Lu X et al (2010) Addition of carbene to the equator of C(70) to produce the most stable C(71)H(2) isomer: 2 aH-2(12)a-homo(C(70)-D(5 h(6)))[5,6]fullerene. Angew Chem Int Ed 49:962–966 Li B, Shu CY, Lu X et al (2010) Addition of carbene to the equator of C(70) to produce the most stable C(71)H(2) isomer: 2 aH-2(12)a-homo(C(70)-D(5 h(6)))[5,6]fullerene. Angew Chem Int Ed 49:962–966
274.
Zurück zum Zitat Tan YZ, Li J, Zhou T, Feng YQ et al (2010) Pentagon-fused hollow fullerene in C 78 family retrieved by chlorination. J Am Chem Soc 132:12648–12652 Tan YZ, Li J, Zhou T, Feng YQ et al (2010) Pentagon-fused hollow fullerene in C 78 family retrieved by chlorination. J Am Chem Soc 132:12648–12652
275.
Zurück zum Zitat Kato H, Taninaka A, Sugai T et al (2003) Structure of a missing-caged metallofullerene: La 2@C 72. J Am Chem Soc 125:7782–7783 Kato H, Taninaka A, Sugai T et al (2003) Structure of a missing-caged metallofullerene: La 2@C 72. J Am Chem Soc 125:7782–7783
276.
Zurück zum Zitat Yamada M, Wakahara T, Tsuchiya T et al (2008) Spectroscopic and theoretical study of endohedral dimetallofullerene having a non-IPR fullerene cage: Ce 2@C 72. J Phys Chem A 112:7627–7631 Yamada M, Wakahara T, Tsuchiya T et al (2008) Spectroscopic and theoretical study of endohedral dimetallofullerene having a non-IPR fullerene cage: Ce 2@C 72. J Phys Chem A 112:7627–7631
277.
Zurück zum Zitat Wakahara T, Nikawa H, Kikuchi T et al (2006) La@C 72 having a non-IPR carbon cage. J Am Chem Soc 128:14228–14229 Wakahara T, Nikawa H, Kikuchi T et al (2006) La@C 72 having a non-IPR carbon cage. J Am Chem Soc 128:14228–14229
278.
Zurück zum Zitat Chen N, Beavers CM, Mulet-Gas M et al (2012) Sc 2S@C(s)(10528)-C 72: a dimetallic sulfide endohedral fullerene with a non isolated pentagon rule cage. J Am Chem Soc 134:7851–7860 Chen N, Beavers CM, Mulet-Gas M et al (2012) Sc 2S@C(s)(10528)-C 72: a dimetallic sulfide endohedral fullerene with a non isolated pentagon rule cage. J Am Chem Soc 134:7851–7860
279.
Zurück zum Zitat Tan Y-Z, Zhou T, Bao J, Shan G-J, Xie S-Y, Huang R-B, Zheng L-S (2010) C 72Cl 4: a pristine fullerene with favorable pentagon-adjacent structure. J Am Chem Soc 132:17102–17104 Tan Y-Z, Zhou T, Bao J, Shan G-J, Xie S-Y, Huang R-B, Zheng L-S (2010) C 72Cl 4: a pristine fullerene with favorable pentagon-adjacent structure. J Am Chem Soc 132:17102–17104
280.
Zurück zum Zitat Ziegler K, Mueller A, Amsharov KY, Jansen M (2010) Disclosure of the elusive C 2v-C 72 carbon cage. J Am Chem Soc 132:17099–17101 Ziegler K, Mueller A, Amsharov KY, Jansen M (2010) Disclosure of the elusive C 2v-C 72 carbon cage. J Am Chem Soc 132:17099–17101
Metadaten
Titel
Buckyballs
verfasst von
Juan L. Delgado
Salvatore Filippone
Francesco Giacalone
Ma Ángeles Herranz
Beatriz Illescas
Emilio M. Pérez
Nazario Martín
Copyright-Jahr
2014
DOI
https://doi.org/10.1007/128_2012_414

Premium Partner

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.