Skip to main content

Tipp

Weitere Kapitel dieses Buchs durch Wischen aufrufen

2021 | OriginalPaper | Buchkapitel

Climate Action: The Feasibility of Climate Intervention on a Global Scale

Abstract

Today’s CO2 emissions are 60% greater than those in 1992 when Rio Earth Summit participants first agreed to act to prevent climate change. The failure to curb emissions is not due to a dearth of technical know-how; the climate intervention toolbox is full of strategies from mitigation to geoengineering and adaptation. Rather, it is due to a lack of political will exacerbated by gaps in our understanding of the complexity that reigns over the earth’s climate system. As we creep ever closer to crossing planetary thresholds and tipping points, time is running out to take the requisite actions to avoid global crises. Future efforts to slow, stabilize or reverse climate change must involve deployment of all possible interventions. The technical and political feasibility of climate action at a global scale rests on deep knowledge of how the climate system can be adjusted by these interdependent tools. Geoengineering entails two broad classes of endeavors with entirely different aims: carbon dioxide removal from the atmosphere and albedo modification to reduce the amount of sunlight hitting the earth’s surface. Many geoengineering options are the ultimate exercise of the engineering mentality deployed at massive scales in both time and space to buy time, despite the many actions that could be employed to actually solve the climate problem. This chapter explains and analyzes from a science and engineering perspective the multitude of available climate tools and considers potential challenges, uncertainties, and unexpected consequences of engineering climate adjustments at a global scale.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Waldman S. Atmospheric CO2 sets record high. ClimateWire (05.03.18); https://​www.​eenews.​net/​climatewire/​2018/​05/​03/​stories/​1060080715
 
2
Fountain H., Patel J.K., Popovich N. 2017 Was One of the Hottest Years on Record. New York Times; https://​www.​nytimes.​com/​interactive/​2018/​01/​18/​climate/​hottest-year-2017.​html
 
4
Watts J. Arctic warming: scientists alarmed by ‘crazy’ temperatures. The Guardian (02.27.18). https://​www.​theguardian.​com/​environment/​2018/​feb/​27/​arctic-warming-scientists-alarmed-by-crazy-temperature-rises
 
5
NASA Global Climate Change; Arctic Sea Ice Minimum. https://​climate.​nasa.​gov/​vital-signs/​arctic-sea-ice/​
 
6
National Snow & Ice Data Center. Arctic Sea Ice news & Analysis; Monthly Archives: September 2017. http://​nsidc.​org/​arcticseaicenews​/​2017/​09/​
 
7
Harvey C. Keeping the Arctic icy might hinge on half a degree. ClimateWire (04.03.18). https://​www.​eenews.​net/​climatewire/​2018/​04/​03/​stories/​1060077985
 
8
National Snow & Ice Data Center. Arctic Sea Ice news & Analysis; Arctic winter warms up to a low summer ice season. http://​nsidc.​org/​arcticseaicenews​/​2018/​05/​arctic-winter-warms-up-to-a-low-summer-ice-season/​
 
9
Hobson M.K. Sea ice hits 2nd-lowest level in 39 years. ClimateWire (03.26.18). https://​www.​eenews.​net/​climatewire/​2018/​03/​26/​stories/​1060077383
 
10
Wadhams P. The Global Impacts of Rapidly Disappearing Arctic Sea Ice. Yale Environment 360 (09.26.16). https://​e360.​yale.​edu/​features/​as_​arctic_​ocean_​ice_​disappears_​global_​climate_​impacts_​intensify_​wadhams
 
11
Waldman S. Climate change is transforming, rerouting Arctic rivers. ClimateWire (04.19.17). https://​www.​eenews.​net/​climatewire/​2017/​04/​19/​stories/​1060053256
 
12
Shugar D.H. et al. (2017) River piracy and drainage basin reorganization led by climate-driven glacier retreat. Nature Geoscience, 10:370–375. https://​www.​nature.​com/​articles/​ngeo2932
 
13
Struzik E. How Warming Is Profoundly Changing a Great Northern Wilderness. Yale Environment 360 (04.25.17). https://​e360.​yale.​edu/​features/​how-warming-is-profoundly-changing-a-great-northern-wilderness
 
14
U.S.E.P.A. Greenhouse Gas Emissions. Understanding Global Warming Potentials. https://​www.​epa.​gov/​ghgemissions/​understanding-global-warming-potentials
 
16
Hobson M.K. Sea ice hits 2nd-lowest level in 39 years. ClimateWire (03.26.18). https://​www.​eenews.​net/​climatewire/​2018/​03/​26/​stories/​1060077383
 
18
Ecochard K. What’s causing the poles to warm faster than the rest of the Earth? NASA. https://​www.​nasa.​gov/​topics/​earth/​features/​warmingpoles.​html
 
19
National Snow & Ice Data Center. Quick Facts on Ice Sheets. https://​nsidc.​org/​cryosphere/​quickfacts/​icesheets.​html
 
20
Gornitz V. Sea Level Rise, After the Ice Melted and Today. NASA, Goddard Institute for Space Studies. https://​www.​giss.​nasa.​gov/​research/​briefs/​gornitz_​09/​
 
21
Graeter K.A. et al. (2018) Ice Core Records of West Greenland Melt and Climate Forcing. Geophysical Research Letters, 45:7:3164–3172. https://​doi.​org/​10.​1002/​2017GL076641
 
22
Guckenheimer J. & Ottino J.M. Foundations for Complex Systems Research in the Physical Sciences and Engineering. NSF Workshop Report, September 2008. http://​mixing.​chem-biol-eng.​northwestern.​edu/​docs/​nsf_​complex_​systems_​FINAL.​pdf
 
23
Harvey C. Waters on track to rise for centuries, even if emissions stop. ClimateWire (02.21.18). https://​www.​eenews.​net/​climatewire/​2018/​02/​21/​stories/​1060074341
 
24
Mengel M. et al. (2018). Committed sea-level rise under the Paris Agreement and the legacy of delayed mitigation action. Nature Communications, 9:601. https://​www.​nature.​com/​articles/​s41467-018-02985-8
 
25
The IMBIE team (2018). Mass balance of the Antarctic Ice Sheet from 1992 to 2017. Nature, 558:219–222. https://​www.​nature.​com/​articles/​s41586-018-0179-y
 
26
Harvey C. Ice is melting 3 times as fast as it did 25 years ago. ClimateWire (06.14.18). https://​www.​eenews.​net/​climatewire/​2018/​06/​14/​stories/​1060084477
 
27
Goodell J. The Water Will Come (Little, Brown & Co. 2017 NY, NY) p. 149 & 234.
 
28
Carbon Dioxide Information Analysis Center. Global Fossil-Fuel CO2 Emissions. http://​cdiac.​ess-dive.​lbl.​gov/​trends/​emis/​tre_​glob_​2014.​html
 
29
International Energy Agency. Global Energy & CO2 Status Report 2017 (OECD/IEA, March, 2018). https://​www.​iea.​org/​publications/​freepublications​/​publication/​GECO2017.​pdf
 
30
Welch C. Carbon Emissions had Leveled Off. Now They’re Rising Again. National Geographic (11.13.17). https://​news.​nationalgeograph​ic.​com/​2017/​11/​climate-change-carbon-emissions-rising-environment/​
 
31
McDonough W., Braungart M. Cradle to Cradle. (Farrar, Straus & Giroux, NY, NY, 2002)
 
32
Scheer R. & Moss D. After 40 Years, Has Recycling Lived Up to Its Billing? EarthTalk, Scientific American. https://www.scientificamerican.com/article/has-recycling-lived-up-to-its-promises/
 
33
Anastas P.T. & Zimmerman J.B. (2003). Design through the Twelve Principles of Green Engineering. Environmental Science & Technology, 37:5:94A-101A.
 
35
Global Energy Statistical Yearbook 2018. Energy intensity – slowdown in energy intensity improvement in 2017. https://​yearbook.​enerdata.​net/​total-energy/​world-energy-intensity-gdp-data.​html
 
36
Griffin R. The U.S. is Losing Ground in the Race for Energy Efficiency. Bloomberg (06.26.18). https://​www.​bloomberg.​com/​news/​articles/​2018-06-26/​the-u-s-is-losing-ground-in-the-race-for-energy-efficiency
 
37
McCamy L. On August 1, we’ll have consumed more resources than the Earth can regenerate n a year – here’s how you can reduce your ecological footprint. Business Insider (07.31.18). https://​www.​businessinsider.​com/​earth-overshoot-day-is-august-1-2018-7 Rockström J. et al. (2017). A roadmap for rapid decarbonization. Science, 355:6331:1269–1271.
 
38
U.S. Energy Information Administration. Today in Energy. EIA projects 28% increase in world energy use by 2040. (09.14.17). https://​www.​eia.​gov/​todayinenergy/​detail.​php?​id=​32912
 
39
U.S. Energy Information Administration. International Energy Outlook 2017. Executive Summary. https://​www.​eia.​gov/​outlooks/​ieo/​exec_​summ.​php
 
40
Holmes à Court S. Could Petra Nova, The Leading CCS Power Station, Provide A Model for Australia. Clean Technica (06.12.17). https://​cleantechnica.​com/​2017/​06/​12/​petra-nova-leading-ccs-power-station-provide-model-australia/​
 
41
Ibid.
 
42
Global CCS Institute. Projects Database. Boundary Dam Carbon Capture and Storage. https://​www.​globalccsinstitu​te.​com/​projects/​boundary-dam-carbon-capture-and-storage-project
 
45
Socolow R.H. & Pacala S.W. (2006) A Plan to Keep Carbon in Check. Scientific American, 305:968–972.
 
46
Harvey C. Forests had a really bad year. ClimateWire (06.28.18). https://​www.​eenews.​net/​climatewire/​2018/​06/​28/​stories/​1060087181
 
47
Deep Decarbonization Pathways Project, http://​deepdecarbonizat​ion.​org
 
48
Deep Decarbonization Pathways Project (2015). Pathways to deep decarbonization 2015 report – executive summary, SDSN – IDDRI. http://​deepdecarbonizat​ion.​org/​wp-content/​uploads/​2015/​12/​DDPP_​EXESUM-1.​pdf
 
50
Harvey C. Cement’s CO2 is everywhere. Will it sink climate goals? ClimateWire (07.09.18). https://​www.​eenews.​net/​climatewire/​stories/​1060088153
 
51
Xi F. et al. (2016). Substantial global carbon uptake by cement carbonation. Nature Geoscience, 9:880–883 https://​www.​nature.​com/​articles/​ngeo2840
 
52
Sachs J. et al. (2014) Pathways to deep decarbonization, 2014 report, Deep Decarbonization Pathways Project, SDSN – IDDRI. http://​deepdecarbonizat​ion.​org/​wp-content/​uploads/​2015/​06/​DDPP_​Digit.​pdf
 
53
Rockström J. et al. (2017). Science, 355:6331:1269–1271. http://​science.​sciencemag.​org/​content/​355/​6331/​1269.​full
 
54
Irfan U. World must pull CO2 from the sky to meet Paris goals. ClimateWire (03.24.17). https://​www.​eenews.​net/​climatewire/​stories/​1060052028/​
 
55
Smith P. et al. (2016). Biophysical and economic limits to negative CO2 emissions. Nature Climate Change, 6:42–50. https://​www.​nature.​com/​articles/​nclimate2870
 
57
Hood M. 1.5 C climate goal ‘very unlikely’ but doable: draft UN report. Phys.​org. (https://​phys.​org/​news/​2018-01-climate-goal-doable.​html
 
58
IPCC Special Report (2018). Global Warming of 1.5 °C. (https://​www.​ipcc.​ch/​sr15/​)
 
59
Kelemen P.B. Lamont-Doherty Earth Observatory. Carbon Sequestration. Mineral carbonation in peridotite for CO2 capture and storage (CCS). Earth Institute, Columbia University. https://​www.​ldeo.​columbia.​edu/​gpg/​projects/​carbon-sequestration
 
60
Rockström J. et al. (2017). Science, 355:6331:1269–1271. http://​science.​sciencemag.​org/​content/​355/​6331/​1269.​full
 
61
Carrington D. CO2 turned into stone in Iceland in climate change breakthrough. The Guardian (06.09.16). https://​www.​theguardian.​com/​environment/​2016/​jun/​09/​co2-turned-into-stone-in-iceland-in-climate-change-breakthrough
 
62
Kelemen P.B. & Matter J. (2008). In situ carbonation of peridotite for CO2 storage. Science, 105:45:17295–17300. http://​www.​pnas.​org/​content/​105/​45/​17295
 
63
Bullis K. Carbon-Capturing Rock. Geologists discover that certain rock formations could sequester large amounts of carbon dioxide. MIT Technology Review (11.04.2008) https://​www.​technologyreview​.​com/​s/​411129/​carbon-capturing-rock/​
 
64
Strefler J. et al. (2018). Potential and costs of carbon dioxide removal by enhanced weathering of rocks. Environmental Research Letters, 13:034010 http://​iopscience.​iop.​org/​article/​10.​1088/​1748-9326/​aaa9c4/​meta
 
65
Ibid.
 
66
Velasquez-Manoff M. Can Dirt Save the Earth. The New York Times Magazine (04.18.18). https://​www.​nytimes.​com/​2018/​04/​18/​magazine/​dirt-save-earth-carbon-farming-climate-change.​html
 
67
Erickson B.E. (2016) Regenerating degraded dirt. Efforts to boost soil carbon aim to improve crop yields and combat climate change. Chemical & Engineering News, 94:10:40–44. https://​cen.​acs.​org/​articles/​94/​i10/​Regenerating-degraded-dirt.​html
 
68
DeLonge M.S. et al. (2013). A Lifecycle Model to Evaluate Carbon Sequestration Potential and Greenhouse Gas Dynamics of Managed Grasslands. Ecosystems, 16:6:962–979. https://​link.​springer.​com/​article/​10.​1007/​s10021-013-9660-5
 
69
Erickson B.E. (2016). Interest in biochar surges. Chemical & Engineering News, 94:10:40–44. https://​cen.​acs.​org/​articles/​94/​i10/​Interest-biochar-surges.​html
 
70
Gaunt J.L. & J. Lehmann (2008). Energy Balance and Emissions Associated with Biochar Sequestration and pyrolysis Bioenergy Production. Environmental Science & Technology, 42:4152–4158. https://​pubs.​acs.​org/​doi/​pdf/​10.​1021/​es071361i
 
71
Lehmann J. (2007). Bio-energy in the black. Frontiers in Ecology and the Environmental, 5:7:381–387. https://​esajournals.​onlinelibrary.​wiley.​com/​doi/​full/​10.​1890/​1540-9295%282007%295%5B381%3ABITB%5D2.​0.​CO%3B2
 
72
Smith P. (2016). Soil carbon sequestration and biochar as negative emission technologies. Global Change Biology, 22:1315–1324; doi: https://​doi.​org/​10.​1111/​gcb.​13178. https://​onlinelibrary.​wiley.​com/​doi/​pdf/​10.​1111/​gcb.​13178
 
73
Smith P. et al. (2015). Nature Climate Change, 6:42–50. https://​www.​nature.​com/​articles/​nclimate2870.​pdf
 
74
Harvey C. Trees are losing their ability to soak up CO2. ClimateWire (07.13.18). https://​www.​eenews.​net/​climatewire/​2018/​07/​13/​stories/​1060088955
 
75
Zhu K. et al. (2018). Limits to growth of forest biomass carbon sink under climate change. Nature Communications, 9:2709. https://​www.​nature.​com/​articles/​s41467-018-05132-5
 
76
Wolosin M. & Harris N. (2018) Tropical Forests and Climate Change: The Latest Science. Working Paper June 2018. World Resources Institute. https://​wriorg.​s3.​amazonaws.​com/​s3fs-public/​ending-tropical-deforestation-tropical-forests-climate-change.​pdf
 
77
Ibid.
 
78
Pearce F. Rivers in the Sky: How Deforestation Is Affecting Global Water Cycles. Yale Environment 360 (07.24.18). https://​e360.​yale.​edu/​features/​how-deforestation-affecting-global-water-cycles-climate-change
 
79
Smith P. et al. (2015). Nature Climate Change, 6:42–50. https://​www.​nature.​com/​articles/​nclimate2870.​pdf
 
80
Williamson P. (2016) Emissions reduction: Scrutinize CO2 removal methods. Nature, 530:153–155; doi:https://​doi.​org/​10.​1038/​530153a. https://​www.​nature.​com/​news/​emissions-reduction-scrutinize-co2-removal-methods-1.​19318
 
81
Smith P. et al. (2015). Nature Climate Change, 6:42–50. https://​www.​nature.​com/​articles/​nclimate2870.​pdf
 
84
Biello D. How Far Can Technology Go to Stave Off Climate Change? Yale Environment 360 (01.18.17). https://​e360.​yale.​edu/​features/​how_​far_​can_​technology_​go_​to_​stave_​off_​climate_​change
 
85
Kumar A. et al. (2015). Direct Air Capture of CO2 by Physisorbent Materials. Angewandte Chemie, 54:14372–14,377. https://​onlinelibrary.​wiley.​com/​doi/​full/​10.​1002/​anie.​201506952
 
86
Socolow R. et al. (2011) Direct Air Capture of CO2 with Chemicals. A Technology Assessment for the APS Panel on Public Affairs. American Physical Society (06.01.2011). https://​infoscience.​epfl.​ch/​record/​200555/​files/​dac2011.​pdf
 
87
Ibid.
 
88
Sanz-Perez E. et al. (2016). Direct Capture of CO2 from Ambient Air. Chemical Reviews, 116:19:11840–11,876; DOI: https://​doi.​org/​10.​1021/​acs.​chemrev. https://​pubs.​acs.​org/​doi/​full/​10.​1021/​acs.​chemrev.​6b00173
 
89
Climeworks. Capturing CO2 from air. http://​www.​climeworks.​com
 
90
Carbon Engineering. Direct Air Capture. http://​carbonengineerin​g.​com/​about-dac/​
 
91
Keith D.W. et al. (2018) Process for Capturing CO2 from the Atmosphere. Joule, 2:8:1573–1594. https://​www.​cell.​com/​joule/​fulltext/​S2542-4351(18)30225-3
 
92
Tollefson J. (2018). Sucking carbon dioxide from air is cheaper than scientists thought. Nature, 558:173; doi: https://​doi.​org/​10.​1038/​d41586-018-05357-w. https://​www.​nature.​com/​articles/​d41586-018-05357-w
 
93
Smith P. et al. (2015). Nature Climate Change, 6:42–50. https://​www.​nature.​com/​articles/​nclimate2870.​pdf
 
94
Morton O. (2007). Is This What It Takes To Save The World? Nature, 447:132–136. https://​www.​nature.​com/​articles/​447132a.​pdf
 
95
U.S. Geological Survey. The Cataclysmic 1991 Eruption of Mount Pinatubo, Philippines. Fact Sheet 113–97. https://​pubs.​usgs.​gov/​fs/​1997/​fs113-97/​
 
96
Kilmont Z. et al. (2013). The last decade of global anthropogenic sulfur dioxide: 2000–2011 emissions. Environmental Research Letters, 8:014003. http://​iopscience.​iop.​org/​article/​10.​1088/​1748-9326/​8/​1/​014003
 
97
Crutzen P.J. (2006). Albedo Enhancement by Stratospheric Sulfur Injections: A Contribution to Resolve a Policy Dilemma. Climate Change, 77:211–219; DOI: https://​doi.​org/​10.​1007/​s10584-006-9101-y. https://​link.​springer.​com/​content/​pdf/​10.​1007/​s10584-006-9101-y.​pdf
 
98
Kilmont Z. et al. (2013). Environmental Research Letters, 8:014003. http://​iopscience.​iop.​org/​article/​10.​1088/​1748-9326/​8/​1/​014003
 
101
Keith D. A Case for Climate Engineering (MIT Press, Boston, MA, 2013) 224 pp.
 
102
Ibid.
 
103
Morton O. (2007). Nature, 447:132–136. https://​www.​nature.​com/​articles/​447132a.​pdf
 
104
Keith D. A Case for Climate Engineering (MIT Press, Boston, MA, 2013).
 
105
Temple J. Harvard Scientists Moving Ahead on Plans for Atmospheric Geoengineering Experiments. MIT Technology Review (03.24.17). https://​www.​technologyreview​.​com/​s/​603974/​harvard-scientists-moving-ahead-on-plans-for-atmospheric-geoengineering-experiments/​
 
106
Morton O. (2007). Nature, 447:132–136. https://​www.​nature.​com/​articles/​447132a.​pdf
 
107
Keith D. A Case for Climate Engineering (MIT Press, Boston, MA, 2013).
 
109
Usery E.L. et al. (2010) Modeling Sea-level Rise and Surge in Low-lying Urban Areas using Spatial Data, Geographic Information Systems, and Animation Methods, in Geospatial Techniques in Urban Hazard and Disaster Analysis, P. Showalter & Y. Lu, eds. (Springer Netherlands 2019) Chapter 2, p. 11–30; DOI: https://​doi.​org/​10.​1007/​978-90-481-2238-7_​2. https://​cegis.​usgs.​gov/​pdf/​sea_​level_​rise_​text.​pdf
 
110
Parker L. Sea Level Rise Will Flood Hundreds of Cities in the Near Future. National Geographic (07.12.17). https://​news.​nationalgeograph​ic.​com/​2017/​07/​sea-level-rise-flood-global-warming-science/​
 
111
Mulkern A. Rising Sea Levels Will Hit California Harder Than Other Places. Scientific American (04.27.17). https://​www.​scientificameric​an.​com/​article/​rising-sea-levels-will-hit-california-harder-than-other-places/​
 
112
Vitousek S. et al. (2017). Doubling of coastal flooding frequency within decades due to sea-level rise. Scientific Reports, 7:1399. https://​www.​nature.​com/​articles/​s41598-017-01362-7#citeas
 
114
McLeman R. Migration and displacement risks due to mean sea-level rise. Bulletin of the Atomic Scientists (05.04.18). https://​thebulletin.​org/​2018/​05/​migration-and-displacement-risks-due-to-mean-sea-level-rise/​
 
115
van Heerden I.L. (2018). Setting the Stage for the Katrina Catastrophe: Environmental Degradation, Engineering Miscalculation, Ignoring Science and Human Mismanagement, in Creating Katrina, Rebuilding Resilience, Lessons from New Orleans on Vulnerability and Resiliency, M.J. Zakour, N.B. Mock, P. Kadetz, eds. (Butterworth-Heinemann, 2018) Chapter 6, p133–158. https://​www.​sciencedirect.​com/​science/​article/​pii/​B978012809557700​0065
 
116
Westerink J. et al. (2006). Note on the Influence of the Mississippi River Gulf Outlet on Hurricane Induced Storm Surge in New Orleans and Vicinity. http://​www.​columbia.​edu/​itc/​journalism/​cases/​katrina/​Army/​Army%20​Corps%20​of%20​Engineers/​Influence%20​of%20​the%20​MRGO%20​on%20​Storm%20​Surge.​pdf
 
117
Gilroy W.G. Changes proposed to New Orleans area levee systems. Science Daily (07.24.13). https://​www.​sciencedaily.​com/​releases/​2013/​07/​130724200557.​htm
 
118
Goodell J. Rising Waters: Can a Massive Barrier Save Venice from Drowning. Yale Environment 360 (12.05.17). https://​e360.​yale.​edu/​features/​rising-waters-can-a-massive-sea-barrier-save-venice-from-drowning
 
121
Goodell J. The Water Will Come (Little, Brown & Co. 2017 NY, NY) Chapter 11, p238.
 
122
van Heerden I.L. (2018). in Creating Katrina, Rebuilding Resilience, Lessons from New Orleans on Vulnerability and Resiliency, M.J. Zakour, N.B. Mock, P. Kadetz, eds. (Butterworth-Heinemann, 2018) Chapter 6, p133–158. https://​www.​sciencedirect.​com/​science/​article/​pii/​B978012809557700​0065
 
123
Robichaux E. Coast 2050’s Lasting Impacts on Coastal Restoration. Delta Dispatches. Restore the Mississippi River Delta (11.05.15). http://​mississippiriver​delta.​org/​coast-2050s-lasting-impacts-on-coastal-restoration/​
 
124
Narayan S. et al. (2017). The Value of Coastal Wetlands for Flood Damage Reduction in the Northeastern USA. Scientific Reports, 7:9463. https://​www.​nature.​com/​articles/​s41598-017-09269-z
 
125
Kimmelman M. & Haner J. The Dutch Have Solutions to Rising Seas. The World Is Watching, in Changing Climate, Changing Cities, The New York Times (06.15.17). https://​www.​nytimes.​com/​interactive/​2017/​06/​15/​world/​europe/​climate-change-rotterdam.​html
 
126
Katz C. To Control Floods, The Dutch Turn to Nature for Inspiration. Yale Environmental 360 (02.21.13). https://​e360.​yale.​edu/​features/​to_​control_​floods_​the_​dutch_​turn_​to_​nature_​for_​inspiration
 
127
ClimateWire. How the Dutch Make “Room for the River” by Redesigning Cities. Scientific American (01.20.12). https://​www.​scientificameric​an.​com/​article/​how-the-dutch-make-room-for-the-river/​
 
128
Bentley C. Holland is relocating homes to make more room for high water. Public Radio International (PRI) (06.22.16). https://​www.​pri.​org/​stories/​2016-06-22/​holland-relocating-homes-make-more-room-high-water
 
129
Schwartz J. Surrendering to Rising Seas. Scientific American (08.01.18). https://​www.​scientificameric​an.​com/​article/​surrendering-to-rising-seas/​
 
130
Jevrejeva A. et al. (2018). Flood damage costs under the sea level rise with warming of 1.5 °C and 2 °C. Environmental Research Letters, 13:074014. http://​iopscience.​iop.​org/​article/​10.​1088/​1748-9326/​aacc76/​pdf
 
131
van Heerden I.L. (2018). in Creating Katrina, Rebuilding Resilience, Lessons from New Orleans on Vulnerability and Resiliency, M.J. Zakour, N.B. Mock, P. Kadetz, eds. (Butterworth-Heinemann, 2018) Chapter 6, p133158. https://​www.​sciencedirect.​com/​science/​article/​pii/​B978012809557700​0065
 
132
Garfield L. Manhattan plans to build a massive $1 billion wall and park to guard against the next inevitable superstorm. Business Insider (04.27.18). https://​www.​businessinsider.​com/​new-york-city-flooding-manhattan-coastal-barriers-2018-4
 
133
McGeehan P. & Hu W. Five Years After Sandy, Are We Better Prepared? The New York Times (10.29.17). https://​www.​nytimes.​com/​2017/​10/​29/​nyregion/​five-years-after-sandy-are-we-better-prepared.​html
 
134
Harris J. (2016) Poyang Lake, Yangtze River Basin, China, in The Wetland Book, C.M. Finlayson, G.R. Milton, R.C. Prentice, N.C. Davidson, eds. (Springer Nature Switzerland 2018) https://​link.​springer.​com/​referenceworkent​ry/​10.​1007%2F978-94-007-6173-5_​34-2
 
135
Ives M. As China’s Largest Freshwater Lake Shrinks, Solution Faces Criticism. New York Times (12.28.16) https://​www.​nytimes.​com/​2016/​12/​28/​world/​asia/​china-lake-poyang-finless-porpoise.​html
 
136
Zhang Z. et al. (2016). Analysis of Poyang Lake water balance and its indication of river-lake interaction. SpringerPlus, 5:1:1555: doi: https://​doi.​org/​10.​1186/​s40064-016-3239-5. https://​www.​ncbi.​nlm.​nih.​gov/​pmc/​articles/​PMC5021641/​
 
138
Hersher R. Levees make Mississippi River Floods Worse, But We Keep Building Them. Environment & Energy Collaborative, National Public Radio (NPR), (05.21.18). https://​www.​npr.​org/​2018/​05/​21/​610945127/​levees-make-mississippi-river-floods-worse-but-we-keep-building-them
 
139
Ibid.
 
140
Total fire ban enforced in several counties across Sweden. The Local (07.24.18). https://​www.​thelocal.​se/​20180724/​sweden-wildfires-25000-hectares-of-forest-still-burning
 
142
Arango T. & Medina J. California Fire Now the Largest in State History: ‘People are on Edge.’ The New York Times (08.07.18) https://​www.​nytimes.​com/​2018/​08/​07/​us/​california-fires-mendocino.​html
 
144
For Cities, The Heat Is On. The Future We Don’t Want. Heat Extremes. C40 Citieshttps://​www.​c40.​org/​other/​the-future-we-don-t-want-for-cities-the-heat-is-on
 
145
Chandler D.L. Deadly heat waves could hit South Asia this century. Without action, climate change could devastate a region home to one-fifth of humanity study finds. MIT News (08.02.17). http://​news.​mit.​edu/​2017/​deadly-heat-waves-could-hit-south-asia-century-0802
 
149
Harvey C. Even 2 °C of warming could turn Earth into ‘hothouse.’ ClimateWire (08.07.18). https://​www.​eenews.​net/​climatewire/​2018/​08/​07/​stories/​1060092901
 
151
2050 low-carbon economy. Climate Action. European Commission. https://​ec.​europa.​eu/​clima/​policies/​strategies/​2050_​en
 
152
Gray A. Countries are announcing plans to phase out petrol and diesel cars. Is yours on the list? World Economic Forum (09.26.18). https://​www.​weforum.​org/​agenda/​2017/​09/​countries-are-announcing-plans-to-phase-out-petrol-and-diesel-cars-is-yours-on-the-list/​
 
154
Dudley D. Renewable Energy Will Be Consistently Cheaper Than Fossil Fuels by 2020, Report Claims. Forbes (01.13.18). https://​www.​forbes.​com/​sites/​dominicdudley/​2018/​01/​13/​renewable-energy-cost-effective-fossil-fuels-2020/​#66c3f0e14ff2
 
155
Penn I. It’s the No. 1 Power Source, but Natural Gas Faces Headwinds. The New York Times (03.28.18). https://​www.​nytimes.​com/​2018/​03/​28/​business/​energy-environment/​natural-gas-power.​html
 
156
Smith P. et al. (2015). Nature Climate Change, 6:42–50. https://​www.​nature.​com/​articles/​nclimate2870.​pdf
 
157
Smith L. et al. (2018). Chaos and the Flow Capture Problem: Polluting is Easy, Cleaning is Hard. Physical Review Applied, in press
 
158
Smith P. et al. (2015). Nature Climate Change, 6:42–50. https://​www.​nature.​com/​articles/​nclimate2870.​pdf
 
160
Steffen W. et al. (2018). Trajectories of the Earth System in the Anthropocene. PNAS, 115:33:8252–2859. http://​www.​pnas.​org/​content/​115/​33/​8252
 
161
Harvey C. CO2 can sharpen extreme weather without higher temps. ClimateWire (06.21.18). https://​www.​eenews.​net/​climatewire/​2018/​06/​21/​stories/​1060085723
 
162
Baker H.S. et al. (2018). Higher CO2 concentrations increase extreme event risk in a 1.5 °C world. Nature Climate Change, 8:604–608. https://​www.​nature.​com/​articles/​s41558-018-0190-1
 
163
Pongratz J. et al. (2012). Crop yields in a geoengineered climate. Nature Climate Change, 2:101–105. https://​www.​nature.​com/​articles/​nclimate1373
 
164
Xia L. et al. (2014). Solar radiation management impacts on agriculture in China: A case study in the Geoengineering Model Intercomparison Project (GeoMI). Journal of Geophysical Research: Atmospheres, 119:8695–8711; DOI: https://​doi.​org/​10.​1002/​2013JD020630. https://​agupubs.​onlinelibrary.​wiley.​com/​doi/​epdf/​10.​1002/​2013JD020630
 
165
Harvey C. Manipulating sun rays won’t help crops grown. ClimateWire (08.09.18). https://​www.​eenews.​net/​climatewire/​2018/​08/​09/​stories/​1060093717
 
166
Proctor J. et al. (2018). Estimating global agricultural effects of geoengineering using volcanic eruptions. Nature, 560:480–483. https://​www.​nature.​com/​articles/​s41586-018-0417-3
 
167
Trenberth K.E. & Dai A. (2007). Effects of Mount Pinatubo volcanic eruption on the hydrological cycle as an analog of geoengineering. Geophysical Research Letters, 34:L15702; doi:https://​doi.​org/​10.​1029/​2007GL030524
 
168
Trenberth K.E. (2011). Changes in precipitation with climate change. Climate Research, 47:123–138; doi: https://​doi.​org/​10.​3354/​cr00953. https://​www.​int-res.​com/​articles/​cr_​oa/​c047p123.​pdf
 
169
Ibid.
 
170
Richardson T.B. et al. (2016). Understanding the Rapid Precipitation Response to CO2 and Aerosol Forcing on a Regional Scale. Journal of Climate, 29:583–594; DOI: https://​doi.​org/​10.​1175/​JCLI-D-15-0174.​1. https://​journals.​ametsoc.​org/​doi/​pdf/​10.​1175/​JCLI-D-15-0174.​1
 
171
Kolbert E. Can Carbon-Dioxide Removal Save the World? Annals of Science, The New Yorker (11.20.17). https://​www.​newyorker.​com/​magazine/​2017/​11/​20/​can-carbon-dioxide-removal-save-the-world
 
172
Lohmann U. & Gasparini B. (2017). A cirrus cloud climate dial? Cirrus cloud seeding may help to reduce climate warming, but large uncertainties remain. Science, 357:6348:248–249; DOI: https://​doi.​org/​10.​1126/​science.​aan3325. http://​science.​sciencemag.​org/​content/​sci/​357/​6348/​248.​full.​pdf
 
173
Georgescu M. et al. (2014). Urban Adaptation can roll back warming of emerging megapolitan regions. PNAS, 111:8:2909–2914; https://​doi.​org/​10.​1073/​pnas.​1322280111 . http://​www.​pnas.​org/​content/​111/​8/​2909
 
174
Robock A. (2008). 20 reasons why geoengineering may be a bad idea. Bulletin of the Atomic Scientists, 64:2:14–18 (59); DOI: https://​doi.​org/​10.​2968/​064002006. http://​climate.​envsci.​rutgers.​edu/​pdf/​20Reasons.​pdf
 
175
Moore J.C. et al. (2018). Geoengineering polar glaciers to slow sea-level rise. Nature, 555:303–305. https://​www.​nature.​com/​magazine-assets/​d41586-018-03036-4/​d41586-018-03036-4.​pdf
 
176
Onishi N. & Sengupta S. Dangerously Low on Water, Cape Town Now Faces ‘Day Zero.’ The New York Times (01.30.18). https://​www.​nytimes.​com/​2018/​01/​30/​world/​africa/​cape-town-day-zero.​html
 
177
Olivier D.W. Cape Town’s water crisis: driven by politics more than drought. The Conversation (12.12.17). https://​theconversation.​com/​cape-towns-water-crisis-driven-by-politics-more-than-drought-88191
 
178
Ibid.
 
179
The 11 cities most likely to run out of drinking water- like Cape Town. BBC News (02.11.18). https://​www.​bbc.​com/​news/​world-42982959
 
180
Welcome to the Antrhopocene. http://​www.​anthropocene.​info
 
181
Banusiewicz J.D. Hagel to Address ‘Threat Multiplier’ of Climate Change. DoD News (10,13,14), Defense Media Activity. U.S. Department of Defense. https://​dod.​defense.​gov/​News/​Article/​Article/​603440/​
 
182
Rich N. Losing Earth: The Decade We Almost Stopped Climate Change. The New York Times (08.01.18). https://​www.​nytimes.​com/​interactive/​2018/​08/​01/​magazine/​climate-change-losing-earth.​html
 
183
Ibid.
 
184
Lazarus R. J. (2009). Super Wicked Problems and Climate Change: Restraining the Present to Liberate the Future. Cornell Law Review, 94:1153–1233. https://​scholarship.​law.​georgetown.​edu/​cgi/​viewcontent.​cgi?​referer=​http://​scholar.​google.​com/​&​httpsredir=​1&​article=​1152&​context=​facpub
 
186
Rockström J. et al. (2017). Science, 355:6331:1269–1271. http://​science.​sciencemag.​org/​content/​355/​6331/​1269.​full
 
Literatur
1.
Zurück zum Zitat Anastas, P.T., Zimmerman, J.B.: Design through the twelve principles of green engineering. Environ. Sci. Technol. 37(5), 94A–101A (2003) CrossRef Anastas, P.T., Zimmerman, J.B.: Design through the twelve principles of green engineering. Environ. Sci. Technol. 37(5), 94A–101A (2003) CrossRef
20.
Zurück zum Zitat Goodell, J.: The water will come, pp. 149–234. Little, Brown & Co, New York (2017) Goodell, J.: The water will come, pp. 149–234. Little, Brown & Co, New York (2017)
21.
Zurück zum Zitat Goodell, J.: The water will come, p. 238. Little, Brown & Co, New York). Chapter 11 (2017) Goodell, J.: The water will come, p. 238. Little, Brown & Co, New York). Chapter 11 (2017)
42.
Zurück zum Zitat Keith, D.: A Case for Climate Engineering, 224 pp. MIT Press, Boston, MA (2013) CrossRef Keith, D.: A Case for Climate Engineering, 224 pp. MIT Press, Boston, MA (2013) CrossRef
53.
Zurück zum Zitat McDonough, W., Braungart, M.: Cradle to Cradle. Farrar, Straus & Giroux, NY, NY (2002) McDonough, W., Braungart, M.: Cradle to Cradle. Farrar, Straus & Giroux, NY, NY (2002)
83.
Zurück zum Zitat Smith, L., et al.: Chaos and the flow capture problem: polluting is easy, cleaning is hard. Phys. Rev. Appl. (2018) in press Smith, L., et al.: Chaos and the flow capture problem: polluting is easy, cleaning is hard. Phys. Rev. Appl. (2018) in press
84.
Zurück zum Zitat Socolow, R.H., Pacala, S.W.: A Plan to Keep Carbon in Check. Sci. Am. 305, 968–972 (2006) Socolow, R.H., Pacala, S.W.: A Plan to Keep Carbon in Check. Sci. Am. 305, 968–972 (2006)
Metadaten
Titel
Climate Action: The Feasibility of Climate Intervention on a Global Scale
verfasst von
Kimberly A. Gray
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-72372-9_3