Skip to main content

Tipp

Weitere Kapitel dieses Buchs durch Wischen aufrufen

2012 | OriginalPaper | Buchkapitel

6. Cryogenic Distillation and Air Separation

verfasst von : Prof. Jennifer Wilcox

Erschienen in: Carbon Capture

Verlag: Springer New York

Abstract

Various advanced coal conversion-to-electricity processes are discussed in Chap. 1 that depend on the use of a gas stream comprised primarily of oxygen; therefore, air separation into its primary components, i.e., nitrogen (N2), oxygen (O2), and argon (Ar) are discussed within the context to CO2 capture. One of the dominant processes used for air distillation is cryogenic distillation. Cryogenic separation may also be used as a polishing step to enhance the purity of a gas stream predominantly comprised of CO2.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Note that the definition of partition function in the field of statistical mechanics is different than this and refers to the sum over states corresponding to the energies associated with the electronic, vibrational, rotational, and translational degrees of freedom within a molecule.
 
2
barg represents gauge pressure (P g ).
 
3
bara represents absolute pressure (p a ), p g  = p a  − p atm.
 
Literatur
1.
Zurück zum Zitat Smith AR, Klosek J (2001) A review of air separation technologies and their integration with energy conversion processes. Fuel Process Technol 70(2): 115–134 CrossRef Smith AR, Klosek J (2001) A review of air separation technologies and their integration with energy conversion processes. Fuel Process Technol 70(2): 115–134 CrossRef
2.
Zurück zum Zitat Baker R (2004) Membrane technology and applications, 2nd Edn. Reprinted with permission of John Wiley & Sons, Inc. Baker R (2004) Membrane technology and applications, 2nd Edn. Reprinted with permission of John Wiley & Sons, Inc.
3.
Zurück zum Zitat Figure Courtesy of Giampaolo Pelliccia, Decarbonized Electricity Production from the OxyCombustion of Coal and Heavy Oils, Dipartimento di Energetica, Politecnico Di Milano, (2006) Advisor: Stefano Consonni Figure Courtesy of Giampaolo Pelliccia, Decarbonized Electricity Production from the OxyCombustion of Coal and Heavy Oils, Dipartimento di Energetica, Politecnico Di Milano, (2006) Advisor: Stefano Consonni
4.
Zurück zum Zitat Lide DR (2008) CRC handbook of Chemistry and Physics. CRC Press, Boca Raton, p 2736 Lide DR (2008) CRC handbook of Chemistry and Physics. CRC Press, Boca Raton, p 2736
5.
Zurück zum Zitat Allam RJ (2009) Improved oxygen production technologies. Energy Procedia 1(1):461–470 CrossRef Allam RJ (2009) Improved oxygen production technologies. Energy Procedia 1(1):461–470 CrossRef
6.
Zurück zum Zitat Pelliccia G (2006) Decarbonized electricity production from the Oxycombustion of coal and heavy oils. Thesis (PhD) Politecnico Di Milano Pelliccia G (2006) Decarbonized electricity production from the Oxycombustion of coal and heavy oils. Thesis (PhD) Politecnico Di Milano
7.
Zurück zum Zitat Ruthven DM (1997) Encyclopedia of separation technology. John Wiley & Sons, Inc., New York Ruthven DM (1997) Encyclopedia of separation technology. John Wiley & Sons, Inc., New York
8.
Zurück zum Zitat Koros WJ, Mahajan R (2000) Pushing the limits on possibilities for large scale gas separation: which strategies? J Membrane Sci 175(2):181–196 CrossRef Koros WJ, Mahajan R (2000) Pushing the limits on possibilities for large scale gas separation: which strategies? J Membrane Sci 175(2):181–196 CrossRef
9.
Zurück zum Zitat Coombe HS, Nieh S (2007) Polymer membrane air separation performance for portable oxygen enriched combustion applications. Energy Convers Manag 48(5):1499–1505 CrossRef Coombe HS, Nieh S (2007) Polymer membrane air separation performance for portable oxygen enriched combustion applications. Energy Convers Manag 48(5):1499–1505 CrossRef
10.
Zurück zum Zitat Hashim SM, Mohamed AR, Bhatia S (2010) Current status of ceramic-based membranes for oxygen separation from air. Adv Colloid Interface Sci 160:88–100 CrossRef Hashim SM, Mohamed AR, Bhatia S (2010) Current status of ceramic-based membranes for oxygen separation from air. Adv Colloid Interface Sci 160:88–100 CrossRef
11.
Zurück zum Zitat Sunarso J, Baumann S, Serra JM, Meulenberg WA, Liu S, Lin YS, Diniz da Costa JC (2008) Mixed ionic-electronic conducting (MIEC) ceramic-based membranes for oxygen separation. J Membrane Sci 320(1–2):13–41 CrossRef Sunarso J, Baumann S, Serra JM, Meulenberg WA, Liu S, Lin YS, Diniz da Costa JC (2008) Mixed ionic-electronic conducting (MIEC) ceramic-based membranes for oxygen separation. J Membrane Sci 320(1–2):13–41 CrossRef
12.
Zurück zum Zitat Mancini ND, Mitsos A (2011) Ion transport membrane reactors for oxy-combustion-Part I: intermediate-fidelity modeling. Energy, 36(8):4701–4720 CrossRef Mancini ND, Mitsos A (2011) Ion transport membrane reactors for oxy-combustion-Part I: intermediate-fidelity modeling. Energy, 36(8):4701–4720 CrossRef
13.
Zurück zum Zitat Stiegel GJ, Bose A, Armstrong P (2006) Development of ion transport membrane (ITM) oxygen technology for integration in IGCC and other advanced power generation systems. National Energy Technology Laboratory (NETL), U.S. Department of Energy Stiegel GJ, Bose A, Armstrong P (2006) Development of ion transport membrane (ITM) oxygen technology for integration in IGCC and other advanced power generation systems. National Energy Technology Laboratory (NETL), U.S. Department of Energy
14.
Zurück zum Zitat Hashim S S, Mohamed AR, Bhatia S (2011) Oxygen separation from air using ceramic-based membrane technology for sustainable fuel production and power generation. Renew Sustain Energy Rev 15(2):1284–1293 CrossRef Hashim S S, Mohamed AR, Bhatia S (2011) Oxygen separation from air using ceramic-based membrane technology for sustainable fuel production and power generation. Renew Sustain Energy Rev 15(2):1284–1293 CrossRef
15.
Zurück zum Zitat Bloch ED, Murray LJ, Queen WL, Chavan S, Maximoff SN, Bigi JP, Krishna R, Peterson VK, Grandjean F, Long GJ, Smit B, Bordiga S, Brown CM, Long JR (2011) Selective binding of O 2 over N 2 in a redox-active metal-organic framework with open iron(II) coordination sites. J Am Chem Soc 133(37):14814–14822 CrossRef Bloch ED, Murray LJ, Queen WL, Chavan S, Maximoff SN, Bigi JP, Krishna R, Peterson VK, Grandjean F, Long GJ, Smit B, Bordiga S, Brown CM, Long JR (2011) Selective binding of O 2 over N 2 in a redox-active metal-organic framework with open iron(II) coordination sites. J Am Chem Soc 133(37):14814–14822 CrossRef
Metadaten
Titel
Cryogenic Distillation and Air Separation
verfasst von
Prof. Jennifer Wilcox
Copyright-Jahr
2012
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4614-2215-0_6