Skip to main content

2023 | OriginalPaper | Buchkapitel

Deep Reinforcement Learning for Robust Goal-Based Wealth Management

verfasst von : Tessa Bauman, Bruno Gašperov, Stjepan Begušić, Zvonko Kostanjčar

Erschienen in: Artificial Intelligence Applications and Innovations

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Goal-based investing is an approach to wealth management that prioritizes achieving specific financial goals. It is naturally formulated as a sequential decision-making problem as it requires choosing the appropriate investment until a goal is achieved. Consequently, reinforcement learning, a machine learning technique appropriate for sequential decision-making, offers a promising path for optimizing these investment strategies. In this paper, a novel approach for robust goal-based wealth management based on deep reinforcement learning is proposed. The experimental results indicate its superiority over several goal-based wealth management benchmarks on both simulated and historical market data.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Unlike in GBWM, in market making, increasing levels of risk are typically incurred as the terminal time is approached [8], resulting in weaker inventory penalization.
 
2
An example is given by the asset allocation of Fidelity Freedom Funds (https://​www.​fidelity.​com/​mutual-funds/​fidelity-fund-portfolios/​freedom-funds).
 
3
The CRRA utility \(\mathcal {U}\) is given by: \( \mathcal {U}(x) = {x^{\gamma }}/{\gamma },\text { }\gamma < 1, \) where \(1-\gamma \) is the coefficient of relative risk aversion.
 
5
Since the original policy found by PPO is stochastic, its determinism is enforced by returning the mode of the distribution over the action space instead of sampling from it.
 
Literatur
4.
Zurück zum Zitat Blanchett, D.: Dynamic allocation strategies for distribution portfolios: determining the optimal distribution glide path. J. Financ. Plann. 20(12), 68–81 (2007) Blanchett, D.: Dynamic allocation strategies for distribution portfolios: determining the optimal distribution glide path. J. Financ. Plann. 20(12), 68–81 (2007)
21.
Zurück zum Zitat Das, S.R., Varma, S.: Dynamic goals-based wealth management using reinforcement learning. J. Investment Manage. 18(2), 1–20 (2020) Das, S.R., Varma, S.: Dynamic goals-based wealth management using reinforcement learning. J. Investment Manage. 18(2), 1–20 (2020)
23.
Zurück zum Zitat Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M., Dormann, N.: Stable-Baselines3: reliable reinforcement learning implementations. J. Mach. Learn. Res. 22(1), 12348–12355 (2021)MATH Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M., Dormann, N.: Stable-Baselines3: reliable reinforcement learning implementations. J. Mach. Learn. Res. 22(1), 12348–12355 (2021)MATH
Metadaten
Titel
Deep Reinforcement Learning for Robust Goal-Based Wealth Management
verfasst von
Tessa Bauman
Bruno Gašperov
Stjepan Begušić
Zvonko Kostanjčar
Copyright-Jahr
2023
DOI
https://doi.org/10.1007/978-3-031-34111-3_7

Premium Partner