Skip to main content
Erschienen in: Journal of Materials Science 10/2017

06.02.2017 | Original Paper

Enzyme-free uric acid electrochemical sensors using β-cyclodextrin-modified carboxylic acid-functionalized carbon nanotubes

verfasst von: Mulugeta B. Wayu, Margaret A. Schwarzmann, Samuel D. Gillespie, Michael C. Leopold

Erschienen in: Journal of Materials Science | Ausgabe 10/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Carboxylic acid-functionalized multi-walled carbon nanotubes (COOH-MWCNT) were modified via ultrasonication with β-cyclodextrin (β-CD) to obtain a COOH-MWCNT:β-CD nanocomposite material for the purpose of developing an enzyme-free electrochemical sensor for uric acid—a clinically relevant molecule implemented in pregnancy-induced hypertension diagnosis. The nanocomposite material is deposited onto glassy carbon electrodes and subsequently capped with layers of Nafion and Hydrothane polyurethane. The surface morphology and electronic structure of the nanocomposite material were characterized using UV–Vis, TEM, and FTIR. The performance of the electrochemical sensor was measured through direct injection of UA during amperometry. With the high surface area of the COOH-MWCNT in concert with the selectivity provided by β-CD, the composite system outperforms similar COOH-MWCNT systems, displaying enhanced UA sensitivity versus films with only COOH-MWCNT. With the improved sensitivity (4.28 ± 0.11 µA mM−1) and fast response time (4.0 ± 0.5 s), the sensors offer wide detection of UA across clinically relevant ranges (100–700 μM) as well as demonstrated selectivity against various interferents.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Erden PE, Kılıç E (2013) A review of enzymatic uric acid biosensors based on amperometric detection. Talanta 107:312–323CrossRef Erden PE, Kılıç E (2013) A review of enzymatic uric acid biosensors based on amperometric detection. Talanta 107:312–323CrossRef
2.
Zurück zum Zitat Li Y, Zhai X, Wang H, Liu X, Guo L, Ji X, Wang L, Qiu H, Liu X (2015) Non-enzymatic sensing of uric acid using a carbon nanotube ionic-liquid paste electrode modified with poly (β-cyclodextrin). Microchim Acta 182:1877–1884CrossRef Li Y, Zhai X, Wang H, Liu X, Guo L, Ji X, Wang L, Qiu H, Liu X (2015) Non-enzymatic sensing of uric acid using a carbon nanotube ionic-liquid paste electrode modified with poly (β-cyclodextrin). Microchim Acta 182:1877–1884CrossRef
3.
Zurück zum Zitat Wu S, Wang T, Gao Z, Xu H, Zhou B, Wang C (2008) Selective detection of uric acid in the presence of ascorbic acid at physiological pH by using a β-cyclodextrin modified copolymer of sulfanilic acid and N-acetylaniline. Biosens Bioelectron 23:1776–1780CrossRef Wu S, Wang T, Gao Z, Xu H, Zhou B, Wang C (2008) Selective detection of uric acid in the presence of ascorbic acid at physiological pH by using a β-cyclodextrin modified copolymer of sulfanilic acid and N-acetylaniline. Biosens Bioelectron 23:1776–1780CrossRef
4.
Zurück zum Zitat Chen X, Wu G, Cai Z, Oyama M, Chen X (2014) Advances in enzyme-free electrochemical sensors for hydrogen peroxide, glucose, and uric acid. Microchim Acta 181:689–705CrossRef Chen X, Wu G, Cai Z, Oyama M, Chen X (2014) Advances in enzyme-free electrochemical sensors for hydrogen peroxide, glucose, and uric acid. Microchim Acta 181:689–705CrossRef
5.
Zurück zum Zitat Chauhan N, Pundir CS (2011) An amperometric uric acid biosensor based on multiwalled carbon nanotube-gold nanoparticle composite. Anal Biochem 413:97–103CrossRef Chauhan N, Pundir CS (2011) An amperometric uric acid biosensor based on multiwalled carbon nanotube-gold nanoparticle composite. Anal Biochem 413:97–103CrossRef
6.
Zurück zum Zitat Retna Raj C, Ohsaka T (2003) Voltammetric detection of uric acid in the presence of ascorbic acid at a gold electrode modified with a self-assembled monolayer of heteroaromatic thiol. J Electroanal Chem 540:69–77CrossRef Retna Raj C, Ohsaka T (2003) Voltammetric detection of uric acid in the presence of ascorbic acid at a gold electrode modified with a self-assembled monolayer of heteroaromatic thiol. J Electroanal Chem 540:69–77CrossRef
7.
Zurück zum Zitat Lakshmi D, Whitcombe MJ, Davis F, Sharma PS, Prasad BB (2011) Electrochemical detection of uric acid in mixed and clinical samples: a review. Electroanalysis 23:305–320CrossRef Lakshmi D, Whitcombe MJ, Davis F, Sharma PS, Prasad BB (2011) Electrochemical detection of uric acid in mixed and clinical samples: a review. Electroanalysis 23:305–320CrossRef
8.
Zurück zum Zitat Moraes ML, Rodrigues Filho UP, Oliveira ON, Ferreira M (2007) Immobilization of uricase in layer-by-layer films used in amperometric biosensors for uric acid. J Solid State Electrochem 11:1489–1495CrossRef Moraes ML, Rodrigues Filho UP, Oliveira ON, Ferreira M (2007) Immobilization of uricase in layer-by-layer films used in amperometric biosensors for uric acid. J Solid State Electrochem 11:1489–1495CrossRef
9.
Zurück zum Zitat Wang Z, Wang Y, Luo G (2002) A selective voltammetric method for uric acid detection at β-cyclodextrin modified electrode incorporating carbon nanotubes. Analyst 127:1353–1358CrossRef Wang Z, Wang Y, Luo G (2002) A selective voltammetric method for uric acid detection at β-cyclodextrin modified electrode incorporating carbon nanotubes. Analyst 127:1353–1358CrossRef
10.
Zurück zum Zitat Erden PE, Kaçar C, Öztürk F, Kılıç E (2015) Amperometric uric acid biosensor based on poly(vinylferrocene)-gelatin-carboxylated multiwalled carbon nanotube modified glassy carbon electrode. Talanta 134:488–495CrossRef Erden PE, Kaçar C, Öztürk F, Kılıç E (2015) Amperometric uric acid biosensor based on poly(vinylferrocene)-gelatin-carboxylated multiwalled carbon nanotube modified glassy carbon electrode. Talanta 134:488–495CrossRef
11.
Zurück zum Zitat Li Y, Ran G, Yi WJ, Luo HQ, Li NB (2012) A glassy carbon electrode modified with graphene and poly(acridine red) for sensing uric acid. Microchim Acta 178:115–121CrossRef Li Y, Ran G, Yi WJ, Luo HQ, Li NB (2012) A glassy carbon electrode modified with graphene and poly(acridine red) for sensing uric acid. Microchim Acta 178:115–121CrossRef
12.
Zurück zum Zitat Stafford RS (1990) Cesarean section use and source of payment: an analysis of California hospital discharge abstracts. Am J Public Health 80:313–315CrossRef Stafford RS (1990) Cesarean section use and source of payment: an analysis of California hospital discharge abstracts. Am J Public Health 80:313–315CrossRef
13.
Zurück zum Zitat Roberts JM, Bodnar LM, Lain KY, Hubel CA, Markovic N, Ness RB, Powers RW (2005) Uric acid is as important as proteinuria in identifying fetal risk in women with gestational hypertension. Hypertension 46:1263–1269CrossRef Roberts JM, Bodnar LM, Lain KY, Hubel CA, Markovic N, Ness RB, Powers RW (2005) Uric acid is as important as proteinuria in identifying fetal risk in women with gestational hypertension. Hypertension 46:1263–1269CrossRef
14.
Zurück zum Zitat Conway GE, Lambertson RH, Schwarzmann MA, Pannell MJ, Kerins HW, Rubenstein KJ, Dattelbaum JD, Leopold MC (2016) Layer-by-layer design and optimization of xerogel-based amperometric first generation biosensors for uric acid. J Electroanal Chem 775:135–145CrossRef Conway GE, Lambertson RH, Schwarzmann MA, Pannell MJ, Kerins HW, Rubenstein KJ, Dattelbaum JD, Leopold MC (2016) Layer-by-layer design and optimization of xerogel-based amperometric first generation biosensors for uric acid. J Electroanal Chem 775:135–145CrossRef
15.
Zurück zum Zitat Poulos NG, Hall JR, Leopold MC (2015) Functional layer-by-layer design of xerogel-based first-generation amperometric glucose biosensors. Langmuir 31:1547–1555CrossRef Poulos NG, Hall JR, Leopold MC (2015) Functional layer-by-layer design of xerogel-based first-generation amperometric glucose biosensors. Langmuir 31:1547–1555CrossRef
16.
Zurück zum Zitat DiPasquale LT, Poulos NG, Hall JR, Minocha A, Bui TA, Leopold MC (2015) Structure-function relationships affecting the sensing mechanism of monolayer-protected cluster doped xerogel amperometric glucose biosensors. J Colloid Interface Sci 450:202–212CrossRef DiPasquale LT, Poulos NG, Hall JR, Minocha A, Bui TA, Leopold MC (2015) Structure-function relationships affecting the sensing mechanism of monolayer-protected cluster doped xerogel amperometric glucose biosensors. J Colloid Interface Sci 450:202–212CrossRef
17.
Zurück zum Zitat Wang J (2005) Carbon-nanotube based electrochemical biosensors: a review. Electroanalysis 17:7–14CrossRef Wang J (2005) Carbon-nanotube based electrochemical biosensors: a review. Electroanalysis 17:7–14CrossRef
18.
Zurück zum Zitat Alarcón-Ángeles G, Guix M, Silva WC, Ramírez-Silva MT, Palomar-Pardavé M, Romero-Romo M, Merkoçi A (2010) Enzyme entrapment by β-cyclodextrin electropolymerization onto a carbon nanotubes-modified screen-printed electrode. Biosens Bioelectron 26:1768–1773CrossRef Alarcón-Ángeles G, Guix M, Silva WC, Ramírez-Silva MT, Palomar-Pardavé M, Romero-Romo M, Merkoçi A (2010) Enzyme entrapment by β-cyclodextrin electropolymerization onto a carbon nanotubes-modified screen-printed electrode. Biosens Bioelectron 26:1768–1773CrossRef
19.
Zurück zum Zitat Wang Z, Dong X, Li J (2008) An inlaying ultra-thin carbon paste electrode modified with functional single-wall carbon nanotubes for simultaneous determination of three purine derivatives. Sens Actuators B Chem 131:411–416CrossRef Wang Z, Dong X, Li J (2008) An inlaying ultra-thin carbon paste electrode modified with functional single-wall carbon nanotubes for simultaneous determination of three purine derivatives. Sens Actuators B Chem 131:411–416CrossRef
20.
Zurück zum Zitat Bello A, Giannetto M, Mori G, Seeber R, Terzi F, Zanardi C (2007) Optimization of the DPV potential waveform for determination of ascorbic acid on PEDOT-modified electrodes. Sens Actuators B Chem 121:430–435CrossRef Bello A, Giannetto M, Mori G, Seeber R, Terzi F, Zanardi C (2007) Optimization of the DPV potential waveform for determination of ascorbic acid on PEDOT-modified electrodes. Sens Actuators B Chem 121:430–435CrossRef
21.
Zurück zum Zitat Du J, Yue R, Yao Z, Jiang F, Du Y, Yang P, Wang C (2013) Nonenzymatic uric acid electrochemical sensor based on graphene-modified carbon fiber electrode. Colloids Surf A Physicochem Eng Asp 419:94–99CrossRef Du J, Yue R, Yao Z, Jiang F, Du Y, Yang P, Wang C (2013) Nonenzymatic uric acid electrochemical sensor based on graphene-modified carbon fiber electrode. Colloids Surf A Physicochem Eng Asp 419:94–99CrossRef
22.
Zurück zum Zitat Wayu MB, King JE, Johnson JA, Chusuei CC (2015) A zinc oxide carbon nanotube based sensor for in situ monitoring of hydrogen peroxide in swimming pools. Electroanalysis 27:2552–2558CrossRef Wayu MB, King JE, Johnson JA, Chusuei CC (2015) A zinc oxide carbon nanotube based sensor for in situ monitoring of hydrogen peroxide in swimming pools. Electroanalysis 27:2552–2558CrossRef
23.
Zurück zum Zitat Wang J, Musameh M, Lin Y (2003) Solubilization of carbon nanotubes by Nafion toward the preparation of amperometric biosensors. J ACS 125:2408–2409 Wang J, Musameh M, Lin Y (2003) Solubilization of carbon nanotubes by Nafion toward the preparation of amperometric biosensors. J ACS 125:2408–2409
24.
Zurück zum Zitat Shi J, Claussen JC, McLamore ES, ul Haque A, Jaroch D, Diggs AR, Calvo-Marzal P, Rickus JL, Porterfield DM (2011) A comparative study of enzyme immobilization strategies for multi-walled carbon nanotube glucose biosensors. Nanotechnology 22:355502CrossRef Shi J, Claussen JC, McLamore ES, ul Haque A, Jaroch D, Diggs AR, Calvo-Marzal P, Rickus JL, Porterfield DM (2011) A comparative study of enzyme immobilization strategies for multi-walled carbon nanotube glucose biosensors. Nanotechnology 22:355502CrossRef
25.
Zurück zum Zitat Gooding JJ (2005) Nanostructuring electrodes with carbon nanotubes: a review on electrochemistry and applications for sensing. Electrochim Acta 50:3049–3060CrossRef Gooding JJ (2005) Nanostructuring electrodes with carbon nanotubes: a review on electrochemistry and applications for sensing. Electrochim Acta 50:3049–3060CrossRef
26.
Zurück zum Zitat Yang H, Zhu Y, Chen D, Li C, Chen S, Ge Z (2010) Electrochemical biosensing platforms using poly-cyclodextrin and carbon nanotube composite. Biosens Bioelectron 26:295–298CrossRef Yang H, Zhu Y, Chen D, Li C, Chen S, Ge Z (2010) Electrochemical biosensing platforms using poly-cyclodextrin and carbon nanotube composite. Biosens Bioelectron 26:295–298CrossRef
27.
Zurück zum Zitat Li J, Feng H, Feng Y, Liu J, Liu Y, Jiang J, Qian D (2014) A glassy carbon electrode modified with β-cyclodextin, multiwalled carbon nanotubes and graphene oxide for sensitive determination of 1,3-dinitrobenzene. Microchim Acta 181:1369–1377CrossRef Li J, Feng H, Feng Y, Liu J, Liu Y, Jiang J, Qian D (2014) A glassy carbon electrode modified with β-cyclodextin, multiwalled carbon nanotubes and graphene oxide for sensitive determination of 1,3-dinitrobenzene. Microchim Acta 181:1369–1377CrossRef
28.
Zurück zum Zitat Gao Y-S, Wu L-P, Zhang K-X, Xu J-K, Lu L-M, Zhu X-F, Wu Y (2015) Electroanalytical method for determination of shikonin based on the enhancement effect of cyclodextrin functionalized carbon nanotubes. Chin Chem Lett 26:613–618CrossRef Gao Y-S, Wu L-P, Zhang K-X, Xu J-K, Lu L-M, Zhu X-F, Wu Y (2015) Electroanalytical method for determination of shikonin based on the enhancement effect of cyclodextrin functionalized carbon nanotubes. Chin Chem Lett 26:613–618CrossRef
29.
Zurück zum Zitat He Y, Xu Z, Yang Q, Wu F, Liang L (2015) Supramolecular modification of multi-walled carbon nanotubes with β-cyclodextrin for better dispersibility. J Nanopart Res 17:1–10CrossRef He Y, Xu Z, Yang Q, Wu F, Liang L (2015) Supramolecular modification of multi-walled carbon nanotubes with β-cyclodextrin for better dispersibility. J Nanopart Res 17:1–10CrossRef
30.
Zurück zum Zitat Xing Y, Li L, Chusuei CC, Hull RV (2005) Sonochemical oxidation of multiwalled carbon nanotubes. Langmuir 21:4185–4190CrossRef Xing Y, Li L, Chusuei CC, Hull RV (2005) Sonochemical oxidation of multiwalled carbon nanotubes. Langmuir 21:4185–4190CrossRef
31.
Zurück zum Zitat Tian L, Zhang B, Sun D, Chen R, Wang B, Li T (2014) A thin poly(acridine orange) film containing reduced graphene oxide for voltammetric simultaneous sensing of ascorbic acid and uric acid. Microchim Acta 181:589–595CrossRef Tian L, Zhang B, Sun D, Chen R, Wang B, Li T (2014) A thin poly(acridine orange) film containing reduced graphene oxide for voltammetric simultaneous sensing of ascorbic acid and uric acid. Microchim Acta 181:589–595CrossRef
32.
Zurück zum Zitat Rafati AA, Afraz A, Hajian A, Assari P (2014) Simultaneous determination of ascorbic acid, dopamine, and uric acid using a carbon paste electrode modified with multiwalled carbon nanotubes, ionic liquid, and palladium nanoparticles. Microchim Acta 181:1999–2008CrossRef Rafati AA, Afraz A, Hajian A, Assari P (2014) Simultaneous determination of ascorbic acid, dopamine, and uric acid using a carbon paste electrode modified with multiwalled carbon nanotubes, ionic liquid, and palladium nanoparticles. Microchim Acta 181:1999–2008CrossRef
33.
Zurück zum Zitat Szejtli J (1998) Introduction and general overview of cyclodextrin chemistry. Chem Rev 98:1743–1754CrossRef Szejtli J (1998) Introduction and general overview of cyclodextrin chemistry. Chem Rev 98:1743–1754CrossRef
34.
Zurück zum Zitat Soylemez S, Hacioglu SO, Kesik M, Unay H, Cirpan A, Toppare L (2014) A novel and effective surface design: conducting polymer/β-cyclodextrin host-guest system for cholesterol biosensor. Acs Appl Mater Interfaces 6:18290–18300CrossRef Soylemez S, Hacioglu SO, Kesik M, Unay H, Cirpan A, Toppare L (2014) A novel and effective surface design: conducting polymer/β-cyclodextrin host-guest system for cholesterol biosensor. Acs Appl Mater Interfaces 6:18290–18300CrossRef
35.
Zurück zum Zitat Zheng L, Wu S, Lin X, Nie L, Rui L (2001) Selective determination of uric acid by using a β-cyclodextrin modified electrode. Electroanalysis 13:1351–1354CrossRef Zheng L, Wu S, Lin X, Nie L, Rui L (2001) Selective determination of uric acid by using a β-cyclodextrin modified electrode. Electroanalysis 13:1351–1354CrossRef
36.
Zurück zum Zitat Wayu MB, DiPasquale LT, Schwarzmann MA, Gillespie SD, Leopold MC (2016) Electropolymerization of β-cyclodextrin onto multi-walled carbon nanotube composite films for enhanced selective detection of uric acid. J Electroanal Chem 783:192–200CrossRef Wayu MB, DiPasquale LT, Schwarzmann MA, Gillespie SD, Leopold MC (2016) Electropolymerization of β-cyclodextrin onto multi-walled carbon nanotube composite films for enhanced selective detection of uric acid. J Electroanal Chem 783:192–200CrossRef
37.
Zurück zum Zitat Fang B, Zhang C, Zhang W, Wang G (2009) A novel hydrazine electrochemical sensor based on a carbon nanotube-wired ZnO nanoflower-modified electrode. Electrochim Acta 55:178–182CrossRef Fang B, Zhang C, Zhang W, Wang G (2009) A novel hydrazine electrochemical sensor based on a carbon nanotube-wired ZnO nanoflower-modified electrode. Electrochim Acta 55:178–182CrossRef
38.
Zurück zum Zitat Wayu MB, Spidle RT, Devkota T, Deb AK, Delong RK, Ghosh KC, Wanekaya AK, Chusuei CC (2013) Morphology of hydrothermally synthesized ZnO nanoparticles tethered to carbon nanotubes affects electrocatalytic activity for H2O2 detection. Electrochim Acta 97:99–104CrossRef Wayu MB, Spidle RT, Devkota T, Deb AK, Delong RK, Ghosh KC, Wanekaya AK, Chusuei CC (2013) Morphology of hydrothermally synthesized ZnO nanoparticles tethered to carbon nanotubes affects electrocatalytic activity for H2O2 detection. Electrochim Acta 97:99–104CrossRef
39.
Zurück zum Zitat Koh A, Lu Y, Schoenfisch MH (2013) Fabrication of nitric oxide-releasing porous polyurethane membranes-coated needle-type implantable glucose biosensors. Anal Chem 85:10488–10494CrossRef Koh A, Lu Y, Schoenfisch MH (2013) Fabrication of nitric oxide-releasing porous polyurethane membranes-coated needle-type implantable glucose biosensors. Anal Chem 85:10488–10494CrossRef
40.
Zurück zum Zitat Freeman MH, Hall JR, Leopold MC (2013) Monolayer-protected nanoparticle doped xerogels as functional components of amperometric glucose biosensors. Anal Chem 85:4057–4065CrossRef Freeman MH, Hall JR, Leopold MC (2013) Monolayer-protected nanoparticle doped xerogels as functional components of amperometric glucose biosensors. Anal Chem 85:4057–4065CrossRef
41.
Zurück zum Zitat Wayu MB, Pannell MJ, Leopold MC (2016) Layered xerogel films incorporating monolayer-protected cluster networks on platinum-black-modified electrodes for enhanced sensitivity in first-generation uric acid biosensing. ChemElectroChem 3:1245–1252CrossRef Wayu MB, Pannell MJ, Leopold MC (2016) Layered xerogel films incorporating monolayer-protected cluster networks on platinum-black-modified electrodes for enhanced sensitivity in first-generation uric acid biosensing. ChemElectroChem 3:1245–1252CrossRef
42.
Zurück zum Zitat Kim C, Seo K, Kim B, Park N, Choi YS, Park KA, Lee YH (2003) Tip-functionalized carbon nanotubes under electric fields. Phys Rev B 68:115403CrossRef Kim C, Seo K, Kim B, Park N, Choi YS, Park KA, Lee YH (2003) Tip-functionalized carbon nanotubes under electric fields. Phys Rev B 68:115403CrossRef
43.
Zurück zum Zitat Fei T, Jiang K, Jiang F, Mu R, Zhang T (2014) Humidity switching properties of sensors based on multiwalled carbon nanotubes/polyvinyl alcohol composite films. J Appl Polym Sci 131:39726 Fei T, Jiang K, Jiang F, Mu R, Zhang T (2014) Humidity switching properties of sensors based on multiwalled carbon nanotubes/polyvinyl alcohol composite films. J Appl Polym Sci 131:39726
44.
Zurück zum Zitat Cao X, Luo L, Ding Y, Yu D, Gao Y (2009) Simultaneous determination of dopamine and uric acid on Nafion/sodium dodecylbenzenesulfonate composite film modified glassy carbon electrode. J Appl Electrochem 39:1603–1608CrossRef Cao X, Luo L, Ding Y, Yu D, Gao Y (2009) Simultaneous determination of dopamine and uric acid on Nafion/sodium dodecylbenzenesulfonate composite film modified glassy carbon electrode. J Appl Electrochem 39:1603–1608CrossRef
45.
Zurück zum Zitat Chen K, Conway GE, Hamilton GA, Trawick ML, Leopold MC (2016) Electropolymerized layers as selective membranes in first generation uric acid biosensors. J Appl Electrochem 46:603–615CrossRef Chen K, Conway GE, Hamilton GA, Trawick ML, Leopold MC (2016) Electropolymerized layers as selective membranes in first generation uric acid biosensors. J Appl Electrochem 46:603–615CrossRef
46.
Zurück zum Zitat Koh A, Riccio DA, Sun B, Carpenter AW, Nichols SP, Schoenfisch MH (2011) Fabrication of nitric oxide-releasing polyurethane glucose sensor membranes. Biosens Bioelectron 28:17–24CrossRef Koh A, Riccio DA, Sun B, Carpenter AW, Nichols SP, Schoenfisch MH (2011) Fabrication of nitric oxide-releasing polyurethane glucose sensor membranes. Biosens Bioelectron 28:17–24CrossRef
Metadaten
Titel
Enzyme-free uric acid electrochemical sensors using β-cyclodextrin-modified carboxylic acid-functionalized carbon nanotubes
verfasst von
Mulugeta B. Wayu
Margaret A. Schwarzmann
Samuel D. Gillespie
Michael C. Leopold
Publikationsdatum
06.02.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 10/2017
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-0844-9

Weitere Artikel der Ausgabe 10/2017

Journal of Materials Science 10/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.