Skip to main content

2021 | OriginalPaper | Buchkapitel

First-Principles Calculations of Phase Stability, Electronic Structure, and Defect Properties of Perovskites for SOFC/SOEC Electrodes

verfasst von : Daniel Mutter, Daniel F. Urban, Christian Elsässer

Erschienen in: High Performance Computing in Science and Engineering '19

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Solid oxide fuel cells (SOFC) and solid oxide electrolyzer cells (SOEC), which transform chemical into electrical energy and vice versa, have the potential to make a significant contribution to the efforts of overcoming present problems of the energy economy in the near future. An optimal functionality of these devices requires a high catalytic activity at the electrodes, which strongly depends on point defect concentrations and on the capability of the material to allow for fast charge transfer reactions. Promising anode materials regarding these requirements are perovskite compounds (ABO\(_3\)), where the transition-metal ion on the B site can adopt different oxidation states by accepting and releasing electrons during the oxygen reactions at the SOEC/SOFC surfaces. For LaFeO\(_3\), a typical representative of this material class, we present results regarding the phase stability and point defect formation energies derived by density functional theory GGA+U calculations. The influence of point defects on the electronic charge-carrier concentrations as a function of the oxygen partial pressure is studied and compared for the perovskite materials LaFeO\(_3\), LaMnO\(_3\) and CaMnO\(_3\). In addition to the scientific results, the performance of the DFT calculations applied for these studies on the ForHLR I computer cluster is reported.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat D. Broberg, B. Medasani, N.E. Zimmermann, G. Yu, A. Canning, M. Haranczyk, M. Asta, G. Hautier, PyCDT: A Python toolkit for modeling point defects in semiconductors and insulators. Comput. Phys. Commun. 226, 165–179 (2018)CrossRef D. Broberg, B. Medasani, N.E. Zimmermann, G. Yu, A. Canning, M. Haranczyk, M. Asta, G. Hautier, PyCDT: A Python toolkit for modeling point defects in semiconductors and insulators. Comput. Phys. Commun. 226, 165–179 (2018)CrossRef
2.
Zurück zum Zitat S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, A.P. Sutton, Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+\(U\) study. Phys. Rev. B 57, 1505–1509 (1998)CrossRef S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, A.P. Sutton, Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+\(U\) study. Phys. Rev. B 57, 1505–1509 (1998)CrossRef
3.
Zurück zum Zitat S. Foit, R.A. Eichel, I.C. Vinke, L.G.J. de Haart, Power-to-syngas - an enabling technology for the transition of the energy system? Angew. Chem. Int. Ed. 56, 5402 (2017) S. Foit, R.A. Eichel, I.C. Vinke, L.G.J. de Haart, Power-to-syngas - an enabling technology for the transition of the energy system? Angew. Chem. Int. Ed. 56, 5402 (2017)
4.
Zurück zum Zitat C. Freysoldt, J. Neugebauer, C.G. Van de Walle, Fully ab initio finite-size corrections for charged-defect supercell calculations. Phys. Rev. Lett. 102, 016402 (2009) C. Freysoldt, J. Neugebauer, C.G. Van de Walle, Fully ab initio finite-size corrections for charged-defect supercell calculations. Phys. Rev. Lett. 102, 016402 (2009)
5.
Zurück zum Zitat A. Jain, G. Hautier, S.P. Ong, C.J. Moore, C.C. Fischer, K.A. Persson, G. Ceder, Formation enthalpies by mixing GGA and GGA+\(U\) calculations. Phys. Rev. B 84, 045115 (2011) A. Jain, G. Hautier, S.P. Ong, C.J. Moore, C.C. Fischer, K.A. Persson, G. Ceder, Formation enthalpies by mixing GGA and GGA+\(U\) calculations. Phys. Rev. B 84, 045115 (2011)
6.
Zurück zum Zitat E.A. Kotomin, R. Merkle, Y.A. Mastrikov, M.M. Kuklja, J. Maier, Chapter 6: Energy Conversion: Solid Oxide Fuel Cells, in Computational Approaches to Energy Materials pp. 149–186 (John Wiley & Sons, Ltd., 2013) E.A. Kotomin, R. Merkle, Y.A. Mastrikov, M.M. Kuklja, J. Maier, Chapter 6: Energy Conversion: Solid Oxide Fuel Cells, in Computational Approaches to Energy Materials pp. 149–186 (John Wiley & Sons, Ltd., 2013)
7.
Zurück zum Zitat G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996) G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996)
8.
Zurück zum Zitat G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999)CrossRef G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999)CrossRef
9.
10.
Zurück zum Zitat M. Molinari, D.A. Tompsett, S.C. Parker, F. Azough, R. Freer, Structural, electronic and thermoelectric behaviour of CaMnO\(_3\) and CaMnO\(_{3-\delta }\). J. Mater. Chem. A 2, 14109–14117 (2014)CrossRef M. Molinari, D.A. Tompsett, S.C. Parker, F. Azough, R. Freer, Structural, electronic and thermoelectric behaviour of CaMnO\(_3\) and CaMnO\(_{3-\delta }\). J. Mater. Chem. A 2, 14109–14117 (2014)CrossRef
11.
Zurück zum Zitat J.P. Perdew, K. Burke, M. Ernzerhof, General gradient approximation made simple. Phys. Rev. Lett. 78, 1396 (1997) J.P. Perdew, K. Burke, M. Ernzerhof, General gradient approximation made simple. Phys. Rev. Lett. 78, 1396 (1997)
12.
Zurück zum Zitat T. Saitoh, A.E. Bocquet, T. Mizokawa, H. Namatame, A. Fujimori, M. Abbate, Y. Takeda, M. Takano, Electronic structure of La\(_{1-x}\)Sr\(_x\)MnO\(_3\) studied by photoemission and x-ray-absorption spectroscopy. Phys. Rev. B 51, 13942–13951 (1995)CrossRef T. Saitoh, A.E. Bocquet, T. Mizokawa, H. Namatame, A. Fujimori, M. Abbate, Y. Takeda, M. Takano, Electronic structure of La\(_{1-x}\)Sr\(_x\)MnO\(_3\) studied by photoemission and x-ray-absorption spectroscopy. Phys. Rev. B 51, 13942–13951 (1995)CrossRef
13.
Zurück zum Zitat A. Samanta, E. Weinan, S.B. Zhang, Method for defect stability diagram from ab initio calculations: A case study of SrTiO\(_3\). Phys. Rev. B 86, 195107 (2012) A. Samanta, E. Weinan, S.B. Zhang, Method for defect stability diagram from ab initio calculations: A case study of SrTiO\(_3\). Phys. Rev. B 86, 195107 (2012)
14.
Zurück zum Zitat M.D. Scafetta, A.M. Cordi, J.M. Rondinelli, S.J. May, Band structure and optical transitions in LaFeO\(_3\): theory and experiment. J. Physics: Condens Matter 26, 505502 (2014) M.D. Scafetta, A.M. Cordi, J.M. Rondinelli, S.J. May, Band structure and optical transitions in LaFeO\(_3\): theory and experiment. J. Physics: Condens Matter 26, 505502 (2014)
15.
Zurück zum Zitat D.F. Shanno, Conditioning of quasi-newton methods for function minimization. Math. Comp. 24, 647–656 (1970)MathSciNetCrossRef D.F. Shanno, Conditioning of quasi-newton methods for function minimization. Math. Comp. 24, 647–656 (1970)MathSciNetCrossRef
16.
Zurück zum Zitat J. Suntivich, K.J. May, H.A. Gasteiger, J.B. Goodenough, Y. Shao-Horn, A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334, 1383 (2011) J. Suntivich, K.J. May, H.A. Gasteiger, J.B. Goodenough, Y. Shao-Horn, A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334, 1383 (2011)
17.
Zurück zum Zitat L. Wang, T. Maxisch, G. Ceder, Oxidation energies of transition metal oxides within the GGA+\(U\) framework. Phys. Rev. B 73, 195107 (2006) L. Wang, T. Maxisch, G. Ceder, Oxidation energies of transition metal oxides within the GGA+\(U\) framework. Phys. Rev. B 73, 195107 (2006)
18.
Zurück zum Zitat L. Wang, R. Merkle, Y.A. Mastrikov, E.A. Kotomin, J. Maier, Oxygen exchange kinetics on solid oxide fuel cell cathode materials - general trends and their mechanistic interpretation. J. Mater. Res. 27, 2000–2008 (2012)CrossRef L. Wang, R. Merkle, Y.A. Mastrikov, E.A. Kotomin, J. Maier, Oxygen exchange kinetics on solid oxide fuel cell cathode materials - general trends and their mechanistic interpretation. J. Mater. Res. 27, 2000–2008 (2012)CrossRef
19.
Zurück zum Zitat S.B. Zhang, S.H. Wei, A. Zunger, H. Katayama-Yoshida, Defect physics of the CuInSe\(_2\) chalcopyrite semiconductor. Phys. Rev. B 57, 9642–9656 (1998)CrossRef S.B. Zhang, S.H. Wei, A. Zunger, H. Katayama-Yoshida, Defect physics of the CuInSe\(_2\) chalcopyrite semiconductor. Phys. Rev. B 57, 9642–9656 (1998)CrossRef
Metadaten
Titel
First-Principles Calculations of Phase Stability, Electronic Structure, and Defect Properties of Perovskites for SOFC/SOEC Electrodes
verfasst von
Daniel Mutter
Daniel F. Urban
Christian Elsässer
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-66792-4_10