Skip to main content
Erschienen in:

2021 | OriginalPaper | Buchkapitel

Handling Novel Mobile Malware Attacks with Optimised Machine Learning Based Detection and Classification Models

verfasst von : Ali Batouche, Hamid Jahankhani

Erschienen in: Artificial Intelligence in Cyber Security: Impact and Implications

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Malicious behaviour analysis is one of the biggest and most prevalent challenges in cybersecurity. With the dominance of the Android ecosystem, a significant number of frameworks were proposed to address the huge number of malicious attacks targeting the consumer base of this platform. Although still developing, the application of machine learning techniques for malware detection has recently experienced a growing interest due to their potential to achieve better results compared to traditional techniques. However, the effectiveness of detection by learning varies according to the used features and models. Moreover, its application to mobile malware detection is even more challenging given the deployment constraints. In this paper, mobile malware detection is cast as a classification problem, and four main and relevant questions are considered: (1) Which set of features is more relevant for effective detection using ML models. (2) which models are best performing for this type of tasks (3) which solution can be the most lightweight and most effective for real-time detection (4) And finally, how can these models be optimized to address the risk of a zero-day attack. This paper describes a comprehensive investigation of the potential of traditional and advanced ML models to address the aforementioned issues. As a result of this in-depth study, a testbed has been prepared using 168 different models and three recent datasets. Furthermore, the main contribution of this work lies in the development of novel models that outperformed the state-of-the-art proposed approaches. One of which, combined early integration with Extra Trees Classifier which achieved a detection rate of 99.94% and an AUC score of 99.91%. Further experimentations were conducted on the deployability aspect of these models, where results have shown that Boosted algorithms offered the best balance of detection rates and resource utilisation for a lightweight and robust malware detection solution. Furthermore, this comprehensive analysis helped in one hand, gain more insight into the role of features in the learning task, which led to the identification of a set of characteristics that we believe should be considered to develop an effective dataset to counter novel malware attacks. On the other hand, it helped in highlighting future developments and the missing components in this field, where we ultimately proposed a framework that builds on this analysis to provide a better approach for future studies.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
5.
Zurück zum Zitat Mas’ud MZ, Sahib S, Abdollah MF, Selamat SR, Yusof R (2014) Analysis of features selection and machine learning classifier in android Malware detection. In: 2014 international conference on information science & applications (ICISA), Seoul, Korea (South), pp 1–5. https://doi.org/10.1109/ICISA.2014.6847364 Mas’ud MZ, Sahib S, Abdollah MF, Selamat SR, Yusof R (2014) Analysis of features selection and machine learning classifier in android Malware detection. In: 2014 international conference on information science & applications (ICISA), Seoul, Korea (South), pp 1–5. https://​doi.​org/​10.​1109/​ICISA.​2014.​6847364
13.
Zurück zum Zitat Bakour K, Ünver H, Ghanem R (2019) The Android malware detection systems between hope and reality. SN Appl Sci 1(9) Bakour K, Ünver H, Ghanem R (2019) The Android malware detection systems between hope and reality. SN Appl Sci 1(9)
14.
Zurück zum Zitat Rahali A, Lashkari AH, Kaur G, Taheri L, Gagnon F, Massicotte F (2020) DIDroid: android Malware classification and characterization using deep image learning. In: 10th international conference on communication and network security, Tokyo, Japan Rahali A, Lashkari AH, Kaur G, Taheri L, Gagnon F, Massicotte F (2020) DIDroid: android Malware classification and characterization using deep image learning. In: 10th international conference on communication and network security, Tokyo, Japan
15.
Zurück zum Zitat Zhou Z, Graepel T, Herbrich R (2012) Ensemble methods foundations and algorithms.1st edn. Cambridge, UK, Taylor & Francis Group Zhou Z, Graepel T, Herbrich R (2012) Ensemble methods foundations and algorithms.1st edn. Cambridge, UK, Taylor & Francis Group
18.
Zurück zum Zitat Gibert D, Mateu C, Planes J (2020) The rise of machine learning for detection and classification of malware: research developments, trends and challenges. J Netw Comput Appl 153:102526 Gibert D, Mateu C, Planes J (2020) The rise of machine learning for detection and classification of malware: research developments, trends and challenges. J Netw Comput Appl 153:102526
Metadaten
Titel
Handling Novel Mobile Malware Attacks with Optimised Machine Learning Based Detection and Classification Models
verfasst von
Ali Batouche
Hamid Jahankhani
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-88040-8_1

Premium Partner