Skip to main content
Erschienen in:

01.05.2022 | Review

Interfacial behaviors of continuous carbon fiber reinforced polymers manufactured by fused filament fabrication: A review and prospect

verfasst von: Yiyun Wu, Kui Wang, Victor Neto, Yong Peng, Robertt Valente, Said Ahzi

Erschienen in: International Journal of Material Forming | Ausgabe 3/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Continuous fiber reinforced polymers composites have significant potential due to their high specific strength and high specific modulus. But there are some limitations on manufacturing and maintenance for the composites using existing manufacturing technologies. Meanwhile, the increasingly advanced 3D printing technology, with advantages on complex components building, no need for assembling operations and precise entity replication, has brought new hope for the manufacture and application of continuous fiber reinforced composites. However, compared to traditionally manufactured composites, poor interfacial adhesion is the main weakness of 3D printed composites. In the present work, a comprehensive review study on the identification, categories, characterization and measuring methods for interfaces in 3D printed composites is presented. Particularly, the effects of materials, processing and design parameters on the interfacial properties and mechanical behaviors of 3D printed composites are systematically discussed. Based on these investigation and discussion, compilation of effective methods and technologies is presented to improve the interfacial adhesion and reduce the generation of voids. Also, modeling and simulation approaches are also presented for the special case of 3D printed composites. This work therefore intends to provide a reference source regarding interfacial properties, processing control, processing scalability and product performance of 3D printed composites, that could help researchers proceed and make contributions to this research field.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Prashanth S, Subbaya KM, Nithin K, Sachhidananda S (2017) Fiber Reinforced Composites - A Review. J Mater Sci Eng 6(3):1000341 Prashanth S, Subbaya KM, Nithin K, Sachhidananda S (2017) Fiber Reinforced Composites - A Review. J Mater Sci Eng 6(3):1000341
2.
Zurück zum Zitat Chen Q, Boisse P, Park C, Saouab A, Bréard J (2011) Intra/inter-ply shear behaviors of continuous fiber reinforced thermoplastic composites in thermoforming processes. Compos Struct 93:1692–1703CrossRef Chen Q, Boisse P, Park C, Saouab A, Bréard J (2011) Intra/inter-ply shear behaviors of continuous fiber reinforced thermoplastic composites in thermoforming processes. Compos Struct 93:1692–1703CrossRef
3.
Zurück zum Zitat Park KY, Choi JH, Lee DG (1995) Delamination-free and high-efficiency drilling of carbon-fiber-reinforced plastics. J Compos Mater 29(15):1988–2002CrossRef Park KY, Choi JH, Lee DG (1995) Delamination-free and high-efficiency drilling of carbon-fiber-reinforced plastics. J Compos Mater 29(15):1988–2002CrossRef
4.
Zurück zum Zitat Swolf Y, Pinhob ST (2019) 3D printed continuous fibre-reinforced composites: Bio-inspired microstructures for improving the translaminar fracture toughness. Compos Sci Technol 182:107731CrossRef Swolf Y, Pinhob ST (2019) 3D printed continuous fibre-reinforced composites: Bio-inspired microstructures for improving the translaminar fracture toughness. Compos Sci Technol 182:107731CrossRef
5.
Zurück zum Zitat Wang X, Jiang M, Zhou ZW, Gou JH, Hui D (2016) 3D printing of polymer matrix composites: A review and prospective. Compos B Eng 110:442–458CrossRef Wang X, Jiang M, Zhou ZW, Gou JH, Hui D (2016) 3D printing of polymer matrix composites: A review and prospective. Compos B Eng 110:442–458CrossRef
6.
Zurück zum Zitat Economidou SN, Lamprou DA, Douroumis D (2018) 3D printing applications for transdermal drug delivery. Int J Pharm 544:415–424CrossRef Economidou SN, Lamprou DA, Douroumis D (2018) 3D printing applications for transdermal drug delivery. Int J Pharm 544:415–424CrossRef
7.
Zurück zum Zitat Tilford T, Stoyanov S, Braun J, Janhsen JC, Burgard M, Birch R (2018) Design, manufacture and test for reliable 3D printed electronics packaging. Microelectron Reliab 85:109–117CrossRef Tilford T, Stoyanov S, Braun J, Janhsen JC, Burgard M, Birch R (2018) Design, manufacture and test for reliable 3D printed electronics packaging. Microelectron Reliab 85:109–117CrossRef
8.
Zurück zum Zitat Chua CK, Leong KF (2017) 3D printing and additive manufacturing: principles and applications, 5th edn. World Scientific Publishing Company, SingaporeCrossRef Chua CK, Leong KF (2017) 3D printing and additive manufacturing: principles and applications, 5th edn. World Scientific Publishing Company, SingaporeCrossRef
9.
Zurück zum Zitat Koch C, Hulle LV, Rudolph N (2017) Investigation of mechanical anisotropy of the fused filament fabrication process via customized tool path generation. Addit Manuf 16:138–145 Koch C, Hulle LV, Rudolph N (2017) Investigation of mechanical anisotropy of the fused filament fabrication process via customized tool path generation. Addit Manuf 16:138–145
10.
Zurück zum Zitat Blok LG, Longana ML, Yu H, Woods BKS (2018) An investigation into 3D printing of fibre reinforced thermoplastic composites. Addit Manuf 22:176–186 Blok LG, Longana ML, Yu H, Woods BKS (2018) An investigation into 3D printing of fibre reinforced thermoplastic composites. Addit Manuf 22:176–186
11.
Zurück zum Zitat Kelly J, Mohammadi M (2018) Uniaxial tensile behavior of sheet molded composite car hoods with different fibre contents under quasi-static strain rates. Mech Res Commun 87:42–52CrossRef Kelly J, Mohammadi M (2018) Uniaxial tensile behavior of sheet molded composite car hoods with different fibre contents under quasi-static strain rates. Mech Res Commun 87:42–52CrossRef
12.
Zurück zum Zitat Casavola C, Cazzato A, Moramarco V, Pappalettere C (2016) Orthotropic mechanical properties of fused deposition modelling parts described by classical laminate theory. Mater Des 90:453–458CrossRef Casavola C, Cazzato A, Moramarco V, Pappalettere C (2016) Orthotropic mechanical properties of fused deposition modelling parts described by classical laminate theory. Mater Des 90:453–458CrossRef
13.
Zurück zum Zitat Chacon JM, Caminero MA, García-Plaza E, Núnez PJ (2017) Additive manufacturing of PLA structures using fused deposition modelling: effect of process parameters on mechanical properties and their optimal selection. Mater Des 124:143–157CrossRef Chacon JM, Caminero MA, García-Plaza E, Núnez PJ (2017) Additive manufacturing of PLA structures using fused deposition modelling: effect of process parameters on mechanical properties and their optimal selection. Mater Des 124:143–157CrossRef
14.
Zurück zum Zitat Ning F, Cong W, Qiu J, Wei J, Wang S (2015) Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling. Compos B Eng 80:369–378CrossRef Ning F, Cong W, Qiu J, Wei J, Wang S (2015) Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling. Compos B Eng 80:369–378CrossRef
15.
Zurück zum Zitat Justo J, Távara L, García-Guzmán L, París F (2018) Characterization of 3D printed long fibre reinforced composites. Compos Struct 185:537–548CrossRef Justo J, Távara L, García-Guzmán L, París F (2018) Characterization of 3D printed long fibre reinforced composites. Compos Struct 185:537–548CrossRef
16.
Zurück zum Zitat Chohan JS, Singh R, Boparai KS, Penna R, Fraternali F (2017) Dimensional accuracy analysis of coupled fused deposition modeling and vapour smoothing operations for biomedical applications. Compos B Eng 117:138–149CrossRef Chohan JS, Singh R, Boparai KS, Penna R, Fraternali F (2017) Dimensional accuracy analysis of coupled fused deposition modeling and vapour smoothing operations for biomedical applications. Compos B Eng 117:138–149CrossRef
17.
Zurück zum Zitat Adumitroaie A, Antonov F, Khaziev A, Azarov A, Golubev M, Vasiliev VV (2019) Novel Continuous Fiber Bi-Matrix Composite 3D Printing Technology. Mater 12:3011CrossRef Adumitroaie A, Antonov F, Khaziev A, Azarov A, Golubev M, Vasiliev VV (2019) Novel Continuous Fiber Bi-Matrix Composite 3D Printing Technology. Mater 12:3011CrossRef
18.
Zurück zum Zitat Wickramasinghe S, Do T, Tran P (2020) FDM-Based 3D Printing of Polymer and Associated Composite: A Review on Mechanical Properties, Defects and Treatments. Polymers 12(7):1529 Wickramasinghe S, Do T, Tran P (2020) FDM-Based 3D Printing of Polymer and Associated Composite: A Review on Mechanical Properties, Defects and Treatments. Polymers 12(7):1529
19.
Zurück zum Zitat Hao W, Liu Y, Zhou H, Chen H, Fang D (2018) Preparation and characterization of 3D printed continuous carbon fiber reinforced thermosetting composites. PolymTest 65:29–34 Hao W, Liu Y, Zhou H, Chen H, Fang D (2018) Preparation and characterization of 3D printed continuous carbon fiber reinforced thermosetting composites. PolymTest 65:29–34
20.
Zurück zum Zitat Ming Y, Zhang S, Han W, Wang B, Duan Y, Xiao H (2020) Investigation on process parameters of 3D printed continuous carbon fiber-reinforced thermosetting epoxy composites. Addit Manuf 33:101184 Ming Y, Zhang S, Han W, Wang B, Duan Y, Xiao H (2020) Investigation on process parameters of 3D printed continuous carbon fiber-reinforced thermosetting epoxy composites. Addit Manuf 33:101184
21.
Zurück zum Zitat Hu Q, Duan Y, Zhang H, Liu D, Yan B, Peng F (2018) Manufacturing and 3D printing of continuous carbon fiber prepreg filament. J Mater Sci 53(3):1887–1898CrossRef Hu Q, Duan Y, Zhang H, Liu D, Yan B, Peng F (2018) Manufacturing and 3D printing of continuous carbon fiber prepreg filament. J Mater Sci 53(3):1887–1898CrossRef
22.
Zurück zum Zitat Ming Y, Duan Y, Wang B, Xiao H, Zhang X (2019) A novel route to fabricate high-performance 3D printed continuous fiber-reinforced thermosetting polymer composites. Mater 12(9):1369 Ming Y, Duan Y, Wang B, Xiao H, Zhang X (2019) A novel route to fabricate high-performance 3D printed continuous fiber-reinforced thermosetting polymer composites. Mater 12(9):1369
23.
Zurück zum Zitat Tian X, Liu T, Yang C, Wang Q, Li D (2016) Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites. Compos Part A Appl Sci Manuf 88:198–205CrossRef Tian X, Liu T, Yang C, Wang Q, Li D (2016) Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites. Compos Part A Appl Sci Manuf 88:198–205CrossRef
24.
Zurück zum Zitat Hou Z, Tian X, Zhang J, Li D (2018) 3D printed continuous fibre reinforced composite corrugated structure. Compos Struct 184:1005–1010CrossRef Hou Z, Tian X, Zhang J, Li D (2018) 3D printed continuous fibre reinforced composite corrugated structure. Compos Struct 184:1005–1010CrossRef
25.
Zurück zum Zitat Luo M, Tian X, Shang J, Zhu W, Li D, Qin Y (2019) Impregnation and interlayer bonding behaviours of 3D-printed continuous carbon-fiber-reinforced poly-ether-ether-ketone composites. Compos Part A Appl Sci Manuf 121:130–138CrossRef Luo M, Tian X, Shang J, Zhu W, Li D, Qin Y (2019) Impregnation and interlayer bonding behaviours of 3D-printed continuous carbon-fiber-reinforced poly-ether-ether-ketone composites. Compos Part A Appl Sci Manuf 121:130–138CrossRef
26.
Zurück zum Zitat Li N, Li Y, Liu S (2016) Rapid prototyping of continuous carbon fiber reinforced polylactic acid composites by 3D printing. J Mater Process Technol 238:218–225CrossRef Li N, Li Y, Liu S (2016) Rapid prototyping of continuous carbon fiber reinforced polylactic acid composites by 3D printing. J Mater Process Technol 238:218–225CrossRef
27.
Zurück zum Zitat Tian X, Liu T, Wang Q, Dilmurat A, Li D, Ziegmann G (2017) Recycling and remanufacturing of 3D printed continuous carbon fiber reinforced PLA composites. J Clean Prod 142:1609–1618CrossRef Tian X, Liu T, Wang Q, Dilmurat A, Li D, Ziegmann G (2017) Recycling and remanufacturing of 3D printed continuous carbon fiber reinforced PLA composites. J Clean Prod 142:1609–1618CrossRef
28.
Zurück zum Zitat Luo M, Tian X, Shang J, Yun J, Zhu W, Li D, Qin Y (2020) Bi-scale interfacial bond behaviors of CCF/PEEK composites by plasma-laser cooperatively assisted 3D printing process. Compos A Appl Sci Manuf 131:105812CrossRef Luo M, Tian X, Shang J, Yun J, Zhu W, Li D, Qin Y (2020) Bi-scale interfacial bond behaviors of CCF/PEEK composites by plasma-laser cooperatively assisted 3D printing process. Compos A Appl Sci Manuf 131:105812CrossRef
29.
Zurück zum Zitat Yu T, Zhang Z, Song S, Bai Y, Wu D (2019) Tensile and flexural behaviors of additively manufactured continuous carbon fiber-reinforced polymer composites. Compos Struct 225:111147CrossRef Yu T, Zhang Z, Song S, Bai Y, Wu D (2019) Tensile and flexural behaviors of additively manufactured continuous carbon fiber-reinforced polymer composites. Compos Struct 225:111147CrossRef
30.
Zurück zum Zitat Camineroa MA, Chacónb JM, García-Morenoa I, Reverteb JM (2018) Interlaminar bonding performance of 3D printed continuous fibre reinforced thermoplastic composites using fused deposition modelling. Polym Test 68:415–423CrossRef Camineroa MA, Chacónb JM, García-Morenoa I, Reverteb JM (2018) Interlaminar bonding performance of 3D printed continuous fibre reinforced thermoplastic composites using fused deposition modelling. Polym Test 68:415–423CrossRef
31.
Zurück zum Zitat Van der Klift F, Koga Y, Todoroki A, Ueda M, Hirano Y, Matsuzaki R (2016) 3D printing of continuous carbon fibre reinforced thermo-plastic (CFRTP) tensile test specimens Open. J Compos Mater 6(1):18–27 Van der Klift F, Koga Y, Todoroki A, Ueda M, Hirano Y, Matsuzaki R (2016) 3D printing of continuous carbon fibre reinforced thermo-plastic (CFRTP) tensile test specimens Open. J Compos Mater 6(1):18–27
32.
Zurück zum Zitat Peng Y, Wu Y, Wang K, Gao G, Ahzi S (2019) Synergistic reinforcement of polyamide-based composites by combination of short and continuous carbon fibers via fused filament fabrication. Compos Struct 201:232–239CrossRef Peng Y, Wu Y, Wang K, Gao G, Ahzi S (2019) Synergistic reinforcement of polyamide-based composites by combination of short and continuous carbon fibers via fused filament fabrication. Compos Struct 201:232–239CrossRef
33.
Zurück zum Zitat Dickson AN, Barry JN, McDonnell KA, Dowling DP (2018) Fabrication of continuous carbon, glass and Kevlar fibre reinforced polymer composites using additive manufacturing. Addit Manuf 16:146–152 Dickson AN, Barry JN, McDonnell KA, Dowling DP (2018) Fabrication of continuous carbon, glass and Kevlar fibre reinforced polymer composites using additive manufacturing. Addit Manuf 16:146–152
34.
Zurück zum Zitat Peng Y, Wu Y, Li S, Wang K, Yao S, Liu Z, Garmestani H (2020) Tailorable rigidity and energy-absorption capability of 3D printed continuous carbon fiber reinforced polyamide composites. Compos Sci Technol 199:108337CrossRef Peng Y, Wu Y, Li S, Wang K, Yao S, Liu Z, Garmestani H (2020) Tailorable rigidity and energy-absorption capability of 3D printed continuous carbon fiber reinforced polyamide composites. Compos Sci Technol 199:108337CrossRef
35.
Zurück zum Zitat Kishore V, Ajinjeru C, Nycz A, Post B, Lindahl J, Kunc V, Duty C (2017) Infrared preheating to improve interlayer strength of big area additive manufacturing (BAAM) components. Addit Manuf 14:7–12 Kishore V, Ajinjeru C, Nycz A, Post B, Lindahl J, Kunc V, Duty C (2017) Infrared preheating to improve interlayer strength of big area additive manufacturing (BAAM) components. Addit Manuf 14:7–12
36.
Zurück zum Zitat Van de Werken N, Hurley J, Khanbolouki P, Sarvestani AN, Tamijani AY, Tehrani M (2019) Design considerations and modeling of fiber reinforced 3D printed parts. Compos B Eng 160:684–692CrossRef Van de Werken N, Hurley J, Khanbolouki P, Sarvestani AN, Tamijani AY, Tehrani M (2019) Design considerations and modeling of fiber reinforced 3D printed parts. Compos B Eng 160:684–692CrossRef
37.
Zurück zum Zitat Sarvestani AN, Van de Werken N, Khanbolouki P, Tehrani M (2017) 3D printed composites with continuous carbon fiber reinforcements. Proceedings of the ASME 2017 International Mechanical Engineering Congress and Exposition. November 3-9, Tampa, Florida, USA Sarvestani AN, Van de Werken N, Khanbolouki P, Tehrani M (2017) 3D printed composites with continuous carbon fiber reinforcements. Proceedings of the ASME 2017 International Mechanical Engineering Congress and Exposition. November 3-9, Tampa, Florida, USA
38.
Zurück zum Zitat Van de Werken N, Tekinalp H, Khanbolouki P, Ozcan S, Williams A, Tehrani M (2020) Additively manufactured carbon fber-reinforced composites: State of the art and perspective. Addit Manuf 31:100962 Van de Werken N, Tekinalp H, Khanbolouki P, Ozcan S, Williams A, Tehrani M (2020) Additively manufactured carbon fber-reinforced composites: State of the art and perspective. Addit Manuf 31:100962
39.
Zurück zum Zitat Turner NB, Strong R, Gold SA (2014) A review of melt extrusion additive manufacturing processes: I. Process design and modeling. Rapid Prototyp J 20:192–204CrossRef Turner NB, Strong R, Gold SA (2014) A review of melt extrusion additive manufacturing processes: I. Process design and modeling. Rapid Prototyp J 20:192–204CrossRef
40.
Zurück zum Zitat Ahn D, Kweon J-H, Kwon S, Song J, Lee S (2009) Representation of surface roughness in fused deposition modeling. J Mater Process Technol 209:5593–5600CrossRef Ahn D, Kweon J-H, Kwon S, Song J, Lee S (2009) Representation of surface roughness in fused deposition modeling. J Mater Process Technol 209:5593–5600CrossRef
41.
Zurück zum Zitat Sun Q, Rizvi GM, Bellehumeur CT, Gu P (2008) Effect of processing conditions on the bonding quality of FDM polymer filaments. Rapid Prototyp J 14:72–80CrossRef Sun Q, Rizvi GM, Bellehumeur CT, Gu P (2008) Effect of processing conditions on the bonding quality of FDM polymer filaments. Rapid Prototyp J 14:72–80CrossRef
42.
Zurück zum Zitat Zhang W, Wu AS, Sun J, Quan Z, Gu B, Sun B (2017) Characterization of residual stress and deformation in additively manufactured ABS polymer and composite specimens. Compos Sci Technol 150:102–110CrossRef Zhang W, Wu AS, Sun J, Quan Z, Gu B, Sun B (2017) Characterization of residual stress and deformation in additively manufactured ABS polymer and composite specimens. Compos Sci Technol 150:102–110CrossRef
43.
Zurück zum Zitat Matsuzaki R, Ueda M, Namiki M, Jeong TK, Asahara H, Horiguchi K, Nakamura T, Todoroki A, Hirano T (2016) Three-dimensional printing of continuous fiber composites by in-nozzle impregnation. Sci Rep 6:23058CrossRef Matsuzaki R, Ueda M, Namiki M, Jeong TK, Asahara H, Horiguchi K, Nakamura T, Todoroki A, Hirano T (2016) Three-dimensional printing of continuous fiber composites by in-nozzle impregnation. Sci Rep 6:23058CrossRef
44.
Zurück zum Zitat Namiki M, Ueda M, Todoroki A, Hirano Y, Matsuzaki R (2014) 3D printing of continuous fiber reinforced plastic. Proceedings of the Society of the Advancement of Material and Process Engineering (45):187-196 Namiki M, Ueda M, Todoroki A, Hirano Y, Matsuzaki R (2014) 3D printing of continuous fiber reinforced plastic. Proceedings of the Society of the Advancement of Material and Process Engineering (45):187-196
45.
Zurück zum Zitat ATSM D2344/D2344M:2000 Standard Test Method for Short-Beam Strength of Polymer Matrix Composite Materials and Their Laminates ATSM D2344/D2344M:2000 Standard Test Method for Short-Beam Strength of Polymer Matrix Composite Materials and Their Laminates
46.
Zurück zum Zitat ISO 11339:2005 Adhesives —T-peel test for flexible-to-flexible bonded assemblies ISO 11339:2005 Adhesives —T-peel test for flexible-to-flexible bonded assemblies
47.
Zurück zum Zitat Teixeira de Freitas S, Sinke J (2015) Test method to assess interface adhesion in composite bonding. Appl Adhes Sci 3:9 Teixeira de Freitas S, Sinke J (2015) Test method to assess interface adhesion in composite bonding. Appl Adhes Sci 3:9
48.
Zurück zum Zitat Teixeira de Freitas S, Sinke J (2014) Adhesion Properties of Bonded Composite-to-Aluminium Joints Using Peel Tests. J Adhes 90(5–6):511–525CrossRef Teixeira de Freitas S, Sinke J (2014) Adhesion Properties of Bonded Composite-to-Aluminium Joints Using Peel Tests. J Adhes 90(5–6):511–525CrossRef
49.
Zurück zum Zitat ASTM D3167-10:2010 Standard Test Method for Floating Roller Peel Resistance of Adhesives ASTM D3167-10:2010 Standard Test Method for Floating Roller Peel Resistance of Adhesives
50.
Zurück zum Zitat Mei H, Ali Z, Ali I, Cheng L (2019) Tailoring strength and modulus by 3D printing different continuous fibers and filled structures into composites. Adv Compos Hybrid Mater 2:312–319CrossRef Mei H, Ali Z, Ali I, Cheng L (2019) Tailoring strength and modulus by 3D printing different continuous fibers and filled structures into composites. Adv Compos Hybrid Mater 2:312–319CrossRef
51.
Zurück zum Zitat Bulut M, Erkliğ A, Yeter E (2016) Hybridization effects on quasi-static penetration resistance in fiber reinforced hybrid composite laminates. Compos B Eng 98:9–22CrossRef Bulut M, Erkliğ A, Yeter E (2016) Hybridization effects on quasi-static penetration resistance in fiber reinforced hybrid composite laminates. Compos B Eng 98:9–22CrossRef
52.
Zurück zum Zitat Wang K, Li S, Rao Y, Wu Y, Peng Y, Yao S (2019) Flexure Behaviors of ABS-Based Composites Containing Carbon and Kevlar Fibers by Material Extrusion 3D Printing. Polymers 11:1878CrossRef Wang K, Li S, Rao Y, Wu Y, Peng Y, Yao S (2019) Flexure Behaviors of ABS-Based Composites Containing Carbon and Kevlar Fibers by Material Extrusion 3D Printing. Polymers 11:1878CrossRef
53.
Zurück zum Zitat Wang K, Li S, Wu Y, Rao Y, Peng P (2021) Simultaneous reinforcement of both rigidity and energy absorption of polyamide-based composites with hybrid continuous fibers by 3D printing. Compos Struct 267:113854CrossRef Wang K, Li S, Wu Y, Rao Y, Peng P (2021) Simultaneous reinforcement of both rigidity and energy absorption of polyamide-based composites with hybrid continuous fibers by 3D printing. Compos Struct 267:113854CrossRef
54.
Zurück zum Zitat Ming Y, Xin Z, Zhang J, Duan Y, Wang B (2020) Fabrication of continuous glass fiber-reinforced dual-cure epoxy composites via UV-assisted fused deposition modeling. Compos Commun 21:100401CrossRef Ming Y, Xin Z, Zhang J, Duan Y, Wang B (2020) Fabrication of continuous glass fiber-reinforced dual-cure epoxy composites via UV-assisted fused deposition modeling. Compos Commun 21:100401CrossRef
55.
Zurück zum Zitat Chiang C, Koenig JL (1980) Chemical reactions occurring at the interface of epoxy matrix and amino silane coupling agents in fiber-reinforced composites. Polym Compos 1(2):88–92CrossRef Chiang C, Koenig JL (1980) Chemical reactions occurring at the interface of epoxy matrix and amino silane coupling agents in fiber-reinforced composites. Polym Compos 1(2):88–92CrossRef
56.
Zurück zum Zitat Compton BG, Lewis JA (2014) 3D-Printing of lightweight cellular composites. Adv Mater 26(34):5930–5935CrossRef Compton BG, Lewis JA (2014) 3D-Printing of lightweight cellular composites. Adv Mater 26(34):5930–5935CrossRef
57.
Zurück zum Zitat Caminero MA, Rodríguez GP, Muñoz V (2016) Effect of stacking sequence on Charpy impact and flexural damage behaviour of composite laminates. Compos Struct 136:345–357CrossRef Caminero MA, Rodríguez GP, Muñoz V (2016) Effect of stacking sequence on Charpy impact and flexural damage behaviour of composite laminates. Compos Struct 136:345–357CrossRef
58.
Zurück zum Zitat Hou Z, Tian X, Zheng Z, Zhang J, Zhe L, Li D, Malakhov AV, Polilov AN (2020) A constitutive model for 3D printed continuous fiber reinforced composite structures with variable fiber content. Compos B Eng 189(15):107893CrossRef Hou Z, Tian X, Zheng Z, Zhang J, Zhe L, Li D, Malakhov AV, Polilov AN (2020) A constitutive model for 3D printed continuous fiber reinforced composite structures with variable fiber content. Compos B Eng 189(15):107893CrossRef
59.
Zurück zum Zitat Sugiyam K, Matsuzaki R, Malakhov AV, Polilov AN, Ueda M, Todoroki A, Hirano Y (2020) 3D printing of optimized composites with variable fiber volume fraction and stiffness using continuous fiber. Compos Sci Technol 186:107905CrossRef Sugiyam K, Matsuzaki R, Malakhov AV, Polilov AN, Ueda M, Todoroki A, Hirano Y (2020) 3D printing of optimized composites with variable fiber volume fraction and stiffness using continuous fiber. Compos Sci Technol 186:107905CrossRef
60.
Zurück zum Zitat Josepha K, Varghese S, Kalaprasad G, Thomas S, PrasannkumariL KP, Pavithran C (1996) Influence of interfacial adhesion on the mechanical properties and fracture behaviour of short sisal fibre reinforced polymer composites. Eur Polym J 32:1243–1250CrossRef Josepha K, Varghese S, Kalaprasad G, Thomas S, PrasannkumariL KP, Pavithran C (1996) Influence of interfacial adhesion on the mechanical properties and fracture behaviour of short sisal fibre reinforced polymer composites. Eur Polym J 32:1243–1250CrossRef
61.
Zurück zum Zitat Rankouhi B, Javadpour S, Delfanian F, Letcher T (2016) Failure analysis and mechanical characterization of 3D printed ABS with respect to layer thickness and orientation. J Fail Anal Prev 16(3):467–481CrossRef Rankouhi B, Javadpour S, Delfanian F, Letcher T (2016) Failure analysis and mechanical characterization of 3D printed ABS with respect to layer thickness and orientation. J Fail Anal Prev 16(3):467–481CrossRef
62.
Zurück zum Zitat Sood AK, Ohdar R, Mahapatra S (2010) Parametric appraisal of mechanical property of fused deposition modelling processed parts. Mater Des 31:287–295CrossRef Sood AK, Ohdar R, Mahapatra S (2010) Parametric appraisal of mechanical property of fused deposition modelling processed parts. Mater Des 31:287–295CrossRef
63.
Zurück zum Zitat Dinwiddie RB, Kunc V, Lindal JM, Post B, Smith RJ, Love L (2014) Infrared imaging of the polymer 3D-printing process. Thermosense: Thermal Infrared Applications XXXVI 9105:910502 Dinwiddie RB, Kunc V, Lindal JM, Post B, Smith RJ, Love L (2014) Infrared imaging of the polymer 3D-printing process. Thermosense: Thermal Infrared Applications XXXVI 9105:910502
64.
Zurück zum Zitat Ahn SH, Montero M, Odell D, Roundy S, Wright PK (2002) Anisotropic material properties of fused deposition modeling ABS. Rapid Prototyp J 8:248–257CrossRef Ahn SH, Montero M, Odell D, Roundy S, Wright PK (2002) Anisotropic material properties of fused deposition modeling ABS. Rapid Prototyp J 8:248–257CrossRef
65.
Zurück zum Zitat Liu Y, Zhang X, Song C, Zhang Y, Fang Y, Yang B, Wang X (2015) An effective surface modification of carbon fiber for improving the interfacial adhesion of polypropylene composites. Mater Des 88:810–819CrossRef Liu Y, Zhang X, Song C, Zhang Y, Fang Y, Yang B, Wang X (2015) An effective surface modification of carbon fiber for improving the interfacial adhesion of polypropylene composites. Mater Des 88:810–819CrossRef
66.
Zurück zum Zitat Yu T, Ren J, Li S, Yuan H, Li Y (2010) Effect of fiber surface-treatments on the properties of poly(lactic acid)/ramie composites. Compos A Appl Sci Manuf 41:499–505CrossRef Yu T, Ren J, Li S, Yuan H, Li Y (2010) Effect of fiber surface-treatments on the properties of poly(lactic acid)/ramie composites. Compos A Appl Sci Manuf 41:499–505CrossRef
67.
Zurück zum Zitat Dong J, Jia C, Wang M, Fang X, Wei H (2017) Improved mechanical properties of carbon fiber-reinforced epoxy composites by growing carbon black on carbon fiber surface. Compos Sci Technol 149:75–80CrossRef Dong J, Jia C, Wang M, Fang X, Wei H (2017) Improved mechanical properties of carbon fiber-reinforced epoxy composites by growing carbon black on carbon fiber surface. Compos Sci Technol 149:75–80CrossRef
68.
Zurück zum Zitat Pathak AK, Borah M, Ashish Gupta T, Yokozeki SR, Dhakate, (2016) Improved mechanical properties of carbon fiber/graphene oxideepoxy hybrid composites. Compos Sci Technol 135:28–38CrossRef Pathak AK, Borah M, Ashish Gupta T, Yokozeki SR, Dhakate, (2016) Improved mechanical properties of carbon fiber/graphene oxideepoxy hybrid composites. Compos Sci Technol 135:28–38CrossRef
69.
Zurück zum Zitat Yang SS, Nasr N, Ong SK, Nee AYC (2017) Designing automotive products for remanufacturing from material selection perspective. J Clean Prod 153:570–579CrossRef Yang SS, Nasr N, Ong SK, Nee AYC (2017) Designing automotive products for remanufacturing from material selection perspective. J Clean Prod 153:570–579CrossRef
70.
Zurück zum Zitat Akadiri PO, Olomolaiye PO, Chinyio EA (2013) Multi-criteria evaluation model for the selection of sustainable materials for building projects. Autom Constr 30:113–125CrossRef Akadiri PO, Olomolaiye PO, Chinyio EA (2013) Multi-criteria evaluation model for the selection of sustainable materials for building projects. Autom Constr 30:113–125CrossRef
71.
Zurück zum Zitat Mousavi-Nasab SH, Sotoudeh-Anvari A (2018) A new multi-criteria decision making approach for sustainable material selection problem: a critical study on rank reversal problem. J Clean Prod 182:466–484CrossRef Mousavi-Nasab SH, Sotoudeh-Anvari A (2018) A new multi-criteria decision making approach for sustainable material selection problem: a critical study on rank reversal problem. J Clean Prod 182:466–484CrossRef
72.
Zurück zum Zitat Zhang H, Wu Y, Wang K, Peng Y, Wang D, Yao S, Wang J (2020) Materials selection of 3D-printed continuous carbon fiber reinforced composites considering multiple criteria. Mater Des 196:109140CrossRef Zhang H, Wu Y, Wang K, Peng Y, Wang D, Yao S, Wang J (2020) Materials selection of 3D-printed continuous carbon fiber reinforced composites considering multiple criteria. Mater Des 196:109140CrossRef
73.
Zurück zum Zitat Wang J, Xie H, Weng Z, Senthil T, Wu L (2016) A novel approach to improve mechanical properties of parts fabricated by fused deposition modeling. Mater Des 105:152–159CrossRef Wang J, Xie H, Weng Z, Senthil T, Wu L (2016) A novel approach to improve mechanical properties of parts fabricated by fused deposition modeling. Mater Des 105:152–159CrossRef
74.
Zurück zum Zitat Mori K-I, Maeno T, Nakagawa Y (2014) Dieless forming of carbon fibre reinforced plastic parts using 3D printer. Procedia Eng 81:1595–1600CrossRef Mori K-I, Maeno T, Nakagawa Y (2014) Dieless forming of carbon fibre reinforced plastic parts using 3D printer. Procedia Eng 81:1595–1600CrossRef
75.
Zurück zum Zitat Wang K, Long H, Chen Y, Baniassadi M, Rao Y, Peng Y (2021) Heat-treatment effects on dimensional stability and mechanical properties of 3D printed continuous carbon fiber-reinforced composites. Compos A Appl Sci Manuf 147:106460CrossRef Wang K, Long H, Chen Y, Baniassadi M, Rao Y, Peng Y (2021) Heat-treatment effects on dimensional stability and mechanical properties of 3D printed continuous carbon fiber-reinforced composites. Compos A Appl Sci Manuf 147:106460CrossRef
76.
Zurück zum Zitat Bhandari S, Lopez-Anido RA, Gardner DJ (2019) Enhancing the interlayer tensile strength of 3D printed short carbon fiber reinforced PETG and PLA composites via annealing. Addit Manuf 30:100922 Bhandari S, Lopez-Anido RA, Gardner DJ (2019) Enhancing the interlayer tensile strength of 3D printed short carbon fiber reinforced PETG and PLA composites via annealing. Addit Manuf 30:100922
77.
Zurück zum Zitat Ming Y, Xin Z, Zhang J, Duan Y, Wang B (2020) Fabrication of continuous glass fiber reinforced dual-cure epoxy composites via UV-assisted fused deposition modeling. Compos Commun 21:100401CrossRef Ming Y, Xin Z, Zhang J, Duan Y, Wang B (2020) Fabrication of continuous glass fiber reinforced dual-cure epoxy composites via UV-assisted fused deposition modeling. Compos Commun 21:100401CrossRef
78.
Zurück zum Zitat Azarov A, Antonov F, Vasil’ev V, Golubev M, Krasovskii D, Razin A, Salov V, Stupnikov VV, Khaziev A (2017) Development of a two-matrix composite material fabricated by 3D printing. Polym Sci Ser D 10(1):87–90CrossRef Azarov A, Antonov F, Vasil’ev V, Golubev M, Krasovskii D, Razin A, Salov V, Stupnikov VV, Khaziev A (2017) Development of a two-matrix composite material fabricated by 3D printing. Polym Sci Ser D 10(1):87–90CrossRef
79.
Zurück zum Zitat AzarovAV AFK, Golubev MV, Khaziev AR, Ushanov SA (2019) Composite 3D printing for the small size unmanned aerial vehicle structure. Compos B Eng 169:157–163CrossRef AzarovAV AFK, Golubev MV, Khaziev AR, Ushanov SA (2019) Composite 3D printing for the small size unmanned aerial vehicle structure. Compos B Eng 169:157–163CrossRef
80.
Zurück zum Zitat Melenka GW, Cheung BKO, Schofield JS, Dawson MR, Carey JP (2016) Evaluation and prediction of the tensile properties of continuous fiber-reinforced 3D printed structures. Compos Struct 153:866–875CrossRef Melenka GW, Cheung BKO, Schofield JS, Dawson MR, Carey JP (2016) Evaluation and prediction of the tensile properties of continuous fiber-reinforced 3D printed structures. Compos Struct 153:866–875CrossRef
81.
Zurück zum Zitat Kregers A, Melbardis YG (1978) Determination of the deformability of three dimensionally reinforced composites by the stiffness averaging method. Mech Compos Mater 14:1–5 Kregers A, Melbardis YG (1978) Determination of the deformability of three dimensionally reinforced composites by the stiffness averaging method. Mech Compos Mater 14:1–5
82.
Zurück zum Zitat Kreger A, Teters G (1980) Use of averaging methods to determine the viscoelastic properties of spatially reinforced composites. Mech Compos Mater 15:377–383CrossRef Kreger A, Teters G (1980) Use of averaging methods to determine the viscoelastic properties of spatially reinforced composites. Mech Compos Mater 15:377–383CrossRef
83.
Zurück zum Zitat Halpin JC, Kardos JL (1976) The Halpin-Tsai equations: a review. Polym Eng Sci 16:5 Halpin JC, Kardos JL (1976) The Halpin-Tsai equations: a review. Polym Eng Sci 16:5
84.
Zurück zum Zitat Scida D, Aboura Z, Benzeggagha M, Bocherens E (1999) A micromechanics model for 3D elasticity and failure of woven-fibre composite materials. Compos Sci Technol 59:505–517CrossRef Scida D, Aboura Z, Benzeggagha M, Bocherens E (1999) A micromechanics model for 3D elasticity and failure of woven-fibre composite materials. Compos Sci Technol 59:505–517CrossRef
85.
Zurück zum Zitat Moumen AE, Tarfaoui M, Lafdi K (2019) Additive manufacturing of polymer composites: Processing and modeling approaches. Compos B Eng 171:166–182CrossRef Moumen AE, Tarfaoui M, Lafdi K (2019) Additive manufacturing of polymer composites: Processing and modeling approaches. Compos B Eng 171:166–182CrossRef
86.
Zurück zum Zitat Ashouri Vajari D, González C, Llorca J, Legarth BN (2014) A numerical study of the influence of microvoids in the transverse mechanical response of unidirectional composites. Compos Sci Technol 97:46–54CrossRef Ashouri Vajari D, González C, Llorca J, Legarth BN (2014) A numerical study of the influence of microvoids in the transverse mechanical response of unidirectional composites. Compos Sci Technol 97:46–54CrossRef
87.
Zurück zum Zitat Rao N, Wei N, Yao S, Wang K, Peng Y (2021) A process-structure-performance modeling for thermoplastic polymers via material extrusion additive manufacturing. Addit Manuf 39:101857 Rao N, Wei N, Yao S, Wang K, Peng Y (2021) A process-structure-performance modeling for thermoplastic polymers via material extrusion additive manufacturing. Addit Manuf 39:101857
88.
Zurück zum Zitat Wang K, Lu Y, Rao Y, Wei N, Ban J, Peng Y (2021) New insights into the synergistic influence of voids and interphase characteristics on effective properties of unidirectional composites. Compos Struct 255:112862CrossRef Wang K, Lu Y, Rao Y, Wei N, Ban J, Peng Y (2021) New insights into the synergistic influence of voids and interphase characteristics on effective properties of unidirectional composites. Compos Struct 255:112862CrossRef
89.
Zurück zum Zitat Domingo-Espin M, Puigoriol-Forcada JM, Garcia-Granada AA, Lluma J, Borros S, Reyes G (2015) Mechanical property characterization and simulation of fused deposition modeling Polycarbonate parts. Mater Des 83:670–677CrossRef Domingo-Espin M, Puigoriol-Forcada JM, Garcia-Granada AA, Lluma J, Borros S, Reyes G (2015) Mechanical property characterization and simulation of fused deposition modeling Polycarbonate parts. Mater Des 83:670–677CrossRef
90.
Zurück zum Zitat Malakhov AV, Polilov AN (2016) Design of composite structures reinforced curvilinear fibres using FEM. Compos Appl Sci Manuf 87:23–28CrossRef Malakhov AV, Polilov AN (2016) Design of composite structures reinforced curvilinear fibres using FEM. Compos Appl Sci Manuf 87:23–28CrossRef
91.
Zurück zum Zitat Passos AG, Luersen MA, Steeves CA (2016) Optimal curved fibre orientations of a composite panel with cutout for improved buckling load using the Efficient Global Optimization algorithm. Eng Optim 49(8):1354–1372CrossRef Passos AG, Luersen MA, Steeves CA (2016) Optimal curved fibre orientations of a composite panel with cutout for improved buckling load using the Efficient Global Optimization algorithm. Eng Optim 49(8):1354–1372CrossRef
92.
Zurück zum Zitat Zhang H, Yang D, Sheng Y (2018) Performance-driven 3D printing of continuous curved carbon fibre reinforced polymer composites: A preliminary numerical study. Compos B Eng 151:256–264CrossRef Zhang H, Yang D, Sheng Y (2018) Performance-driven 3D printing of continuous curved carbon fibre reinforced polymer composites: A preliminary numerical study. Compos B Eng 151:256–264CrossRef
93.
Zurück zum Zitat Sága M, Majko J, Handrik M, Vaško M, Sapietová A (2020) Proposal of Physical Model for Damage Simulation of Composite Structures Produced by 3D Printing. Acta Phys Pol A 138(2):245–248CrossRef Sága M, Majko J, Handrik M, Vaško M, Sapietová A (2020) Proposal of Physical Model for Damage Simulation of Composite Structures Produced by 3D Printing. Acta Phys Pol A 138(2):245–248CrossRef
94.
Zurück zum Zitat El Moumen A, Tarfaoui M, Lafdi K (2018) Computational homogenization of mechanical properties for laminate composites reinforced with thin flm made of carbon nanotubes. Appl Compos Mater 25:569–588CrossRef El Moumen A, Tarfaoui M, Lafdi K (2018) Computational homogenization of mechanical properties for laminate composites reinforced with thin flm made of carbon nanotubes. Appl Compos Mater 25:569–588CrossRef
95.
Zurück zum Zitat Dong C (2016) Effects of process-induced voids on the properties of fibre reinforced composites. J Mater Sci Technol 32(7):597–604CrossRef Dong C (2016) Effects of process-induced voids on the properties of fibre reinforced composites. J Mater Sci Technol 32(7):597–604CrossRef
96.
Zurück zum Zitat Somireddy M, Czekanski A (2021) Computational modeling of constitutive behaviour of 3D printed composite structures. J Mater Res Technol 11:1710–1718CrossRef Somireddy M, Czekanski A (2021) Computational modeling of constitutive behaviour of 3D printed composite structures. J Mater Res Technol 11:1710–1718CrossRef
97.
Zurück zum Zitat Drach B, Tsukrov I, Gross T, Dietrich S, Weidenmann K, Piat R (2011) Numerical modeling of carbon/carbon composites with nanotextured matrix and 3D pores of irregular shapes. Int J Solids Struct 48(18):2447–2457CrossRef Drach B, Tsukrov I, Gross T, Dietrich S, Weidenmann K, Piat R (2011) Numerical modeling of carbon/carbon composites with nanotextured matrix and 3D pores of irregular shapes. Int J Solids Struct 48(18):2447–2457CrossRef
98.
Zurück zum Zitat Hyde A, He J, Cui X, Lua J, Liu L (2020) Effects of microvoids on strength of unidirectional fiber-reinforced composite materials. Compos B Eng 187:1359–1368CrossRef Hyde A, He J, Cui X, Lua J, Liu L (2020) Effects of microvoids on strength of unidirectional fiber-reinforced composite materials. Compos B Eng 187:1359–1368CrossRef
99.
Zurück zum Zitat Kwon YW, Allen DH, Talreja R (2008) Multiscale Modelling and Simulation of Composite Materials and Structures. Springer, US, pp 317–357 Kwon YW, Allen DH, Talreja R (2008) Multiscale Modelling and Simulation of Composite Materials and Structures. Springer, US, pp 317–357
100.
Zurück zum Zitat Seman SAHA, Ahmad R, Aki HM (2019) Meso-scale modelling and failure analysis of kenaf fiber reinforced composites under high strain rate compression loading. Compos B Eng 163:403–412CrossRef Seman SAHA, Ahmad R, Aki HM (2019) Meso-scale modelling and failure analysis of kenaf fiber reinforced composites under high strain rate compression loading. Compos B Eng 163:403–412CrossRef
101.
Zurück zum Zitat Bertevas E, Férec J, Khoo B, Ausias G, Phan-Thien N (2018) Smoothed particle hydrodynamics (SPH) modeling of fiber orientation in a 3D printing process. Physical Fluids 30:103103CrossRef Bertevas E, Férec J, Khoo B, Ausias G, Phan-Thien N (2018) Smoothed particle hydrodynamics (SPH) modeling of fiber orientation in a 3D printing process. Physical Fluids 30:103103CrossRef
102.
Zurück zum Zitat Yang D, Wu K, Wan L, Sheng Y (2017) A Particle Element Approach for Modelling the 3D Printing Process of Fibre Reinforced Polymer Composites. J Manuf Mater Process 1(1):10 Yang D, Wu K, Wan L, Sheng Y (2017) A Particle Element Approach for Modelling the 3D Printing Process of Fibre Reinforced Polymer Composites. J Manuf Mater Process 1(1):10
Metadaten
Titel
Interfacial behaviors of continuous carbon fiber reinforced polymers manufactured by fused filament fabrication: A review and prospect
verfasst von
Yiyun Wu
Kui Wang
Victor Neto
Yong Peng
Robertt Valente
Said Ahzi
Publikationsdatum
01.05.2022
Verlag
Springer Paris
Erschienen in
International Journal of Material Forming / Ausgabe 3/2022
Print ISSN: 1960-6206
Elektronische ISSN: 1960-6214
DOI
https://doi.org/10.1007/s12289-022-01667-7

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.