Skip to main content

2013 | OriginalPaper | Buchkapitel

27. Large Scale Photo-reactors for Environmentally Benign Solar Hydrogen Production

verfasst von : Ehsan Baniasadi, Ibrahim Dincer, Greg F. Naterer

Erschienen in: Causes, Impacts and Solutions to Global Warming

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this entry, photo-reactors for catalytic solar hydrogen production are introduced and explained. To be an economical environmentally benign and sustainable pathway, hydrogen should be produced from a renewable energy source, i.e., solar energy. Solar driven water splitting combines several attractive features for sustainable energy utilization. The conversion of solar energy to a type of storable energy has crucial importance. In the first part of the entry, background information is presented regarding different photo-reactor configurations for water dissociation with light energy to generate hydrogen. The photo-electrochemistry of water splitting is discussed, as well as photo-catalytic reaction mechanisms. The design and scale-up of photo-reactors for photo-catalytic water splitting are explained by classification of light-based hydrogen production systems. At the end, a new photo-catalytic energy conversion system is analyzed for continuous production of hydrogen at a pilot-plant scale. Two methods of photo-catalytic water splitting and solar methanol steam reforming are investigated as two potential solar-based methods of catalytic hydrogen production. The exergy efficiency, exergy destruction, environmental impact, and sustainability index are investigated for these systems. The light intensity is found to be one of the key parameters in design and optimization of the photo-reactors, in conjunction with light absorptivity of the catalyst.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Lewis NS, Nocera DG (2007) Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci U S A 103:15729–15735CrossRef Lewis NS, Nocera DG (2007) Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci U S A 103:15729–15735CrossRef
2.
Zurück zum Zitat Turner JA (2004) Sustainable hydrogen production. Science 305:972–974CrossRef Turner JA (2004) Sustainable hydrogen production. Science 305:972–974CrossRef
3.
Zurück zum Zitat Dincer I, Zamfirescu C (2011) Sustainable energy and applications. Springer, New York Dincer I, Zamfirescu C (2011) Sustainable energy and applications. Springer, New York
4.
Zurück zum Zitat Rajeshwar K, McConnell RD, Licht S (2008) Solar hydrogen generation: toward a renewable energy future. Springer, New YorkCrossRef Rajeshwar K, McConnell RD, Licht S (2008) Solar hydrogen generation: toward a renewable energy future. Springer, New YorkCrossRef
6.
Zurück zum Zitat Plunkett JR (2011) Energy information administration, international energy outlook and projections. Nova Science Publishers, New York Plunkett JR (2011) Energy information administration, international energy outlook and projections. Nova Science Publishers, New York
7.
Zurück zum Zitat Crabtree RH (2010) Energy production and storage: inorganic chemical strategies for a warming world. Wiley, United Kingdom Crabtree RH (2010) Energy production and storage: inorganic chemical strategies for a warming world. Wiley, United Kingdom
8.
Zurück zum Zitat Vayssieres L (2010) Solar hydrogen and nanotechnology. Wiley, New YorkCrossRef Vayssieres L (2010) Solar hydrogen and nanotechnology. Wiley, New YorkCrossRef
9.
Zurück zum Zitat Navarro RM, Valle F, Villoria de la Mano JA (2009) Photocatalytic water splitting under visible light: concept and catalysts development. Adv Chem Eng Photocatal Technol 36:111–143CrossRef Navarro RM, Valle F, Villoria de la Mano JA (2009) Photocatalytic water splitting under visible light: concept and catalysts development. Adv Chem Eng Photocatal Technol 36:111–143CrossRef
10.
Zurück zum Zitat Akkerman I, Janssen M, Rocha J, Wijffels RH (2002) Photobiological hydrogen production: photochemical efficiency and bioreactor design. Int J Hydrogen Energ 27(11–12):1195–1208CrossRef Akkerman I, Janssen M, Rocha J, Wijffels RH (2002) Photobiological hydrogen production: photochemical efficiency and bioreactor design. Int J Hydrogen Energ 27(11–12):1195–1208CrossRef
11.
Zurück zum Zitat Funk JE, Reinstrom RM (1967) Energy requirements in production of hydrogen from water. Ind Eng Chem Process Des Dev 5:336–342CrossRef Funk JE, Reinstrom RM (1967) Energy requirements in production of hydrogen from water. Ind Eng Chem Process Des Dev 5:336–342CrossRef
12.
Zurück zum Zitat Naterer GF, Suppiah S, Stolberg L, Lewis M, Wang Z, Daguppati V, Gabriel K, Dincer I, Rosen MA, Spekkens P, Lvov SN, Fowler F, Tremaine P, Mostagimi J, Easton EB, Trevani L, Rizvi G, Ikeda BM, Kaye MH, Lu L, Pioro I, Smith WR, Seknik E, Jiang J, Avsec J (2010) Canada’s program on nuclear hydrogen production and the thermochemical Cu-Cl cycle. Int J Hydrogen Energ 35:10905–10926CrossRef Naterer GF, Suppiah S, Stolberg L, Lewis M, Wang Z, Daguppati V, Gabriel K, Dincer I, Rosen MA, Spekkens P, Lvov SN, Fowler F, Tremaine P, Mostagimi J, Easton EB, Trevani L, Rizvi G, Ikeda BM, Kaye MH, Lu L, Pioro I, Smith WR, Seknik E, Jiang J, Avsec J (2010) Canada’s program on nuclear hydrogen production and the thermochemical Cu-Cl cycle. Int J Hydrogen Energ 35:10905–10926CrossRef
13.
Zurück zum Zitat Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38:253–278CrossRef Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38:253–278CrossRef
14.
Zurück zum Zitat Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38CrossRef Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38CrossRef
15.
Zurück zum Zitat Ni M, Leung MKH, Leung DYC, Sumathy K (2007) A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sustain Energy Rev 11:401–425CrossRef Ni M, Leung MKH, Leung DYC, Sumathy K (2007) A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sustain Energy Rev 11:401–425CrossRef
16.
Zurück zum Zitat Matsuoka M, Kitano M, Takeuchi M, Tsujimaru K, Anpo M, Thomas JM (2007) Photocatalysis for new energy production: recent advances in photocatalytic water splitting reactions for hydrogen production. Catal Today 122:51–61CrossRef Matsuoka M, Kitano M, Takeuchi M, Tsujimaru K, Anpo M, Thomas JM (2007) Photocatalysis for new energy production: recent advances in photocatalytic water splitting reactions for hydrogen production. Catal Today 122:51–61CrossRef
17.
Zurück zum Zitat Archer MD, Bolton JR (1990) Requirements for ideal performance of photochemical and photovoltaic solar-energy converters. J Phys Chem 94:8028–8036CrossRef Archer MD, Bolton JR (1990) Requirements for ideal performance of photochemical and photovoltaic solar-energy converters. J Phys Chem 94:8028–8036CrossRef
18.
Zurück zum Zitat Inoue T, Watanabe T, Fujishima A, Honda K, Kohayakawa K (1977) Suppression of surface dissolution of CDS photoanode by reducing agents. J Electrochem Soc 124(5):719–722CrossRef Inoue T, Watanabe T, Fujishima A, Honda K, Kohayakawa K (1977) Suppression of surface dissolution of CDS photoanode by reducing agents. J Electrochem Soc 124(5):719–722CrossRef
19.
Zurück zum Zitat Serpone N, Pelizzetti E (1989) Photocatalysis. Wiley, New York Serpone N, Pelizzetti E (1989) Photocatalysis. Wiley, New York
20.
Zurück zum Zitat Goswami D (1997) A review of engineering developments of aqueous phase solar photocatalytic detoxification and disinfection processes. J Solar Energy Eng 119:101–107CrossRef Goswami D (1997) A review of engineering developments of aqueous phase solar photocatalytic detoxification and disinfection processes. J Solar Energy Eng 119:101–107CrossRef
21.
Zurück zum Zitat Roselin LS, Rajarajeswari GR, Selvin R, Sadasivam V, Sivasankar B, Rengaraj K (2002) Sunlight/ZnO-mediated photocatalytic degradation of reactive red 22 using thin film flat bed flow photoreactor. Solar Energy 73:281–285CrossRef Roselin LS, Rajarajeswari GR, Selvin R, Sadasivam V, Sivasankar B, Rengaraj K (2002) Sunlight/ZnO-mediated photocatalytic degradation of reactive red 22 using thin film flat bed flow photoreactor. Solar Energy 73:281–285CrossRef
22.
Zurück zum Zitat Turchi C, Ollis D (1990) Photocatalytic degradation of organic water contaminants mechanisms involving hydroxyl radical attack. J Catal 122:178–192CrossRef Turchi C, Ollis D (1990) Photocatalytic degradation of organic water contaminants mechanisms involving hydroxyl radical attack. J Catal 122:178–192CrossRef
23.
Zurück zum Zitat Braham RJ, Harris AT (2009) Review of major design and scale-up considerations for solar photocatalytic reactors. Ind Eng Chem Res 48:8890–8905CrossRef Braham RJ, Harris AT (2009) Review of major design and scale-up considerations for solar photocatalytic reactors. Ind Eng Chem Res 48:8890–8905CrossRef
24.
Zurück zum Zitat Freudenhammer H, Bahnemann D, Bousselmi L, Geissen SU, Ghrabi A, Saleh F, Si-Salah A, Siemon U, Vogelpohl A (1997) Detoxification and recycling of wastewater by solar-catalytic treatment. Water Sci Technol 35:149–156CrossRef Freudenhammer H, Bahnemann D, Bousselmi L, Geissen SU, Ghrabi A, Saleh F, Si-Salah A, Siemon U, Vogelpohl A (1997) Detoxification and recycling of wastewater by solar-catalytic treatment. Water Sci Technol 35:149–156CrossRef
25.
Zurück zum Zitat Sun RD, Nakajima A (2000) TiO2-coated optical fiber bundles used as a photocatalytic filter for decomposition of gaseous organic compounds. J Photochem Photobiol A Chem 136:111–116CrossRef Sun RD, Nakajima A (2000) TiO2-coated optical fiber bundles used as a photocatalytic filter for decomposition of gaseous organic compounds. J Photochem Photobiol A Chem 136:111–116CrossRef
26.
Zurück zum Zitat Peill N, Hoffman M (1997) Solar-powered photocatalytic fiber-optic cable reactor for waste stream remediation. J Solar Energy Eng 119:229–236CrossRef Peill N, Hoffman M (1997) Solar-powered photocatalytic fiber-optic cable reactor for waste stream remediation. J Solar Energy Eng 119:229–236CrossRef
27.
Zurück zum Zitat Pozzo RL, Brandi RJ, Giombi JL, Cassano AE, Baltans MA (2007) Fluidized bed photoreactors using composites of titania CVD-coated onto quartz sand as photocatalyst: Assessment of photochemical efficiency. Chem Eng J 118(3):153–159CrossRef Pozzo RL, Brandi RJ, Giombi JL, Cassano AE, Baltans MA (2007) Fluidized bed photoreactors using composites of titania CVD-coated onto quartz sand as photocatalyst: Assessment of photochemical efficiency. Chem Eng J 118(3):153–159CrossRef
28.
Zurück zum Zitat DufourJ SDP, Galvez JL, Morenoa J, Garcia C (2009) Life cycle assessment of processes for hydrogen production; environmental feasibility and reduction of greenhouse gases emissions. Int J Hydrogen Energ 34:1370–1376CrossRef DufourJ SDP, Galvez JL, Morenoa J, Garcia C (2009) Life cycle assessment of processes for hydrogen production; environmental feasibility and reduction of greenhouse gases emissions. Int J Hydrogen Energ 34:1370–1376CrossRef
29.
Zurück zum Zitat Dincer I, Rosen MA (1999) The intimate connection between exergy and the environment. In: Bejan A, Mamut E (eds) Thermodynamic optimization of complex energy systems. Kluwer Academic, The Netherlands Dincer I, Rosen MA (1999) The intimate connection between exergy and the environment. In: Bejan A, Mamut E (eds) Thermodynamic optimization of complex energy systems. Kluwer Academic, The Netherlands
30.
Zurück zum Zitat Dincer I (2007) Environmental and sustainability aspects of hydrogen and fuel cell systems. Int J Energy Res 31:29–55CrossRef Dincer I (2007) Environmental and sustainability aspects of hydrogen and fuel cell systems. Int J Energy Res 31:29–55CrossRef
31.
Zurück zum Zitat Malato S, Blanco J, Campos A, Caceres J, Guillard C, Herrmann JM et al (2003) Effect of operating parameters on the testing of new industrial titania catalysts at solar pilot plant scale. Appl Catal B 42(4):349–357CrossRef Malato S, Blanco J, Campos A, Caceres J, Guillard C, Herrmann JM et al (2003) Effect of operating parameters on the testing of new industrial titania catalysts at solar pilot plant scale. Appl Catal B 42(4):349–357CrossRef
32.
Zurück zum Zitat Dincer I, Rosen MA (2007) Energy, environment, and sustainable development. Elsevier, Oxford Dincer I, Rosen MA (2007) Energy, environment, and sustainable development. Elsevier, Oxford
33.
Zurück zum Zitat Liu Q, Hong H, Yuan J, Jin H, Cai R (2009) Experimental investigation of hydrogen production integrated methanol steam reforming with middle-temperature solar thermal energy. Appl Energy 86:155–162CrossRef Liu Q, Hong H, Yuan J, Jin H, Cai R (2009) Experimental investigation of hydrogen production integrated methanol steam reforming with middle-temperature solar thermal energy. Appl Energy 86:155–162CrossRef
34.
Zurück zum Zitat Bejan A (1997) Advanced engineering thermodynamics. Wiley, New York Bejan A (1997) Advanced engineering thermodynamics. Wiley, New York
35.
Zurück zum Zitat Petela R (1964) Exergy of heat radiation. Trans ASME J Heat Transf 2:187–192CrossRef Petela R (1964) Exergy of heat radiation. Trans ASME J Heat Transf 2:187–192CrossRef
36.
Zurück zum Zitat Rosen MA, Dincer I, Kanoglu M (2008) Role of exergy in increasing efficiency and sustainability and reducing environmental impact. Energy Policy 36:128–137CrossRef Rosen MA, Dincer I, Kanoglu M (2008) Role of exergy in increasing efficiency and sustainability and reducing environmental impact. Energy Policy 36:128–137CrossRef
37.
Zurück zum Zitat Dincer I, Naterer GF (2010) Assessment of exergy efficiency and Sustainability Index of an air water heat pump. Int J Exergy 7:37–50CrossRef Dincer I, Naterer GF (2010) Assessment of exergy efficiency and Sustainability Index of an air water heat pump. Int J Exergy 7:37–50CrossRef
Metadaten
Titel
Large Scale Photo-reactors for Environmentally Benign Solar Hydrogen Production
verfasst von
Ehsan Baniasadi
Ibrahim Dincer
Greg F. Naterer
Copyright-Jahr
2013
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4614-7588-0_27