Skip to main content

Tipp

Weitere Kapitel dieses Buchs durch Wischen aufrufen

2018 | OriginalPaper | Buchkapitel

11. Mechanical Metamaterials and Metadevices

verfasst von : Xingcun Colin Tong

Erschienen in: Functional Metamaterials and Metadevices

Verlag: Springer International Publishing

share
TEILEN

Abstract

Building upon the success of electromagnetic and acoustic metamaterials, mechanical metamaterials have been developed for obtaining extraordinary or extreme elasticity tensors and mass-density tensors to thereby mold static stress fields or the flow of longitudinal/transverse elastic vibrations in unprecedented ways. With the advances in additive manufacturing techniques that have enabled fabricating materials with arbitrarily complex micro-/nano-architectures, the rationally designed micro-/nano-architecture of mechanical metamaterials gives rise to unprecedented or rare mechanical properties that could be exploited to create advanced materials with novel functionalities. For instance, extremal metamaterials are extremely stiff in certain modes of deformation, while they are extremely soft in other modes of deformation; proper micro- and nano-architectural control can allow for unique material performance such as ultra-lightweight, high stiffness and high strength materials, negative Poisson’s ratio, negative stiffness, and negative thermal expansion coefficient. This chapter will give a brief review focusing on recent advances and remaining challenges in this emerging field. Examples are auxetic, ultra-lightweight, negative mass density, negative modulus, penta-mode, dilational, anisotropic mass density, origami, nonlinear, bistable, reprogrammable, and seismic shielding mechanical metamaterials.
Literatur
Zurück zum Zitat Alderson A, Rasburn J, Ameer-Beg S, Mullarkey PG, Perrie W, Evans KE (2000) An auxetic filter: a tuneable filter displaying enhanced size selectivity or defouling properties. Ind Eng Chem Res 39(3):654–665 CrossRef Alderson A, Rasburn J, Ameer-Beg S, Mullarkey PG, Perrie W, Evans KE (2000) An auxetic filter: a tuneable filter displaying enhanced size selectivity or defouling properties. Ind Eng Chem Res 39(3):654–665 CrossRef
Zurück zum Zitat Babaee S, Shim J, Weaver JC, Chen ER, Patel N, Bertoldi K (2013) 3D soft metamaterials with negative Poisson’s ratio. Adv Mater 2013:1–6. doi:10.1002/adma.201301986 Babaee S, Shim J, Weaver JC, Chen ER, Patel N, Bertoldi K (2013) 3D soft metamaterials with negative Poisson’s ratio. Adv Mater 2013:1–6. doi:10.1002/adma.201301986
Zurück zum Zitat Bückmann T, Schittny R, Thiel M, Kadic M, Milton GW, Wegener M (2014) On three-dimensional dilational elastic metamaterials. New J Phys 16:033032 CrossRef Bückmann T, Schittny R, Thiel M, Kadic M, Milton GW, Wegener M (2014) On three-dimensional dilational elastic metamaterials. New J Phys 16:033032 CrossRef
Zurück zum Zitat Caddock B, Evans K (1989) Microporous materials with negative Poisson’s ratios – I. Microstructure and mechanical properties. J Phys D Appl Phys 22(12):1877 CrossRef Caddock B, Evans K (1989) Microporous materials with negative Poisson’s ratios – I. Microstructure and mechanical properties. J Phys D Appl Phys 22(12):1877 CrossRef
Zurück zum Zitat Choi J, Lakes R (1995) Analysis of elastic modulus of conventional foams and of re-entrant foam materials with a negative Poisson’s ratio. Int J Mech Sci 37(1):51–59 CrossRef Choi J, Lakes R (1995) Analysis of elastic modulus of conventional foams and of re-entrant foam materials with a negative Poisson’s ratio. Int J Mech Sci 37(1):51–59 CrossRef
Zurück zum Zitat Christensen J, Kadic M, Wegener M, Kraft O, Wegener M (2015) Vibrant times for mechanical metamaterials. MRS Commun 5:453 CrossRef Christensen J, Kadic M, Wegener M, Kraft O, Wegener M (2015) Vibrant times for mechanical metamaterials. MRS Commun 5:453 CrossRef
Zurück zum Zitat Grima JN, Gatt R, Alderson A, Evans K (2005) On the potential of connected stars as auxetic systems. Mol Simul 31(13):925–935 CrossRef Grima JN, Gatt R, Alderson A, Evans K (2005) On the potential of connected stars as auxetic systems. Mol Simul 31(13):925–935 CrossRef
Zurück zum Zitat Grima JN, Manicaro E, Attard D (2011) Auxetic behaviour from connected different-sized squares and rectangles. Proc R Soc A 467:439–458 CrossRef Grima JN, Manicaro E, Attard D (2011) Auxetic behaviour from connected different-sized squares and rectangles. Proc R Soc A 467:439–458 CrossRef
Zurück zum Zitat Ha CS, Plesha ME, Lakes RS (2016) Chiral three-dimensional lattices with tunable Poisson’s ratio. Smart Mater Struct 25(5):054005 CrossRef Ha CS, Plesha ME, Lakes RS (2016) Chiral three-dimensional lattices with tunable Poisson’s ratio. Smart Mater Struct 25(5):054005 CrossRef
Zurück zum Zitat Hopkins JB, Culpepper ML (2010a) Synthesis of multi-degree of freedom, parallel flexure system concepts via freedom and constraint topology (FACT) – part I: principles. Precis Eng 34(2):259–270 CrossRef Hopkins JB, Culpepper ML (2010a) Synthesis of multi-degree of freedom, parallel flexure system concepts via freedom and constraint topology (FACT) – part I: principles. Precis Eng 34(2):259–270 CrossRef
Zurück zum Zitat Hopkins JB, Culpepper ML (2010b) Synthesis of multi-degree of freedom, parallel flexure system concepts via freedom and constraint topology (FACT)-part II: practice. Precis Eng 34(2):271–278 CrossRef Hopkins JB, Culpepper ML (2010b) Synthesis of multi-degree of freedom, parallel flexure system concepts via freedom and constraint topology (FACT)-part II: practice. Precis Eng 34(2):271–278 CrossRef
Zurück zum Zitat Hou X, Silberschmidt VV (2015) Metamaterials with negative poisson’s ratio: a review of mechanical properties and deformation mechanisms. In: Silberschmidt VV, Matveenko VP (eds) Mechanics of advanced materials -analysis of properties and performance. Springer International Publishing, Switzerland pp 155–179 Hou X, Silberschmidt VV (2015) Metamaterials with negative poisson’s ratio: a review of mechanical properties and deformation mechanisms. In: Silberschmidt VV, Matveenko VP (eds) Mechanics of advanced materials -analysis of properties and performance. Springer International Publishing, Switzerland pp 155–179
Zurück zum Zitat Janbaz S, Weinans H, Zadpoor AA (2016) Geometry-based control of instability patterns in cellular soft matter. RSC Adv 6:20431–20436 CrossRef Janbaz S, Weinans H, Zadpoor AA (2016) Geometry-based control of instability patterns in cellular soft matter. RSC Adv 6:20431–20436 CrossRef
Zurück zum Zitat Kolken HMA, Zadpoor AA (2017) Auxetic mechanical metamaterials. RSC Adv 7:5111–5129 CrossRef Kolken HMA, Zadpoor AA (2017) Auxetic mechanical metamaterials. RSC Adv 7:5111–5129 CrossRef
Zurück zum Zitat Larsen UD, Signund O, Bouwsta S (1997) Design and fabrication of compliant micromechanisms and structures with negative Poisson’s ratio. J Microelectromech Syst 6(2):99–106 CrossRef Larsen UD, Signund O, Bouwsta S (1997) Design and fabrication of compliant micromechanisms and structures with negative Poisson’s ratio. J Microelectromech Syst 6(2):99–106 CrossRef
Zurück zum Zitat Lehman J, Lakes R (2013) Stiff lattices with zero thermal expansion and enhanced stiffness via rib cross section optimization. Int J Mech Mater Des 9:213–225 CrossRef Lehman J, Lakes R (2013) Stiff lattices with zero thermal expansion and enhanced stiffness via rib cross section optimization. Int J Mech Mater Des 9:213–225 CrossRef
Zurück zum Zitat Lu X, Hu G (2016) Elastic metamaterials making use of chirality: a review. J Mech Eng 62(7–8):403–418 CrossRef Lu X, Hu G (2016) Elastic metamaterials making use of chirality: a review. J Mech Eng 62(7–8):403–418 CrossRef
Zurück zum Zitat Meza LR, Das S, Greer JR (2014) Strong, lightweight, and recoverable three-dimensional ceramic nanolattices. Science 345:1322–1326 CrossRef Meza LR, Das S, Greer JR (2014) Strong, lightweight, and recoverable three-dimensional ceramic nanolattices. Science 345:1322–1326 CrossRef
Zurück zum Zitat Miller W, Hook P, Smith CW, Wang X, Evans KE (2009) The manufacture and characterisation of a novel, low modulus, negative Poisson’s ratio composite. Compos Sci Technol 69(5):651–655 CrossRef Miller W, Hook P, Smith CW, Wang X, Evans KE (2009) The manufacture and characterisation of a novel, low modulus, negative Poisson’s ratio composite. Compos Sci Technol 69(5):651–655 CrossRef
Zurück zum Zitat Milton GW (2013) Complete characterization of the macroscopic deformations of periodic unimode metamaterials of rigid bars and pivots. J Mech Phys Solids 61:1543–1560 CrossRef Milton GW (2013) Complete characterization of the macroscopic deformations of periodic unimode metamaterials of rigid bars and pivots. J Mech Phys Solids 61:1543–1560 CrossRef
Zurück zum Zitat Mousanezhad D, Babaee S, Ebrahimi H, Ghosh R, Hamouda AS, Bertoldi K, Ashkan V (2015) Hierarchical honeycomb auxetic metamaterials. Sci Rep 5:18306 CrossRef Mousanezhad D, Babaee S, Ebrahimi H, Ghosh R, Hamouda AS, Bertoldi K, Ashkan V (2015) Hierarchical honeycomb auxetic metamaterials. Sci Rep 5:18306 CrossRef
Zurück zum Zitat Schenk M, Guest SD (2013) Geometry of Miura-folded metamaterials. Proc Natl Acad Sci U S A 110:3276–3281 CrossRef Schenk M, Guest SD (2013) Geometry of Miura-folded metamaterials. Proc Natl Acad Sci U S A 110:3276–3281 CrossRef
Zurück zum Zitat Smith CW, Grima J, Evans K (2000) A novel mechanism for generating auxetic behavior in reticulated foams: missing rib foam model. Acta Mater 48(17):4349–4356 CrossRef Smith CW, Grima J, Evans K (2000) A novel mechanism for generating auxetic behavior in reticulated foams: missing rib foam model. Acta Mater 48(17):4349–4356 CrossRef
Zurück zum Zitat Spadaccini C (2015) Mechanical metamaterials: design, fabrication, and performance. In: Frontiers of engineering: reports on leading-edge engineering from the 2015 symposium. National Academies Press, Washington pp 85–98. http://​www.​nap.​edu/​21825 Spadaccini C (2015) Mechanical metamaterials: design, fabrication, and performance. In: Frontiers of engineering: reports on leading-edge engineering from the 2015 symposium. National Academies Press, Washington pp 85–98. http://​www.​nap.​edu/​21825
Zurück zum Zitat Xu H, Pasini D (2016) Structurally efficient three-dimensional metamaterials with controllable thermal expansion. Sci Rep 6(34924):2016. doi:10.1038/srep34924 Xu H, Pasini D (2016) Structurally efficient three-dimensional metamaterials with controllable thermal expansion. Sci Rep 6(34924):2016. doi:10.1038/srep34924
Zurück zum Zitat Zadpoor AA (2016) Mechanical meta-materials. Mater Horiz 3:371–381 CrossRef Zadpoor AA (2016) Mechanical meta-materials. Mater Horiz 3:371–381 CrossRef
Zurück zum Zitat Zheng X, Lee H, Weisgraber TH, Shusteff M, DeOtte J, Duoss EB et al (2014) Ultralight, ultrastiff mechanical metamaterials. Science 344:1373–1377 CrossRef Zheng X, Lee H, Weisgraber TH, Shusteff M, DeOtte J, Duoss EB et al (2014) Ultralight, ultrastiff mechanical metamaterials. Science 344:1373–1377 CrossRef
Metadaten
Titel
Mechanical Metamaterials and Metadevices
verfasst von
Xingcun Colin Tong
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-66044-8_11