Skip to main content

Tipp

Weitere Kapitel dieses Buchs durch Wischen aufrufen

2012 | OriginalPaper | Buchkapitel

5. Membrane Technology

verfasst von : Prof. Jennifer Wilcox

Erschienen in: Carbon Capture

Verlag: Springer New York

Abstract

Membrane separation processes have many advantages over absorption and adsorption processes, some of which include the following: no regeneration, ease of integration into a power plant, process continuity, space efficiency, and absence of a phase change, which can lead to increases in efficiency. Membrane applications, however, require a sufficient driving force for effective separation of a more permeable species. In postcombustion capture of CO2 for a traditional coal-fired or natural gas-fired power plant this is a challenge due to the somewhat somewhat low concentration of CO2 in the flue gases of these processes. This is in the case that CO2 is the selective component for separation from the gas mixture. For membrane technology to be applicable for these somewhat dilute systems, either the CO2 concentration in the flue gas would have to be increased or the selective component would have to be the dominant species (i.e., N2) in the gas mixture.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
For nonideal gases, the driving force is proportional to the fugacity difference across the membrane for a given gas species permeating the membrane.
 
2
Multiply by 3.348 × 10 − 19 to convert from Barrer to (kmol m)/(m2sPa).
 
3
For natural gas purification, the ideal separation factor for CO2/CH4 is ~ 20, and reduced to ~ 15 at high feed pressure; for N2 production from air, the ideal separation factor is ~ 6–8, with the residue stream (N2) as the product.
 
4
Based upon DOE target goals of 90% capture
 
Literatur
1.
Zurück zum Zitat Richard W Baker, Personal Communication, Membrane Research Technology, Palo Alto, CA, 2011 Richard W Baker, Personal Communication, Membrane Research Technology, Palo Alto, CA, 2011
2.
Zurück zum Zitat J. Membrane Sci., 320(1–2), Robeson LM The upper bound revisited, 390–400, Copyright (2008) J. Membrane Sci., 320(1–2), Robeson LM The upper bound revisited, 390–400, Copyright (2008)
3.
Zurück zum Zitat Ho WS, Sirkar KK Membrane handbook. Van Hostrand Reinhold: New York, 1992; p 3–101 CrossRef Ho WS, Sirkar KK Membrane handbook. Van Hostrand Reinhold: New York, 1992; p 3–101 CrossRef
4.
Zurück zum Zitat Baker, R., Membrane Technology and Applications, 2nd ed. (2004) Baker, R., Membrane Technology and Applications, 2nd ed. (2004)
5.
Zurück zum Zitat Rackley, S. A., Membrane Separation Systems, 171–172, Copyright Elsevier (2010) Rackley, S. A., Membrane Separation Systems, 171–172, Copyright Elsevier (2010)
6.
Zurück zum Zitat Springer Science + Business Media B.V. Springer and Van Hostrand Reinhold, Membrane Handbook, 1992, Ho WS Sirkar, K.K., 64–66 Springer Science + Business Media B.V. Springer and Van Hostrand Reinhold, Membrane Handbook, 1992, Ho WS Sirkar, K.K., 64–66
7.
Zurück zum Zitat Seader JD, Henley EJ Separation Process Principles (2006) John Wiley & Sons Seader JD, Henley EJ Separation Process Principles (2006) John Wiley & Sons
8.
Zurück zum Zitat Industrial Gas Separations, Chapter 3, ACS Symposium Series Chern RT, Koros WJ, Sanders ES, Chen SH, Hopfenberg HB V223. American Chemical Society, pp. 47–73 (Copyright 1983) Industrial Gas Separations, Chapter 3, ACS Symposium Series Chern RT, Koros WJ, Sanders ES, Chen SH, Hopfenberg HB V223. American Chemical Society, pp. 47–73 (Copyright 1983)
9.
Zurück zum Zitat J Membrane Sci, Robeson LM Correlation of separation factor versus permeability forpolymeric membranes, 165–185 J Membrane Sci, Robeson LM Correlation of separation factor versus permeability forpolymeric membranes, 165–185
10.
Zurück zum Zitat Wilcox J (2011) Nitrogen-Permeable membranes and uses thereof. U.S. Patent 2011/0182797, Stanford University, Stanford, CA Wilcox J (2011) Nitrogen-Permeable membranes and uses thereof. U.S. Patent 2011/0182797, Stanford University, Stanford, CA
11.
Zurück zum Zitat Baker RW (2004) Membrane technology and applications, 2nd edn. John Wiley & Sons, Inc., Chichester CrossRef Baker RW (2004) Membrane technology and applications, 2nd edn. John Wiley & Sons, Inc., Chichester CrossRef
12.
Zurück zum Zitat McCabe WL, Smith JC, Harriott P (2005) Unit Operations of Chemical Engineering, 7th edn. McGraw-Hill, New York McCabe WL, Smith JC, Harriott P (2005) Unit Operations of Chemical Engineering, 7th edn. McGraw-Hill, New York
13.
Zurück zum Zitat Stern AS (1994) Polymers for gas separations: the next decade J Membrane Sci 94 (1):1–65 Stern AS (1994) Polymers for gas separations: the next decade J Membrane Sci 94 (1):1–65
14.
Zurück zum Zitat Robeson LM (2001) Polymeric membranes for gas separation in Encyclopedia of Materials: Science and Technology. Pergamon Robeson LM (2001) Polymeric membranes for gas separation in Encyclopedia of Materials: Science and Technology. Pergamon
15.
Zurück zum Zitat Favre E (2010) Polymeric Membranes for Gas Separation. Drioli, E and Giorno, L. (eds), in Comprehensive Membrane Science and Engineering, Elsevier: Vol 2 Favre E (2010) Polymeric Membranes for Gas Separation. Drioli, E and Giorno, L. (eds), in Comprehensive Membrane Science and Engineering, Elsevier: Vol 2
16.
Zurück zum Zitat Robeson LM (1991) Correlation of separation factor versus permeability for polymeric membranes J Membrane Sci 62(2):165–185 Robeson LM (1991) Correlation of separation factor versus permeability for polymeric membranes J Membrane Sci 62(2):165–185
17.
Zurück zum Zitat Robeson LM (2008) The upper bound revisited J Membrane Sci 320(1–2):390–400 Robeson LM (2008) The upper bound revisited J Membrane Sci 320(1–2):390–400
18.
Zurück zum Zitat Lin H, Freeman BD (2004) Gas solubility, diffusivity and permeability in poly (ethylene oxide) J Membrane Sci 239(1):105–117 Lin H, Freeman BD (2004) Gas solubility, diffusivity and permeability in poly (ethylene oxide) J Membrane Sci 239(1):105–117
19.
Zurück zum Zitat Okamoto K, Umeo N, Okamyo S, Tanaka K, Kita H (1993) Selective permeation of carbon dioxide over nitrogen through polyethyleneoxide-containing polyimide membranes Chemestry Letters 22(2):225–228 Okamoto K, Umeo N, Okamyo S, Tanaka K, Kita H (1993) Selective permeation of carbon dioxide over nitrogen through polyethyleneoxide-containing polyimide membranes Chemestry Letters 22(2):225–228
20.
Zurück zum Zitat Robeson LM, Burgoyne WF, Langsam M, Savoca AC, Tien CF (1994) High performance polymers for membrane separation Polymer 35(23):4970–4978 Robeson LM, Burgoyne WF, Langsam M, Savoca AC, Tien CF (1994) High performance polymers for membrane separation Polymer 35(23):4970–4978
21.
Zurück zum Zitat Budd PM, Msayib KJ, Tattershall CE, Ghanem BS, Reynolds KJ, McKeown NB, Fritsch D (2005) Gas separation membranes from polymers of intrinsic microporosity J Membrane Sci 251(1–2):263–269 Budd PM, Msayib KJ, Tattershall CE, Ghanem BS, Reynolds KJ, McKeown NB, Fritsch D (2005) Gas separation membranes from polymers of intrinsic microporosity J Membrane Sci 251(1–2):263–269
22.
Zurück zum Zitat Park HB, Jung CH, Lee YM, Hill AJ, Pas SJ, Mudie ST, Van Wagner E, Freeman BD Cookson DJ (2007) Polymers with cavities tuned for fast selective transport of small molecules and ions. Science 318(5848):254 CrossRef Park HB, Jung CH, Lee YM, Hill AJ, Pas SJ, Mudie ST, Van Wagner E, Freeman BD Cookson DJ (2007) Polymers with cavities tuned for fast selective transport of small molecules and ions. Science 318(5848):254 CrossRef
23.
Zurück zum Zitat Barrer RM, Barrie JA, Slater J (1958) Sorption and diffusion in ethyl cellulose. Part III. Comparison between ethyl cellulose and rubber J Polym Sci 27(115):177–197 Barrer RM, Barrie JA, Slater J (1958) Sorption and diffusion in ethyl cellulose. Part III. Comparison between ethyl cellulose and rubber J Polym Sci 27(115):177–197
24.
Zurück zum Zitat Michaels AS, Vieth WR, Barrie JA (1963) Diffusion of gases in polyethylene terephthalate J Appl Phys 34(1):13–20 Michaels AS, Vieth WR, Barrie JA (1963) Diffusion of gases in polyethylene terephthalate J Appl Phys 34(1):13–20
25.
Zurück zum Zitat Koros WJ, Chan AH, Paul DR (1977) Sorption and transport of various gases in polycarbonate J Membrane Sci 2:165–190 Koros WJ, Chan AH, Paul DR (1977) Sorption and transport of various gases in polycarbonate J Membrane Sci 2:165–190
26.
Zurück zum Zitat Billmeyer FW (1971) Polymer chains and their characterization. In: Textbook of polymer science. Wiley Interscience Publishers, New York, pp. 84–85 Billmeyer FW (1971) Polymer chains and their characterization. In: Textbook of polymer science. Wiley Interscience Publishers, New York, pp. 84–85
27.
Zurück zum Zitat Petropoulos JH (1994) Mechanisms and theories for sorption and diffusion of gases in polymers. In: Polymeric gas separation membranes. Paul DR, Yampol’skii YP (eds) CRC Press: Boca Raton, pp. 17–81 Petropoulos JH (1994) Mechanisms and theories for sorption and diffusion of gases in polymers. In: Polymeric gas separation membranes. Paul DR, Yampol’skii YP (eds) CRC Press: Boca Raton, pp. 17–81
28.
Zurück zum Zitat (a) Dhingra SS, Marand E (1998) Mixed gas transport study through polymeric membranes J Membrane Sci 141(1):45–63; (b) Koros W (1980) Model for sorption of mixed gases in glassy polymers J Polym Sci Polym Phys 18(5):981–992; (c) Frisch HL (1980) Sorption and transport in glassy polymers Polym Eng Sci 20(1):2–13; (d) Barbari TA, Conforti RM(1980) Recent Theories in Gas Sorption in Polymers Polym Adv Technol 5(11):698–707 (a) Dhingra SS, Marand E (1998) Mixed gas transport study through polymeric membranes J Membrane Sci 141(1):45–63; (b) Koros W (1980) Model for sorption of mixed gases in glassy polymers J Polym Sci Polym Phys 18(5):981–992; (c) Frisch HL (1980) Sorption and transport in glassy polymers Polym Eng Sci 20(1):2–13; (d) Barbari TA, Conforti RM(1980) Recent Theories in Gas Sorption in Polymers Polym Adv Technol 5(11):698–707
29.
Zurück zum Zitat Sonwane CG, Wilcox J, Ma YH (2006) Achieving optimum hydrogen permeability in PdAg and PdAu alloys J Chem Phys 125:184714 Sonwane CG, Wilcox J, Ma YH (2006) Achieving optimum hydrogen permeability in PdAg and PdAu alloys J Chem Phys 125:184714
30.
Zurück zum Zitat Sieverts A, Danz W (1936) Solubility of D2 and H2 in Palladium Z Phys Chem 34:158 Sieverts A, Danz W (1936) Solubility of D2 and H2 in Palladium Z Phys Chem 34:158
31.
Zurück zum Zitat (a) Aboud S, Wilcox J (2010) A density functional theory study of the charge state of hydrogen in metal hydrides J Phys Chem C 114(24):10978–10985; (b) Kamakoti P, Morreale BD, Ciocco MV, Howard BH, Killmeyer RP, Cugini AV, Sholl DS (2005) Prediction of hydrogen flux through sulfur-tolerant binary alloy membranes. Science 307(5709):569 (a) Aboud S, Wilcox J (2010) A density functional theory study of the charge state of hydrogen in metal hydrides J Phys Chem C 114(24):10978–10985; (b) Kamakoti P, Morreale BD, Ciocco MV, Howard BH, Killmeyer RP, Cugini AV, Sholl DS (2005) Prediction of hydrogen flux through sulfur-tolerant binary alloy membranes. Science 307(5709):569
32.
Zurück zum Zitat Sammells AF, Mundschau MV (2006) Nonporous inorganic membranes: for chemical processing. Wiley-VCH, Weinheim CrossRef Sammells AF, Mundschau MV (2006) Nonporous inorganic membranes: for chemical processing. Wiley-VCH, Weinheim CrossRef
33.
Zurück zum Zitat Stannett V, Koros W, Paul D, Lonsdale H, Baker R (1979) Recent advances in membrane science and technology Adv Polymer Sci 32:69–121 Stannett V, Koros W, Paul D, Lonsdale H, Baker R (1979) Recent advances in membrane science and technology Adv Polymer Sci 32:69–121
34.
Zurück zum Zitat Keller GEI, Anderson RA, Yon CM (1987) Adsorption. In: Handbook of separation process Technology. Rousseau RW (ed). John Wiley & Sons, New York, p. 644–696 Keller GEI, Anderson RA, Yon CM (1987) Adsorption. In: Handbook of separation process Technology. Rousseau RW (ed). John Wiley & Sons, New York, p. 644–696
35.
Zurück zum Zitat Stern SA, Shah VM, Hardy BJ (1987) Structure permeability relationships in silicone polymers J Polym Sci Polym Phys 25(6):1263–1298 Stern SA, Shah VM, Hardy BJ (1987) Structure permeability relationships in silicone polymers J Polym Sci Polym Phys 25(6):1263–1298
36.
Zurück zum Zitat Chern RT, Koros WJ, Sanders ES, Chen SH, Hopfenberg HB (1983) In: Implications of the dual-mode sorption and transport models for mixed gas permeation, ACS Symposium Series 233. ACS Publications, Washington, p. 47 Chern RT, Koros WJ, Sanders ES, Chen SH, Hopfenberg HB (1983) In: Implications of the dual-mode sorption and transport models for mixed gas permeation, ACS Symposium Series 233. ACS Publications, Washington, p. 47
37.
Zurück zum Zitat (a) Pick MA, Davenport JW, Strongin M, Dienes GJ (1979) Enhancement of hydrogen uptake rates for Nb and Ta by thin surface overlayers Phys Rev Lett 43(4):286–289; (b) Roa F, Way JD (2003) Influence of alloy composition and membrane fabrication on the pressure dependence of the hydrogen flux of palladium-copper membranes Ind Eng Chem Res 42(23):5827–5835 (a) Pick MA, Davenport JW, Strongin M, Dienes GJ (1979) Enhancement of hydrogen uptake rates for Nb and Ta by thin surface overlayers Phys Rev Lett 43(4):286–289; (b) Roa F, Way JD (2003) Influence of alloy composition and membrane fabrication on the pressure dependence of the hydrogen flux of palladium-copper membranes Ind Eng Chem Res 42(23):5827–5835
38.
Zurück zum Zitat (a) Sonwane CG, Wilcox J, Ma YH (2006) Solubility of hydrogen in PdAg and PdAu binary alloys using density functional theory J Phys Chem B 110(48):24549–24558; (b) Kamakoti P, Sholl DS (2003) A comparison of hydrogen diffusivities in Pd and CuPd alloys using density functional theory J Membrane Sci 225(1–2):145–154 (a) Sonwane CG, Wilcox J, Ma YH (2006) Solubility of hydrogen in PdAg and PdAu binary alloys using density functional theory J Phys Chem B 110(48):24549–24558; (b) Kamakoti P, Sholl DS (2003) A comparison of hydrogen diffusivities in Pd and CuPd alloys using density functional theory J Membrane Sci 225(1–2):145–154
39.
Zurück zum Zitat Roa F, Block MJ, Way JD (2002) The influence of alloy composition on the H 2 flux of composite Pd–Cu membranes Desalination 147(1–3):411–416 Roa F, Block MJ, Way JD (2002) The influence of alloy composition on the H 2 flux of composite Pd–Cu membranes Desalination 147(1–3):411–416
40.
Zurück zum Zitat Mckinley DL (1969) Method for hydrogen separation and purification Mckinley DL (1969) Method for hydrogen separation and purification
41.
Zurück zum Zitat Gade SK, Keeling MK, Davidson AP, Hatlevik O, Way JD (2009) Palladium-ruthenium membranes for hydrogen separation fabricated by electroless co-deposition Int J Hydrog Energy 34(15):6484–6491 Gade SK, Keeling MK, Davidson AP, Hatlevik O, Way JD (2009) Palladium-ruthenium membranes for hydrogen separation fabricated by electroless co-deposition Int J Hydrog Energy 34(15):6484–6491
42.
Zurück zum Zitat Morreale BD, Ciocco MV, Enick RM, Morsi BI, Howard BH, Cugini AV, Rothenberger KS (2003) The permeability of hydrogen in bulk palladium at elevated temperatures and pressures J Membrane Sci 212 (1–2):87–97 Morreale BD, Ciocco MV, Enick RM, Morsi BI, Howard BH, Cugini AV, Rothenberger KS (2003) The permeability of hydrogen in bulk palladium at elevated temperatures and pressures J Membrane Sci 212 (1–2):87–97
43.
Zurück zum Zitat Zhang GX, Yukawa H, Watanabe N, Saito Y, Fukaya H, Morinaga M, Nambu T, Matsumoto Y (2008) Analysis of hydrogen diffusion coefficient during hydrogen permeation through pure niobium Int J Hydrog Energy33 (16):4419–4423 Zhang GX, Yukawa H, Watanabe N, Saito Y, Fukaya H, Morinaga M, Nambu T, Matsumoto Y (2008) Analysis of hydrogen diffusion coefficient during hydrogen permeation through pure niobium Int J Hydrog Energy33 (16):4419–4423
44.
Zurück zum Zitat Yukawa H, Nambu T, Matsumoto K V-W alloy membranes for hydrogens for hydrogen purification J Alloy Compd 509, S881–S884, 2011 Yukawa H, Nambu T, Matsumoto K V-W alloy membranes for hydrogens for hydrogen purification J Alloy Compd 509, S881–S884, 2011
45.
Zurück zum Zitat Steward SA (1983) Review of hydrogen isotope permeability through materials. Lawrence Livermore National Lab, CA CrossRef Steward SA (1983) Review of hydrogen isotope permeability through materials. Lawrence Livermore National Lab, CA CrossRef
46.
Zurück zum Zitat Watanabe N, Yukawa H, Nambu T, Matsumoto Y, Zhang GX, Morinaga M (2009) Alloying effects of Ru and W on the resistance to hydrogen embrittlement and hydrogen permeability of niobium J Alloy Compd 477(1–2):851–854 Watanabe N, Yukawa H, Nambu T, Matsumoto Y, Zhang GX, Morinaga M (2009) Alloying effects of Ru and W on the resistance to hydrogen embrittlement and hydrogen permeability of niobium J Alloy Compd 477(1–2):851–854
47.
Zurück zum Zitat Way JD, Noble RD, Reed DL, Ginley GM, Jarr LA (1987) Facilitated transport of CO 2 in ion exchange membranes AIChE J 33(3):480–487 Way JD, Noble RD, Reed DL, Ginley GM, Jarr LA (1987) Facilitated transport of CO 2 in ion exchange membranes AIChE J 33(3):480–487
48.
Zurück zum Zitat S.A. Rackley, Carbon Capture and Storage, Butterworth-Heinemann: Burlington MA, 2010, p. 167 S.A. Rackley, Carbon Capture and Storage, Butterworth-Heinemann: Burlington MA, 2010, p. 167
49.
Zurück zum Zitat (a) Hsieh HP, Bhave RR, Fleming HL (1988) Microporous alumina membranes J Membrane Sci 39(3):221–241; (b) Niwa M, Ohya H, Tanaka Y, Yoshikawa N, Matsumoto K, Negishi Y (1988) Separation of gaseous mixtures of CO 2 and CH 4 using a composite microporous glass membrane on ceramic tubing J Membrane Sci 39(3)301–314 (a) Hsieh HP, Bhave RR, Fleming HL (1988) Microporous alumina membranes J Membrane Sci 39(3):221–241; (b) Niwa M, Ohya H, Tanaka Y, Yoshikawa N, Matsumoto K, Negishi Y (1988) Separation of gaseous mixtures of CO 2 and CH 4 using a composite microporous glass membrane on ceramic tubing J Membrane Sci 39(3)301–314
50.
Zurück zum Zitat Koresh JE, Soffer A (1987) The carbon molecular sieve membranes. General properties and the permeability of CH 4/H 2 mixture Separ Sci Technol 22(2):973–982 Koresh JE, Soffer A (1987) The carbon molecular sieve membranes. General properties and the permeability of CH 4/H 2 mixture Separ Sci Technol 22(2):973–982
51.
Zurück zum Zitat McCaffrey RR, Cummings DG (1988) Gas separation properties of phosphazene polymer membranes Separ Sci Technol 23(12):1627–1643 McCaffrey RR, Cummings DG (1988) Gas separation properties of phosphazene polymer membranes Separ Sci Technol 23(12):1627–1643
52.
Zurück zum Zitat McCaffrey RR, McAtee RE, Grey AE, Allen CA, Cummings DG, Appelhans AD, Wright RB, Jolley JG (1987) Inorganic membrane technology Separ Sci Technol22(2):873–887 McCaffrey RR, McAtee RE, Grey AE, Allen CA, Cummings DG, Appelhans AD, Wright RB, Jolley JG (1987) Inorganic membrane technology Separ Sci Technol22(2):873–887
53.
Zurück zum Zitat Hogsett JE, Mazur WH (1983) Estimate membrane system area Hydrocarbon Process62(8):52–54 Hogsett JE, Mazur WH (1983) Estimate membrane system area Hydrocarbon Process62(8):52–54
54.
Zurück zum Zitat Lokhandwala KA, Segelke S, Nguyen P, Baker RW, Su TT, Pinnau I (1999) A Membrane process to recover Chlorine from Chloroalkali Plant Tail Gas Ind Eng Chem Res 38(10):3606–3613 Lokhandwala KA, Segelke S, Nguyen P, Baker RW, Su TT, Pinnau I (1999) A Membrane process to recover Chlorine from Chloroalkali Plant Tail Gas Ind Eng Chem Res 38(10):3606–3613
55.
Zurück zum Zitat (a) McKelvey SA, Klausi DT, Koros JW (1997) A guide to establishing hollow fiber macroscopic properties for membrane applications J Membrane Sci124(2):223–232; (b) Gabelman A, Hwang ST (1999) Hollow fiber membrane contactors J Membrane Sci159(1–2):61–106; (c) Masourizadeh A, Ismail AF (2009) Hollow fiber liquid-gas contactors for acid gas capture: a review J Hazard Mater,171(1–3):38–53; (d) Porcheron F, Ferre D, Favre E, Nuguyen PT, Lorain O, Mercier R, Rougeau L (2011) Hollow fiber membrane contactors for CO 2 capture: From lab-scale screening to pilot-plant module conception Energy Procedia 4(763–770) (a) McKelvey SA, Klausi DT, Koros JW (1997) A guide to establishing hollow fiber macroscopic properties for membrane applications J Membrane Sci124(2):223–232; (b) Gabelman A, Hwang ST (1999) Hollow fiber membrane contactors J Membrane Sci159(1–2):61–106; (c) Masourizadeh A, Ismail AF (2009) Hollow fiber liquid-gas contactors for acid gas capture: a review J Hazard Mater,171(1–3):38–53; (d) Porcheron F, Ferre D, Favre E, Nuguyen PT, Lorain O, Mercier R, Rougeau L (2011) Hollow fiber membrane contactors for CO 2 capture: From lab-scale screening to pilot-plant module conception Energy Procedia 4(763–770)
56.
Zurück zum Zitat Hwang ST, Thorman JM (1980) The continuous membrane column Am Inst Chem Eng 26(4):558–566 Hwang ST, Thorman JM (1980) The continuous membrane column Am Inst Chem Eng 26(4):558–566
57.
Zurück zum Zitat Favre E (2007) Carbon dioxide recovery from post-combustion processes: can gas permeation membranes compete with absorption? J Membrane Sci 294(1–2):50–59 Favre E (2007) Carbon dioxide recovery from post-combustion processes: can gas permeation membranes compete with absorption? J Membrane Sci 294(1–2):50–59
58.
Zurück zum Zitat Paul DR, Koros WJ (1976) Effect of Partially Immobilizing Sorption Permeability and the Diffusion Time Lag J Polm Sci Pol Phys 14(4):675–685 Paul DR, Koros WJ (1976) Effect of Partially Immobilizing Sorption Permeability and the Diffusion Time Lag J Polm Sci Pol Phys 14(4):675–685
59.
Zurück zum Zitat Gestel TV, Sebold D, Hauler F, Meulenberg WA, Buchkremer H-P (2010) Potentialities of microporous membranes for H 2/CO 2 separation in future fossil fuel power plants: evaluation of SiO 2, ZeO 2, Y 2O 3-ZrO 2 and TuO 2-ZrO 2 sol-gel membranes. J Mem Sci 359 (1–2):64–79 Gestel TV, Sebold D, Hauler F, Meulenberg WA, Buchkremer H-P (2010) Potentialities of microporous membranes for H 2/CO 2 separation in future fossil fuel power plants: evaluation of SiO 2, ZeO 2, Y 2O 3-ZrO 2 and TuO 2-ZrO 2 sol-gel membranes. J Mem Sci 359 (1–2):64–79
60.
Zurück zum Zitat Venna SR, Jasinski JB, Carreon MA (2010) Structural Evolution of Zeolitic Imidazolate Framework-8. J Am Chem Soc 132 (51):18030–18033. Venna SR, Jasinski JB, Carreon MA (2010) Structural Evolution of Zeolitic Imidazolate Framework-8. J Am Chem Soc 132 (51):18030–18033.
Metadaten
Titel
Membrane Technology
verfasst von
Prof. Jennifer Wilcox
Copyright-Jahr
2012
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4614-2215-0_5