Skip to main content

2015 | OriginalPaper | Buchkapitel

15. Metal-Organic Frameworks as Platforms for Hydrogen Generation from Chemical Hydrides

verfasst von : Yanying Zhao, Qiang Xu

Erschienen in: Organometallics and Related Molecules for Energy Conversion

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Metal-organic frameworks (MOFs), a new class of emerging materials with porosity, crystalline, high interior surface area, controllable structures, high thermal stability, and high yield with low cost, are showing the potential applications for hydrogen storage/release. With respect to physical hydrogen storage (compression, liquefaction, and physisorption), the chemical hydrogen storage is free from extreme processing conditions and safety risk. In this chapter, we select recent and significant advances in the development of MOFs as platforms for hydrogen generation from chemical hydrides and highlight special emphasis on enhanced kinetics and thermodynamics for (1) hydrogen generation from chemical hydrides confined in MOFs, (2) MOF-supported metal nanoparticle-catalyzed hydrogen generation from chemical hydrides, and (3) hydrogen generation from chemical hydrides catalyzed by catalysts formed using MOFs as precursors.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Jiang HL, Xu Q (2011) Porous metal-organic frameworks as platforms for functional applications. Chem Commun 47:3351–3370 Jiang HL, Xu Q (2011) Porous metal-organic frameworks as platforms for functional applications. Chem Commun 47:3351–3370
2.
Zurück zum Zitat Suh MP, Park HJ, Prasad TK et al (2012) Hydrogen storage in metal-organic frame works. Chem Rev 112:782–835 Suh MP, Park HJ, Prasad TK et al (2012) Hydrogen storage in metal-organic frame works. Chem Rev 112:782–835
3.
Zurück zum Zitat Murray LJ, Dinca M, Long JR (2009) Hydrogen storage in metal-organic frameworks. Chem Soc Rev 38:1294–1314 Murray LJ, Dinca M, Long JR (2009) Hydrogen storage in metal-organic frameworks. Chem Soc Rev 38:1294–1314
4.
Zurück zum Zitat Ward MD (2013) Molecular fuel tanks. Science 300:1104–1105 Ward MD (2013) Molecular fuel tanks. Science 300:1104–1105
5.
Zurück zum Zitat Lim W-X, Thornton AW, Hill AJ (2013) High performance hydrogen storage from Be-BTB metal-organic framework at room temperature. Langmuir 29:8524–8533 Lim W-X, Thornton AW, Hill AJ (2013) High performance hydrogen storage from Be-BTB metal-organic framework at room temperature. Langmuir 29:8524–8533
6.
Zurück zum Zitat Duan X, Yu J, Cai J et al (2013) A microporous metal-organic framework of a rare sty topology for high CH4 storage at room temperature. Chem Commun 49:2043–2045 Duan X, Yu J, Cai J et al (2013) A microporous metal-organic framework of a rare sty topology for high CH4 storage at room temperature. Chem Commun 49:2043–2045
7.
Zurück zum Zitat Nugent P, Belmabkhout Y, Burd SD et al (2013) Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation. Nature 495:80–84 Nugent P, Belmabkhout Y, Burd SD et al (2013) Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation. Nature 495:80–84
8.
Zurück zum Zitat Geier SJ, Mason JA, Bloch ED et al (2013) Selective adsorption of ethylene over ethane and propylene over propane in the metal-organic frameworks M2(dobdc) (M-Mg, Mn, Fe, Co, Ni, Zn). Chem Sci 4:2054–2061 Geier SJ, Mason JA, Bloch ED et al (2013) Selective adsorption of ethylene over ethane and propylene over propane in the metal-organic frameworks M2(dobdc) (M-Mg, Mn, Fe, Co, Ni, Zn). Chem Sci 4:2054–2061
9.
Zurück zum Zitat Sumida K, Rogow D, Mason JA et al (2012) Carbon dioxide capture in metal-organic frameworks. Chem Rev 112:724–781 Sumida K, Rogow D, Mason JA et al (2012) Carbon dioxide capture in metal-organic frameworks. Chem Rev 112:724–781
10.
Zurück zum Zitat Herm ZR, Wiers BM, Mason JA et al (2013) Separation of hexane isomers in a metal-organic framework with triangular channels. Science 340:960–964 Herm ZR, Wiers BM, Mason JA et al (2013) Separation of hexane isomers in a metal-organic framework with triangular channels. Science 340:960–964
11.
Zurück zum Zitat Bloch ED, Queen WL, Krishna R, Krishna R et al (2012) Hydrocarbon separations in a metal-organic framework with open iron (II) coordination sites. Science 335:1606–1610 Bloch ED, Queen WL, Krishna R, Krishna R et al (2012) Hydrocarbon separations in a metal-organic framework with open iron (II) coordination sites. Science 335:1606–1610
12.
Zurück zum Zitat Li J-R, Sculley J, Zhou H-C (2012) Metal-organic frameworks for separations. Chem Rev 112:869–932 Li J-R, Sculley J, Zhou H-C (2012) Metal-organic frameworks for separations. Chem Rev 112:869–932
13.
Zurück zum Zitat Yang Q, Liu D, Zhong C et al (2013) Development of computational methodologies for metal-organic frameworks and their application in gas separations. Chem Rev 113:8261–8323 Yang Q, Liu D, Zhong C et al (2013) Development of computational methodologies for metal-organic frameworks and their application in gas separations. Chem Rev 113:8261–8323
14.
Zurück zum Zitat Li SL, Xu Q (2013) Metal-organic frameworks as platforms for clean energy. Energy Environ Sci 6:1656–1683 Li SL, Xu Q (2013) Metal-organic frameworks as platforms for clean energy. Energy Environ Sci 6:1656–1683
15.
Zurück zum Zitat Pardo E, Train C, Gontard G et al (2011) High proton conduction in a chiral ferromagnetic metal-organic quartz-like framework. J Am Chem Soc 133:15328–15331 Pardo E, Train C, Gontard G et al (2011) High proton conduction in a chiral ferromagnetic metal-organic quartz-like framework. J Am Chem Soc 133:15328–15331
16.
Zurück zum Zitat Ikezoe Y, Washino G, Uemura T et al (2012) Autonomous motors of a metal-organic framework powered by reorganization of self-assembled peptides at interfaces. Nat Mater 11:1081–1085 Ikezoe Y, Washino G, Uemura T et al (2012) Autonomous motors of a metal-organic framework powered by reorganization of self-assembled peptides at interfaces. Nat Mater 11:1081–1085
17.
Zurück zum Zitat Cai D, Guo H, Wen L et al (2013) Fabrication of hierarchical architectures of Tb-MOF by a “green coordination modulation method” for the sensing of heavy metal ions. Cryst Eng Commun 15:6702–6708 Cai D, Guo H, Wen L et al (2013) Fabrication of hierarchical architectures of Tb-MOF by a “green coordination modulation method” for the sensing of heavy metal ions. Cryst Eng Commun 15:6702–6708
18.
Zurück zum Zitat Wright PA (2010) Opening the door to peptide-based porous solids. Science 329:1025–1026 Wright PA (2010) Opening the door to peptide-based porous solids. Science 329:1025–1026
19.
Zurück zum Zitat Britt D, Tranchemontagne D, Yaghi OM (2008) Metal-organic frameworks with high capacity and selectivity for harmful gases. PNAS 105(33):11623–11627 Britt D, Tranchemontagne D, Yaghi OM (2008) Metal-organic frameworks with high capacity and selectivity for harmful gases. PNAS 105(33):11623–11627
20.
Zurück zum Zitat Zou X, Goupil J-M, Thomas S et al (2012) Detection of Harmful gases by copper-containing metal-organic framework films. J Phys Chem C 116:16593–16600 Zou X, Goupil J-M, Thomas S et al (2012) Detection of Harmful gases by copper-containing metal-organic framework films. J Phys Chem C 116:16593–16600
21.
Zurück zum Zitat Khan NA, Hasan Z, Jhung SH (2013) Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs): a review. J Hazard Mater 244–245:444–456 Khan NA, Hasan Z, Jhung SH (2013) Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs): a review. J Hazard Mater 244–245:444–456
22.
Zurück zum Zitat Peterson GW, Rossin JA, DeCoste JB et al (2013) Zirconium hydroxide-metal-organic framework composites for toxic chemical removal. Int Eng Chem Res 52:5462–5469 Peterson GW, Rossin JA, DeCoste JB et al (2013) Zirconium hydroxide-metal-organic framework composites for toxic chemical removal. Int Eng Chem Res 52:5462–5469
23.
Zurück zum Zitat McKinlay AC, Eubank JF, Wuttke S et al (2013) Nitric oxide adsorption and delivery in flexible MIL-88(Fe) metal organic frameworks. Chem Mater 25:1592–1599 McKinlay AC, Eubank JF, Wuttke S et al (2013) Nitric oxide adsorption and delivery in flexible MIL-88(Fe) metal organic frameworks. Chem Mater 25:1592–1599
24.
Zurück zum Zitat Dhakshinamoorthy A, Alvaro M, Garcia H (2012) Commercial metal-organic frameworks as heterogeneous catalysts. Chem Commun 48:11275–11288 Dhakshinamoorthy A, Alvaro M, Garcia H (2012) Commercial metal-organic frameworks as heterogeneous catalysts. Chem Commun 48:11275–11288
25.
Zurück zum Zitat Seo JS, Whang D, Lee H et al (2000) A homochiral metal-organic porous material for enantioselective separation and catalysis. Nature 404:982–986 Seo JS, Whang D, Lee H et al (2000) A homochiral metal-organic porous material for enantioselective separation and catalysis. Nature 404:982–986
26.
Zurück zum Zitat Yoon M, Srirambalaji R, Kim K et al (2012) Homochiral metal-organic frameworks for asymmetric heterogeneous catalysis. Chem Rev 112:1196–1231 Yoon M, Srirambalaji R, Kim K et al (2012) Homochiral metal-organic frameworks for asymmetric heterogeneous catalysis. Chem Rev 112:1196–1231
27.
Zurück zum Zitat Cirma A, García H, LIabrés I, Xamena FX (2010) Engineering metal organic frameworks for heterogeneous catalysis. Chem Rev 110:4606–4655 Cirma A, García H, LIabrés I, Xamena FX (2010) Engineering metal organic frameworks for heterogeneous catalysis. Chem Rev 110:4606–4655
28.
Zurück zum Zitat Cirujano FG, Leyva-Pérez A, Corna A et al (2013) MOFs as multifunctional catalysts: synthesis of secondary arylamines, quinolines, pyrroles, and arylpyrrolidines over bifunctional MIL-101. ChemCatChem 5:538–549 Cirujano FG, Leyva-Pérez A, Corna A et al (2013) MOFs as multifunctional catalysts: synthesis of secondary arylamines, quinolines, pyrroles, and arylpyrrolidines over bifunctional MIL-101. ChemCatChem 5:538–549
29.
Zurück zum Zitat Dhakshinamoorthy A, Opanasenko M, Cejka J et al (2013) Metal organic frameworks as solid catalysts in condensation reactions of carbonyl groups. Adv Synth Catal 355:247–268 Dhakshinamoorthy A, Opanasenko M, Cejka J et al (2013) Metal organic frameworks as solid catalysts in condensation reactions of carbonyl groups. Adv Synth Catal 355:247–268
30.
Zurück zum Zitat Lee JY, Farha OK, Roberts J et al (2009) Metal-organic framework materials as catalysts. Chem Soc Rev 38:1450–1459 Lee JY, Farha OK, Roberts J et al (2009) Metal-organic framework materials as catalysts. Chem Soc Rev 38:1450–1459
31.
Zurück zum Zitat Horcajada P, Gref R, Baati T et al (2012) Metal-organic frameworks in biomedicine. Chem Rev 112(2):1232–1268 Horcajada P, Gref R, Baati T et al (2012) Metal-organic frameworks in biomedicine. Chem Rev 112(2):1232–1268
32.
Zurück zum Zitat Cui Y, Yue Y, Qian G et al (2012) Luminescent functional metal-organic frameworks. Chem Rev 112(2):1126–1162 Cui Y, Yue Y, Qian G et al (2012) Luminescent functional metal-organic frameworks. Chem Rev 112(2):1126–1162
33.
Zurück zum Zitat Zhang W, Xiong R-G (2012) Ferroelectric metal-organic frameworks. Chem Rev 112:1163–1195 Zhang W, Xiong R-G (2012) Ferroelectric metal-organic frameworks. Chem Rev 112:1163–1195
34.
Zurück zum Zitat Kuppler RJ, Timmons DJ, Fang QR et al (2009) Potential applications of metal-organic frameworks. Coord Chem Rev 253:3042–3066 Kuppler RJ, Timmons DJ, Fang QR et al (2009) Potential applications of metal-organic frameworks. Coord Chem Rev 253:3042–3066
35.
Zurück zum Zitat Furukawa H, Cordova KE, O’Keeffe M et al (2013) The chemistry and applications of metal-organic frameworks. Science 341:1230444 Furukawa H, Cordova KE, O’Keeffe M et al (2013) The chemistry and applications of metal-organic frameworks. Science 341:1230444
36.
Zurück zum Zitat Liang Z, Du J, Sun L et al (2013) Design and synthesis of two porous metal-organic frameworks with nbo and agw topologies showing high CO2 adsorption capacity. Inorg Chem 52:10720–10722 Liang Z, Du J, Sun L et al (2013) Design and synthesis of two porous metal-organic frameworks with nbo and agw topologies showing high CO2 adsorption capacity. Inorg Chem 52:10720–10722
37.
Zurück zum Zitat Latroche M, Surblé S, Serre C et al (2006) Hydrogen storage in the giant-pore metal-organic frameworks MIL-100 and MIL-101. Angew Chem Int Ed 45:8227–8231 Latroche M, Surblé S, Serre C et al (2006) Hydrogen storage in the giant-pore metal-organic frameworks MIL-100 and MIL-101. Angew Chem Int Ed 45:8227–8231
38.
Zurück zum Zitat Li T, Kozlowski MT, Doud EA et al (2013) Stepwise ligand exchange for the preparation of a family of mesoporous MOFs. J Am Chem Soc 135:11688–11691 Li T, Kozlowski MT, Doud EA et al (2013) Stepwise ligand exchange for the preparation of a family of mesoporous MOFs. J Am Chem Soc 135:11688–11691
39.
Zurück zum Zitat Bew SP, Burrows AD, Düren T et al (2012) Calix[4]areene-based metal-organic frameworks: towards hierarchically porous materials. Chem Commun 48:4824–4826 Bew SP, Burrows AD, Düren T et al (2012) Calix[4]areene-based metal-organic frameworks: towards hierarchically porous materials. Chem Commun 48:4824–4826
40.
Zurück zum Zitat Kim TK, Lee KJ, Cheon JY et al (2013) Nanoporous metal oxides with tunable and nanocrystalline frameworks via conversion of metal-organic frameworks. J Am Chem Soc 135:8940–8946 Kim TK, Lee KJ, Cheon JY et al (2013) Nanoporous metal oxides with tunable and nanocrystalline frameworks via conversion of metal-organic frameworks. J Am Chem Soc 135:8940–8946
41.
Zurück zum Zitat Grobler I, Smith VJ, Bhatt PM et al (2013) Tunable anisotropic thermal expansion of a porous zinc (II) metal-organic framework. J Am Chem Soc 135:6411–6414 Grobler I, Smith VJ, Bhatt PM et al (2013) Tunable anisotropic thermal expansion of a porous zinc (II) metal-organic framework. J Am Chem Soc 135:6411–6414
42.
Zurück zum Zitat Wu H, Chua YS, Krungleviciute V et al (2013) Unusual and highly tunable missing-linker defects in zirconium metal-organic framework UiO-66 and their important effects on gas adsorption. J Am Chem Soc 135:10525–10532 Wu H, Chua YS, Krungleviciute V et al (2013) Unusual and highly tunable missing-linker defects in zirconium metal-organic framework UiO-66 and their important effects on gas adsorption. J Am Chem Soc 135:10525–10532
43.
Zurück zum Zitat Cook T, Zheng YR, Stang PJ (2013) Metal-organic frameworks and self-Assembled supramolecular coordination complexes: comparing and contrasting the design, synthesis, and functionality of metal-organic materials. Chem Rev 113:734–777 Cook T, Zheng YR, Stang PJ (2013) Metal-organic frameworks and self-Assembled supramolecular coordination complexes: comparing and contrasting the design, synthesis, and functionality of metal-organic materials. Chem Rev 113:734–777
44.
Zurück zum Zitat Valtchev V, Tosheva L (2013) Porous nanosized particles: preparation, properties, and applications. Chem Rev 113:6734–6760 Valtchev V, Tosheva L (2013) Porous nanosized particles: preparation, properties, and applications. Chem Rev 113:6734–6760
45.
Zurück zum Zitat Jiang HL, Makal TA, Zhou HC (2013) Interpenetration control in metal-organic frameworks for functional applications. Coord Chem Rev 257:2232–2249 Jiang HL, Makal TA, Zhou HC (2013) Interpenetration control in metal-organic frameworks for functional applications. Coord Chem Rev 257:2232–2249
46.
Zurück zum Zitat Wang C, Liu D, Lin W (2013) Metal-organic frameworks as a tunable platform for designing functional molecular materials. J Am Chem Soc 135:13222–13234 Wang C, Liu D, Lin W (2013) Metal-organic frameworks as a tunable platform for designing functional molecular materials. J Am Chem Soc 135:13222–13234
47.
Zurück zum Zitat Eddaoudi M, Kim J, Rosi N et al (2002) Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295:469–472 Eddaoudi M, Kim J, Rosi N et al (2002) Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295:469–472
48.
Zurück zum Zitat Moon HR, Lim DW, Suh MP (2013) Fabrication of metal nanoparticles in metal-organic frameworks. Chem Soc Rev 42:1807–1824 Moon HR, Lim DW, Suh MP (2013) Fabrication of metal nanoparticles in metal-organic frameworks. Chem Soc Rev 42:1807–1824
49.
Zurück zum Zitat Huang YL, Gong YN, Jiang L et al (2013) A unique magnesium-based 3D MOF with nanoscale cages and temperature dependent selective gas sorption properties. Chem Commun 49:1753–1755 Huang YL, Gong YN, Jiang L et al (2013) A unique magnesium-based 3D MOF with nanoscale cages and temperature dependent selective gas sorption properties. Chem Commun 49:1753–1755
50.
Zurück zum Zitat Mitra A, Hubley CT, Panda DK et al (2013) Anion-directed assembly of a non-interpenetrated square-grid metal-organic framework with nanoscale porosity. Chem Commun 49:6629–6631 Mitra A, Hubley CT, Panda DK et al (2013) Anion-directed assembly of a non-interpenetrated square-grid metal-organic framework with nanoscale porosity. Chem Commun 49:6629–6631
51.
Zurück zum Zitat Saito M, Toyao T, Ueda K et al (2013) Effect of pore sizes on catalytic activities of arenetricarbonyl metal complexes constructed within Zr-based MOFs. Dalton Trans 42:9444–9447 Saito M, Toyao T, Ueda K et al (2013) Effect of pore sizes on catalytic activities of arenetricarbonyl metal complexes constructed within Zr-based MOFs. Dalton Trans 42:9444–9447
52.
Zurück zum Zitat Chae HK, Siberio-Perez DY, Kim J et al (2004) A route to high surface area, porosity and inclusion of large molecules in crystals. Nature 427:23–527 Chae HK, Siberio-Perez DY, Kim J et al (2004) A route to high surface area, porosity and inclusion of large molecules in crystals. Nature 427:23–527
53.
Zurück zum Zitat Li H, Eddaoudi M, O’Keeffe M et al (1999) Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402:276–279 Li H, Eddaoudi M, O’Keeffe M et al (1999) Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402:276–279
54.
Zurück zum Zitat Farha OK, Eryazici I, Jeong MC et al (2013) Metal-organic framework materials with ultrahigh surface areas: is the sky the limit? J Am Chem Soc 134:15016–15021 Farha OK, Eryazici I, Jeong MC et al (2013) Metal-organic framework materials with ultrahigh surface areas: is the sky the limit? J Am Chem Soc 134:15016–15021
55.
Zurück zum Zitat Rosi NL et al (2003) Hydrogen storage in microporous metal-organic frameworks. Science 300:1127–1129 Rosi NL et al (2003) Hydrogen storage in microporous metal-organic frameworks. Science 300:1127–1129
56.
Zurück zum Zitat Dalebrook AF, Gan WJ, Grasemann M et al (2013) Hydrogen storage: beyond conventional methods. Chem Commun 49:8735–8751 Dalebrook AF, Gan WJ, Grasemann M et al (2013) Hydrogen storage: beyond conventional methods. Chem Commun 49:8735–8751
57.
Zurück zum Zitat Krishna R, Titus E, Salimian M et al (2012) Hydrogen storage for energy application. In: Liu J (ed) Hydrogen storage. InTech, pp 252–254 Krishna R, Titus E, Salimian M et al (2012) Hydrogen storage for energy application. In: Liu J (ed) Hydrogen storage. InTech, pp 252–254
58.
Zurück zum Zitat Arora P, Zhang Z (2004) Battery separators. Chem Rev 104:4419–4462 Arora P, Zhang Z (2004) Battery separators. Chem Rev 104:4419–4462
59.
Zurück zum Zitat Combelles C, Yahia MB, Pedesseau L et al (2011) FeII/FeIII mixed-valence state induced by Li-insertion into the metal-organic-framework MIl-53(Fe): a DFT + U study. J Power Sources 196:3426–3432 Combelles C, Yahia MB, Pedesseau L et al (2011) FeII/FeIII mixed-valence state induced by Li-insertion into the metal-organic-framework MIl-53(Fe): a DFT + U study. J Power Sources 196:3426–3432
60.
Zurück zum Zitat de Combarieu G, Morcrette M, Millange F et al (2009) Influence of the Benzoquinone sorption on the structure and electrochemical performance of the MIL-53 (Fe) hybrid porous material in a lithium-ion battery. Chem Mater 21:1602–1611 de Combarieu G, Morcrette M, Millange F et al (2009) Influence of the Benzoquinone sorption on the structure and electrochemical performance of the MIL-53 (Fe) hybrid porous material in a lithium-ion battery. Chem Mater 21:1602–1611
61.
Zurück zum Zitat Wiers BM, Foo M-L, Balsara NP et al (2011) A solid lithium electrolyte via addition of lithium isopropoxide to a metal-organic framework with open metal sites. J Am Chem Soc 133:14522–14525 Wiers BM, Foo M-L, Balsara NP et al (2011) A solid lithium electrolyte via addition of lithium isopropoxide to a metal-organic framework with open metal sites. J Am Chem Soc 133:14522–14525
62.
Zurück zum Zitat Zhang L, Wu HB, Madhavi S, Hng HH et al (2012) Formation of Fe2O3 microboxes with hierarchical shell structures from metal-organic frameworks and their lithium storage properties. J Am Chem Soc 134:17388–17391 Zhang L, Wu HB, Madhavi S, Hng HH et al (2012) Formation of Fe2O3 microboxes with hierarchical shell structures from metal-organic frameworks and their lithium storage properties. J Am Chem Soc 134:17388–17391
63.
Zurück zum Zitat Shimizu GKH, Taylor JM, Kim SR (2013) Proton conduction with metal-organic frameworks. Science 341:354–356 Shimizu GKH, Taylor JM, Kim SR (2013) Proton conduction with metal-organic frameworks. Science 341:354–356
64.
Zurück zum Zitat Yoon M, Suh H, Natarajan S et al (2013) Proton conduction in metal-organic frameworks and related modularly built porous solids. Angew Chem Int Ed 52:2688–2700 Yoon M, Suh H, Natarajan S et al (2013) Proton conduction in metal-organic frameworks and related modularly built porous solids. Angew Chem Int Ed 52:2688–2700
65.
Zurück zum Zitat Sen S, Nair NN, Tamada T et al (2012) High proton conductivity by a metal-organic framework incorporating Zn8O clusters with aligned imidazolium groups decorating the channels. J Am Chem Soc 134:19432–19437 Sen S, Nair NN, Tamada T et al (2012) High proton conductivity by a metal-organic framework incorporating Zn8O clusters with aligned imidazolium groups decorating the channels. J Am Chem Soc 134:19432–19437
66.
Zurück zum Zitat Kim SR, Dawson KW, Gelfand BS et al (2013) Enhancing proton conduction in a metal−organic framework by isomorphous ligand replacement. J Am Chem Soc 35:963–966 Kim SR, Dawson KW, Gelfand BS et al (2013) Enhancing proton conduction in a metal−organic framework by isomorphous ligand replacement. J Am Chem Soc 35:963–966
67.
Zurück zum Zitat Taylor JM, Dawson KW, Shimizu GKH (2013) A water-stable metal-organic framework with highly acidic pores for proton-conducting applications. J Am Chem Soc 135:1193–1196 Taylor JM, Dawson KW, Shimizu GKH (2013) A water-stable metal-organic framework with highly acidic pores for proton-conducting applications. J Am Chem Soc 135:1193–1196
68.
Zurück zum Zitat Morozan A, Jaouen F (2012) Metal organic frameworks for electrochemical applications. Energy Environ Sci 5:9269–9290 Morozan A, Jaouen F (2012) Metal organic frameworks for electrochemical applications. Energy Environ Sci 5:9269–9290
69.
Zurück zum Zitat Díaz R, Orcajo MG, Botas J et al (2012) Co8-MOF-5 as electrode for supercapacitors. Mater Lett 68:126–128 Díaz R, Orcajo MG, Botas J et al (2012) Co8-MOF-5 as electrode for supercapacitors. Mater Lett 68:126–128
70.
Zurück zum Zitat Liu B, Shioyama H, Akita T et al (2008) Metal-organic framework as a template for porous carbon synthesis. J Am Chem Soc 130:5390–5391 Liu B, Shioyama H, Akita T et al (2008) Metal-organic framework as a template for porous carbon synthesis. J Am Chem Soc 130:5390–5391
71.
Zurück zum Zitat Chaikittisilp W, Hu M, Wang H et al (2012) Nanoporous carbons through direct carbonization of a zeolitic imidazolate framework for supercapacitor electrodes. Chem Commun 48:7259–7261 Chaikittisilp W, Hu M, Wang H et al (2012) Nanoporous carbons through direct carbonization of a zeolitic imidazolate framework for supercapacitor electrodes. Chem Commun 48:7259–7261
72.
Zurück zum Zitat Zhang F, Hao L, Zhang L et al (2011) Solid-state thermolysis preparation of Co3O4 nano/micro superstructures from metal-organic framework for supercapacitors. Int J Electrochem Sci 6:2943–2954 Zhang F, Hao L, Zhang L et al (2011) Solid-state thermolysis preparation of Co3O4 nano/micro superstructures from metal-organic framework for supercapacitors. Int J Electrochem Sci 6:2943–2954
73.
Zurück zum Zitat Stephan D (2013) A step closer to a methanol economy. Nature 495:54–55 Stephan D (2013) A step closer to a methanol economy. Nature 495:54–55
74.
Zurück zum Zitat Kopetz H (2013) Build a biomass energy market. Nature 494:29–31 Kopetz H (2013) Build a biomass energy market. Nature 494:29–31
75.
Zurück zum Zitat Assadourian E, Prugh T (2013) State of the world 2013: is sustainability still possible? In: Murphy TW Jr (ed) Beyond fossil fuels: assessing energy alternatives, 15th edn. Springer, Heidelberg, pp 172–183 Assadourian E, Prugh T (2013) State of the world 2013: is sustainability still possible? In: Murphy TW Jr (ed) Beyond fossil fuels: assessing energy alternatives, 15th edn. Springer, Heidelberg, pp 172–183
79.
Zurück zum Zitat Grochala W, Edwards PP (2004) Thermal decomposition of the non-interstitial hydrides for the storage and production of hydrogen. Chem Rev 104:1283–1316 Grochala W, Edwards PP (2004) Thermal decomposition of the non-interstitial hydrides for the storage and production of hydrogen. Chem Rev 104:1283–1316
80.
Zurück zum Zitat Cundy CS, Cox PA (2003) The hydrothermal synthesis of Zeolites: history and development from the earliest days to the present times. Chem Rev 103:663–701 Cundy CS, Cox PA (2003) The hydrothermal synthesis of Zeolites: history and development from the earliest days to the present times. Chem Rev 103:663–701
81.
Zurück zum Zitat Zhou O, Shimoda H, Gao B et al (2002) Materials science of carbon nanotubes: fabrication, integration, and properties of macroscopic structures of carbon nanotubes. Acc Chem Res 35:1045–1053 Zhou O, Shimoda H, Gao B et al (2002) Materials science of carbon nanotubes: fabrication, integration, and properties of macroscopic structures of carbon nanotubes. Acc Chem Res 35:1045–1053
82.
Zurück zum Zitat Linares N, Serrano E, Rico M et al (2011) Incorporation of chemical functionalities in the framework of mesoporous silica. Chem Commun 47:9024–9035 Linares N, Serrano E, Rico M et al (2011) Incorporation of chemical functionalities in the framework of mesoporous silica. Chem Commun 47:9024–9035
83.
Zurück zum Zitat Zhou C, Fang ZZ, Lu J et al (2013) Thermodynamic and kinetic destabilization of magnesium hydride using Mg–In solid solution alloy. J Am Chem Soc 135:10982–10985 Zhou C, Fang ZZ, Lu J et al (2013) Thermodynamic and kinetic destabilization of magnesium hydride using Mg–In solid solution alloy. J Am Chem Soc 135:10982–10985
84.
Zurück zum Zitat Paskevicius M, Sheppard DA, Buckeley CE (2010) Thermodynamic changes in mechanochemically synthesized magnesium hydride nanoparticles. J Am Chem Soc 132:5077–5083 Paskevicius M, Sheppard DA, Buckeley CE (2010) Thermodynamic changes in mechanochemically synthesized magnesium hydride nanoparticles. J Am Chem Soc 132:5077–5083
85.
Zurück zum Zitat Lu J, Choi YJ, Fang ZZ et al (2010) Hydrogenation of nanocrystalline Mg at room temperature in the presence of TiH2. J Am Chem Soc 132:6616–6617 Lu J, Choi YJ, Fang ZZ et al (2010) Hydrogenation of nanocrystalline Mg at room temperature in the presence of TiH2. J Am Chem Soc 132:6616–6617
86.
Zurück zum Zitat Zhou C, Fang ZZ, Ren C et al (2013) Effect of Ti intermetallic catalysts on hydrogen storage properties of magnesium hydride. J Phys Chem C 117:12973–12980 Zhou C, Fang ZZ, Ren C et al (2013) Effect of Ti intermetallic catalysts on hydrogen storage properties of magnesium hydride. J Phys Chem C 117:12973–12980
87.
Zurück zum Zitat Chen P, Xiong Z, Luo J et al (2002) Interaction of hydrogen with metal nitrides and imides. Nature 420:302–304 Chen P, Xiong Z, Luo J et al (2002) Interaction of hydrogen with metal nitrides and imides. Nature 420:302–304
88.
Zurück zum Zitat Yadav M, Xu Q (2012) Liquid-phase chemical hydrogen storage materials. Energy Environ Sci 5:9698–9725 Yadav M, Xu Q (2012) Liquid-phase chemical hydrogen storage materials. Energy Environ Sci 5:9698–9725
89.
Zurück zum Zitat Umegaki T, Yan JM, Zhang XB et al (2009) Boran- and nitrogen-based chemical hydrogen storage materials. Int J Hydrog Energy 34:2303–2311 Umegaki T, Yan JM, Zhang XB et al (2009) Boran- and nitrogen-based chemical hydrogen storage materials. Int J Hydrog Energy 34:2303–2311
90.
Zurück zum Zitat Li L, Xu CC, Chen CC et al (2013) Sodium alanate systems for efficient hydrogen storage. Int J Hydrog Energy 38:8798–8812 Li L, Xu CC, Chen CC et al (2013) Sodium alanate systems for efficient hydrogen storage. Int J Hydrog Energy 38:8798–8812
91.
Zurück zum Zitat Tan T, Yu X (2013) Chemical regeneration of hydrogen storage materials. RSC Adv 3:23879–23894 Tan T, Yu X (2013) Chemical regeneration of hydrogen storage materials. RSC Adv 3:23879–23894
92.
Zurück zum Zitat Moussa G, Moury R, Demirci UB et al (2013) Boron-based hydrides for chemical hydrogen storage. Int J Energy Res 37:825–842 Moussa G, Moury R, Demirci UB et al (2013) Boron-based hydrides for chemical hydrogen storage. Int J Energy Res 37:825–842
93.
Zurück zum Zitat Ravnsbak D, Filinchuk Y, Cerenius Y et al (2009) A series of mixed-metal borohydrides. Angew Chem Int Ed 48:6659–6663 Ravnsbak D, Filinchuk Y, Cerenius Y et al (2009) A series of mixed-metal borohydrides. Angew Chem Int Ed 48:6659–6663
94.
Zurück zum Zitat Orimo S, Nakamori Y, Eliseo JR et al (2007) Complex hydrides for hydrogen storage. Chem Rev 107:4111–4132 Orimo S, Nakamori Y, Eliseo JR et al (2007) Complex hydrides for hydrogen storage. Chem Rev 107:4111–4132
95.
Zurück zum Zitat Nicola CD, Karabach YY, Kirillov AM et al (2007) Supramolecular assemblies of trinuclear triangular copper(II) secondary building units through hydrogen bonds. Generation of different metal-organic frameworks, valuable catalysts for peroxidative oxidative of alkanes. Inorg Chem 46(1):221–230 Nicola CD, Karabach YY, Kirillov AM et al (2007) Supramolecular assemblies of trinuclear triangular copper(II) secondary building units through hydrogen bonds. Generation of different metal-organic frameworks, valuable catalysts for peroxidative oxidative of alkanes. Inorg Chem 46(1):221–230
96.
Zurück zum Zitat Kida M, Sakagami H, Takahashi N et al (2013) Chemical shift changes and line narrowing in 13C NMR spectra of hydrocarbon clathrate hydrates. J Phys Chem A 117:4108–4114 Kida M, Sakagami H, Takahashi N et al (2013) Chemical shift changes and line narrowing in 13C NMR spectra of hydrocarbon clathrate hydrates. J Phys Chem A 117:4108–4114
97.
Zurück zum Zitat Struzhkin VV, Militzer B, Mao WL et al (2007) Hydrogen storage in molecular clathrates. Chem Rev 107:4133–4151 Struzhkin VV, Militzer B, Mao WL et al (2007) Hydrogen storage in molecular clathrates. Chem Rev 107:4133–4151
98.
Zurück zum Zitat Koh DY, Juwoon HK, Shin W et al (2013) Atomic hydrogen production from semi-clathrate hydrates. J Am Chem Soc 134:5560–5562 Koh DY, Juwoon HK, Shin W et al (2013) Atomic hydrogen production from semi-clathrate hydrates. J Am Chem Soc 134:5560–5562
99.
Zurück zum Zitat Oldenhof S, de Bruin B, Lutz M et al (2013) Base-free production of H2 by dehydrogenation of formic acid using an iridium-bisMETAMORPhos complex. Chem Eur J 19:11507–11511 Oldenhof S, de Bruin B, Lutz M et al (2013) Base-free production of H2 by dehydrogenation of formic acid using an iridium-bisMETAMORPhos complex. Chem Eur J 19:11507–11511
100.
Zurück zum Zitat Boddien A, Mellmann D, Gärtner F et al (2011) Efficient of dehydrogenation of formic acid using an iron catalyst. Science 333(23):1733–1736 Boddien A, Mellmann D, Gärtner F et al (2011) Efficient of dehydrogenation of formic acid using an iron catalyst. Science 333(23):1733–1736
101.
Zurück zum Zitat Bi QY, Du XL, Liu YM et al (2012) Efficient subnanometric gold-catalyzed hydrogen generation via formic acid decomposition under ambient conditions. J Am Chem Soc 134:8926–8933 Bi QY, Du XL, Liu YM et al (2012) Efficient subnanometric gold-catalyzed hydrogen generation via formic acid decomposition under ambient conditions. J Am Chem Soc 134:8926–8933
102.
Zurück zum Zitat Grasemann M, Laurenczy G (2012) Formic acid as a hydrogen source – recent developments and future trends. Energy Environ Sci 5:8171–8181 Grasemann M, Laurenczy G (2012) Formic acid as a hydrogen source – recent developments and future trends. Energy Environ Sci 5:8171–8181
103.
Zurück zum Zitat Teichmann D, Arlt W, Wasserscheid P et al (2011) A future energy supply based on Liquid Organic Hydrogen Carriers (LOHC). Energy Environ Sci 4:2767–2773 Teichmann D, Arlt W, Wasserscheid P et al (2011) A future energy supply based on Liquid Organic Hydrogen Carriers (LOHC). Energy Environ Sci 4:2767–2773
104.
Zurück zum Zitat Brückner N, Obesser K, Bösmann A et al (2013) Evaluation of industrially applied heat-transfer fluids as liquid organic hydrogen carrier systems. Chem Sus Chem 7(1):229–235. doi:10.1002/cssc.201300426 Brückner N, Obesser K, Bösmann A et al (2013) Evaluation of industrially applied heat-transfer fluids as liquid organic hydrogen carrier systems. Chem Sus Chem 7(1):229–235. doi:10.​1002/​cssc.​201300426
105.
Zurück zum Zitat Teichmann D, Stark K, Müller K et al (2012) Energy storage in residential and commercial buildings via Liquid Organic Hydrogen Carriers (LOHC). Energy Environ Sci 5:9044–9054 Teichmann D, Stark K, Müller K et al (2012) Energy storage in residential and commercial buildings via Liquid Organic Hydrogen Carriers (LOHC). Energy Environ Sci 5:9044–9054
106.
Zurück zum Zitat Eblagon KM, Tam K, Tsang SCE (2012) Comparison of catalytic performance of supported ruthenium and rhodium for hydrogenation of 9-ethylcarbazole for hydrogen storage applications. Energy Environ Sci 5:8621–8630 Eblagon KM, Tam K, Tsang SCE (2012) Comparison of catalytic performance of supported ruthenium and rhodium for hydrogenation of 9-ethylcarbazole for hydrogen storage applications. Energy Environ Sci 5:8621–8630
107.
Zurück zum Zitat Schlapbach L, Züttel A (2001) Hydrogen-storage materials for mobile applications. Nature 414:353–358 Schlapbach L, Züttel A (2001) Hydrogen-storage materials for mobile applications. Nature 414:353–358
108.
Zurück zum Zitat Klebanoff LE, Keller JO (2013) 5 years of hydrogen storage research in the U. S. DOE metal hydride center of excellence (MHCoE). Int J Hydrog Energy 38(11):4533–4576 Klebanoff LE, Keller JO (2013) 5 years of hydrogen storage research in the U. S. DOE metal hydride center of excellence (MHCoE). Int J Hydrog Energy 38(11):4533–4576
109.
Zurück zum Zitat Sutton AD, Burrell AK, Dixon DA et al (2011) Regeneration of ammonia borane spent fuel by direct reaction with hydrazine and liquid ammonia. Science 331(6023):1426–1429 Sutton AD, Burrell AK, Dixon DA et al (2011) Regeneration of ammonia borane spent fuel by direct reaction with hydrazine and liquid ammonia. Science 331(6023):1426–1429
110.
Zurück zum Zitat Lu ZH, Xu Q (2011) Recent progress in boron- and nitrogen-based chemical hydrogen storage. Funct Mater Lett 5(1):1230001-1–1230001-9MathSciNet Lu ZH, Xu Q (2011) Recent progress in boron- and nitrogen-based chemical hydrogen storage. Funct Mater Lett 5(1):1230001-1–1230001-9MathSciNet
111.
Zurück zum Zitat Jiang HL, Xu Q (2011) Catalytic hydrolysis of ammonia borane for chemical hydrogen storage. Catal Today 170:56–63 Jiang HL, Xu Q (2011) Catalytic hydrolysis of ammonia borane for chemical hydrogen storage. Catal Today 170:56–63
112.
Zurück zum Zitat Lu Z-H, Jiang H-L, Yadav M et al (2012) Synergistic catalysis of Au-Co@SiO2 nanospheres in hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage. J Mater Chem 22:5065–5071 Lu Z-H, Jiang H-L, Yadav M et al (2012) Synergistic catalysis of Au-Co@SiO2 nanospheres in hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage. J Mater Chem 22:5065–5071
113.
Zurück zum Zitat Cohen SM (2012) Postsynthetic methods for the functionalization of metal-organic frameworks. Chem Rev 112(2):970–1000 Cohen SM (2012) Postsynthetic methods for the functionalization of metal-organic frameworks. Chem Rev 112(2):970–1000
114.
Zurück zum Zitat Tanabe KK, Cohen SM (2011) Postsynthetic modification of metal-organic frameworks—a progress report. Chem Soc Rev 40:498–519 Tanabe KK, Cohen SM (2011) Postsynthetic modification of metal-organic frameworks—a progress report. Chem Soc Rev 40:498–519
115.
Zurück zum Zitat Wang Z, Cohen SM (2009) Postsynthetic modification of metal-organic frameworks. Chem Soc Rev 38:1315–1329 Wang Z, Cohen SM (2009) Postsynthetic modification of metal-organic frameworks. Chem Soc Rev 38:1315–1329
116.
Zurück zum Zitat Kong GQ, Ou S, Zou C et al (2012) Assembly and post-modification of a metal-organic nanotube for highly efficient catalysis. J Am Chem Soc 134:19851–19857 Kong GQ, Ou S, Zou C et al (2012) Assembly and post-modification of a metal-organic nanotube for highly efficient catalysis. J Am Chem Soc 134:19851–19857
117.
Zurück zum Zitat Fei H, Cahill JF, Prather KA et al (2013) Tandem postsynthetic metal ion and ligand exchange in zeolitic imidazolate frameworks. Inorg Chem 52:4011–4016 Fei H, Cahill JF, Prather KA et al (2013) Tandem postsynthetic metal ion and ligand exchange in zeolitic imidazolate frameworks. Inorg Chem 52:4011–4016
118.
Zurück zum Zitat Genna DT, Wong-Foy AG, Matzge AJ et al (2013) Heterogenization of homogeneous catalysts in metal-organic frameworks via cation exchange. J Am Chem Soc 135:10586–10589 Genna DT, Wong-Foy AG, Matzge AJ et al (2013) Heterogenization of homogeneous catalysts in metal-organic frameworks via cation exchange. J Am Chem Soc 135:10586–10589
119.
Zurück zum Zitat Hoskins BF, Robson R (1990) Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and CuI[4, 4′, 4″, 4′″-tetracyanotetraphenylmethane]BF4 · xC6H5NO2. J Am Chem Soc 112:1546–1554 Hoskins BF, Robson R (1990) Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and CuI[4, 4′, 4″, 4′″-tetracyanotetraphenylmethane]BF4 · xC6H5NO2. J Am Chem Soc 112:1546–1554
120.
Zurück zum Zitat Fujita M, Kwon YJ, Washizu S et al (1994) Preparation, clathration ability, and catalysis of a two-dimensional square network material composed of cadmium (II) and 4,4′-bipyridine. J Am Chem Soc 116:1151–1152 Fujita M, Kwon YJ, Washizu S et al (1994) Preparation, clathration ability, and catalysis of a two-dimensional square network material composed of cadmium (II) and 4,4′-bipyridine. J Am Chem Soc 116:1151–1152
121.
Zurück zum Zitat Dhakshinamoorthy A, Opanasenko M, Cejka J et al (2013) Metal organic frameworks as heterogeneous catalysts for the production of fine chemicals. Catal Sci Technol 3:2509–2540 Dhakshinamoorthy A, Opanasenko M, Cejka J et al (2013) Metal organic frameworks as heterogeneous catalysts for the production of fine chemicals. Catal Sci Technol 3:2509–2540
122.
Zurück zum Zitat Gutowska A, Li L, Shin Y et al (2005) Nanoscaffold mediates hydrogen release and the reactivity of ammonia borane. Angew Chem Int Ed 44(23):3578–3582 Gutowska A, Li L, Shin Y et al (2005) Nanoscaffold mediates hydrogen release and the reactivity of ammonia borane. Angew Chem Int Ed 44(23):3578–3582
123.
Zurück zum Zitat Zhao J, Shi J, Zhang X et al (2010) A soft hydrogen storage material: poly(methylacrylate)-confined ammonia borane with controllable dehydrogenation. Adv Mater 22:394–397 Zhao J, Shi J, Zhang X et al (2010) A soft hydrogen storage material: poly(methylacrylate)-confined ammonia borane with controllable dehydrogenation. Adv Mater 22:394–397
124.
Zurück zum Zitat Xia GL, Li L, Guo ZP et al (2013) Stabilization of NaZn(BH4)3 via nanoconfinement in SBA-15 towards enhanced hydrogen release. J Mater Chem A 1:250–257 Xia GL, Li L, Guo ZP et al (2013) Stabilization of NaZn(BH4)3 via nanoconfinement in SBA-15 towards enhanced hydrogen release. J Mater Chem A 1:250–257
125.
Zurück zum Zitat Appelt C, Slootweg JC, Lammertsma K et al (2013) Reaction of a P/Al-based frustrated lewis pair with ammonia, borane, and amine–boranes: adduct formation and catalytic dehydrogenation. Angew Chem Int Ed 52:4256–4259 Appelt C, Slootweg JC, Lammertsma K et al (2013) Reaction of a P/Al-based frustrated lewis pair with ammonia, borane, and amine–boranes: adduct formation and catalytic dehydrogenation. Angew Chem Int Ed 52:4256–4259
126.
Zurück zum Zitat Tang Z, Chen H, Chen X et al (2012) Graphene oxide based recyclable dehydrogenation of ammonia borane within a hybrid nanostructure. J Am Chem Soc 134:5464–5467 Tang Z, Chen H, Chen X et al (2012) Graphene oxide based recyclable dehydrogenation of ammonia borane within a hybrid nanostructure. J Am Chem Soc 134:5464–5467
127.
Zurück zum Zitat Hu MG, Geanangel RA, Wendlandt WW (1978) The thermal decomposition of ammonia borane. Thermochim Acta 23:249–255 Hu MG, Geanangel RA, Wendlandt WW (1978) The thermal decomposition of ammonia borane. Thermochim Acta 23:249–255
128.
Zurück zum Zitat Guo XD, Zhu GS, Li ZY et al (2006) A lanthanide metal-organic framework with high thermal stability and available Lewis-acid metal sites. Chem Commun 30:3172–3174 Guo XD, Zhu GS, Li ZY et al (2006) A lanthanide metal-organic framework with high thermal stability and available Lewis-acid metal sites. Chem Commun 30:3172–3174
129.
Zurück zum Zitat Li Z, Zhu G, Lu G et al (2010) Ammonia borane confined by a metal-organic framework for chemical hydrogen storage: enhancing kinetics and eliminating ammonia. J Am Chem Soc 132:1490–1491 Li Z, Zhu G, Lu G et al (2010) Ammonia borane confined by a metal-organic framework for chemical hydrogen storage: enhancing kinetics and eliminating ammonia. J Am Chem Soc 132:1490–1491
130.
Zurück zum Zitat Wahab MA, Zhao H, Yao XD (2012) Nano-confined ammonia borane for chemical hydrogen storage. Front Chem Sci Eng 6:27–33 Wahab MA, Zhao H, Yao XD (2012) Nano-confined ammonia borane for chemical hydrogen storage. Front Chem Sci Eng 6:27–33
131.
Zurück zum Zitat Cakey SR, Wong-Foy AG, Matzger AJ (2008) Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores. J Am Chem Soc 130:10870–10871 Cakey SR, Wong-Foy AG, Matzger AJ (2008) Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores. J Am Chem Soc 130:10870–10871
132.
Zurück zum Zitat Remy T, Peter SA, Van der Perre S (2013) Selective dynamics CO2 separations on Mg-MOF-74 at low pressures: a detailed comparison with 13X. J Phys Chem C 117:9301–9310 Remy T, Peter SA, Van der Perre S (2013) Selective dynamics CO2 separations on Mg-MOF-74 at low pressures: a detailed comparison with 13X. J Phys Chem C 117:9301–9310
133.
Zurück zum Zitat Gadipelli S, Ford J, Zhou W et al (2011) Nanoconfinement and catalytic dehydrogenation of ammonia borane by magnesium-metal-organic-framework-74. Chem Eur J 17:6043–6047 Gadipelli S, Ford J, Zhou W et al (2011) Nanoconfinement and catalytic dehydrogenation of ammonia borane by magnesium-metal-organic-framework-74. Chem Eur J 17:6043–6047
134.
Zurück zum Zitat Chui SSY, Lo SMF, Charmant JPH et al (1999) A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science 283:1148–1150 Chui SSY, Lo SMF, Charmant JPH et al (1999) A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science 283:1148–1150
135.
Zurück zum Zitat Yue Y, Qiao Z, Fulvio PF et al (2013) Template-free synthesis of hierarchical porous metal-organic frameworks. J Am Chem Soc 135:9572–9575 Yue Y, Qiao Z, Fulvio PF et al (2013) Template-free synthesis of hierarchical porous metal-organic frameworks. J Am Chem Soc 135:9572–9575
136.
Zurück zum Zitat Wu H, Zhou W, Yildirim T (2009) High-capacity methane storage in metal-organic frameworks M2(dhtp): the important role of open metal sites. J Am Chem Soc 131:4995–5000 Wu H, Zhou W, Yildirim T (2009) High-capacity methane storage in metal-organic frameworks M2(dhtp): the important role of open metal sites. J Am Chem Soc 131:4995–5000
137.
Zurück zum Zitat Rowsell JLC, Yaghi OM (2006) Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks. J Am Chem Soc 128:1304–1315 Rowsell JLC, Yaghi OM (2006) Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks. J Am Chem Soc 128:1304–1315
138.
Zurück zum Zitat Srinivas G, Ford J, Zhou W, Yildirim T (2012) Zn-MOF assisted dehydrogenation of ammonia borane: enhanced kinetics and clean hydrogen generation. Int J Hydrog Energy 37:3633–3638 Srinivas G, Ford J, Zhou W, Yildirim T (2012) Zn-MOF assisted dehydrogenation of ammonia borane: enhanced kinetics and clean hydrogen generation. Int J Hydrog Energy 37:3633–3638
139.
Zurück zum Zitat Millange F, Guillou N, Walton RI et al (2008) Effect of the nature of the metal on the breathing steps in MOFs with dynamic frameworks. Chem Commun 39:4732–4734 Millange F, Guillou N, Walton RI et al (2008) Effect of the nature of the metal on the breathing steps in MOFs with dynamic frameworks. Chem Commun 39:4732–4734
140.
Zurück zum Zitat Scherb C, Schöodel A, Bein T (2008) Directing the structure of metal-organic frameworks by oriented surface growth on an organic monolayer. Angew Chem 120:5861–5863 Scherb C, Schöodel A, Bein T (2008) Directing the structure of metal-organic frameworks by oriented surface growth on an organic monolayer. Angew Chem 120:5861–5863
141.
Zurück zum Zitat Srinivas G, Travis W, Ford J et al (2013) Nanoconfined ammonia borane in a flexible metal-organic framework Fe-MIL-53: clean hydrogen release with fast kinetics. J Mater Chem A 1:4167–4172 Srinivas G, Travis W, Ford J et al (2013) Nanoconfined ammonia borane in a flexible metal-organic framework Fe-MIL-53: clean hydrogen release with fast kinetics. J Mater Chem A 1:4167–4172
142.
Zurück zum Zitat Staubitz A, Rbertson APM, Manners I (2010) Ammonia-Borane and related compounds as dihydrogen sources. Chem Rev 110:4079–4124 Staubitz A, Rbertson APM, Manners I (2010) Ammonia-Borane and related compounds as dihydrogen sources. Chem Rev 110:4079–4124
143.
Zurück zum Zitat Peng Y, Ben T, Jia Y et al (2012) Dehydrogenation of ammonia borane confined by low density porous aromatic framework. J Phys Chem C 116:25694–25700 Peng Y, Ben T, Jia Y et al (2012) Dehydrogenation of ammonia borane confined by low density porous aromatic framework. J Phys Chem C 116:25694–25700
144.
Zurück zum Zitat Férey G, Mellot-Draznieks C, Serre C et al (2005) A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 310:2040–2042 Férey G, Mellot-Draznieks C, Serre C et al (2005) A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 310:2040–2042
145.
Zurück zum Zitat Si X-L, Sun L-X, Xu F, Jiao C-L, Li F, Liu S-S, Zhang J, Song L-F, Jiang C-H, Wang S, Liu Y-L, Sawada Y (2011) Improved hydrogen desorption properties of ammonia borane by Ni-modified metal-organic frameworks. Int J Hydrog Energy 36:6698–6704 Si X-L, Sun L-X, Xu F, Jiao C-L, Li F, Liu S-S, Zhang J, Song L-F, Jiang C-H, Wang S, Liu Y-L, Sawada Y (2011) Improved hydrogen desorption properties of ammonia borane by Ni-modified metal-organic frameworks. Int J Hydrog Energy 36:6698–6704
146.
Zurück zum Zitat Bernt S, Guillerm V, Serre C et al (2011) Direct covalent post-synthetic chemical modification of Cr-MIL-101 using nitrating acid. Chem Commun 47:2838–2840 Bernt S, Guillerm V, Serre C et al (2011) Direct covalent post-synthetic chemical modification of Cr-MIL-101 using nitrating acid. Chem Commun 47:2838–2840
147.
Zurück zum Zitat Gao L, Li CYV, Yung H, Chan K-Y (2013) A functionalized MIL-101(Cr) metal-organic framework for enhanced hydrogen release from ammonia borane at low temperature. Chem Commun 49:10629–10631 Gao L, Li CYV, Yung H, Chan K-Y (2013) A functionalized MIL-101(Cr) metal-organic framework for enhanced hydrogen release from ammonia borane at low temperature. Chem Commun 49:10629–10631
148.
Zurück zum Zitat Aijaz A, Karkamkar A, Choi YJ et al (2012) Immobilizing highly catalytically active Pt nanoparticles inside the pores of metal-organic framework: a double solvents approach. J Am Chem Soc 134:13926–13929 Aijaz A, Karkamkar A, Choi YJ et al (2012) Immobilizing highly catalytically active Pt nanoparticles inside the pores of metal-organic framework: a double solvents approach. J Am Chem Soc 134:13926–13929
149.
Zurück zum Zitat Phan A, Doonan CJ, Uribe-Romo FJ et al (2010) Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc Chem Res 43(1):58–67 Phan A, Doonan CJ, Uribe-Romo FJ et al (2010) Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc Chem Res 43(1):58–67
150.
Zurück zum Zitat Banerjee R, Furukawa H, Britt D et al (2009) Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties. J Am Chem Soc 131:3875–3877 Banerjee R, Furukawa H, Britt D et al (2009) Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties. J Am Chem Soc 131:3875–3877
151.
Zurück zum Zitat Fairen-Jimenez D, Moggach SA, Wharmby MF et al (2011) Opening the gate: framework flexibility in ZIF-8 explored by experiments and simulations. J Am Chem Soc 133:8900–8902 Fairen-Jimenez D, Moggach SA, Wharmby MF et al (2011) Opening the gate: framework flexibility in ZIF-8 explored by experiments and simulations. J Am Chem Soc 133:8900–8902
152.
Zurück zum Zitat Lu G, Hupp JF (2010) Metal-organic frameworks as sensors: a ZIF-8 based Fabry-Pérot devices as a selective sensor for chemical vapors and gases. J Am Chem Soc 132:7832–7833 Lu G, Hupp JF (2010) Metal-organic frameworks as sensors: a ZIF-8 based Fabry-Pérot devices as a selective sensor for chemical vapors and gases. J Am Chem Soc 132:7832–7833
153.
Zurück zum Zitat Zhong RQ, Zou RQ, Nakagawa T et al (2012) Improved hydrogen release from ammonia-borane with ZIF-8. Inorg Chem 51:2728–2730 Zhong RQ, Zou RQ, Nakagawa T et al (2012) Improved hydrogen release from ammonia-borane with ZIF-8. Inorg Chem 51:2728–2730
154.
Zurück zum Zitat Kalidindi SB, Esken D, Fischer RA (2011) B–N chemistry@ZIF-8: dehydrocoupling of dimethylamine borane at room temperature by size-confinement effects. Chem Eur J 17:6594–6597 Kalidindi SB, Esken D, Fischer RA (2011) B–N chemistry@ZIF-8: dehydrocoupling of dimethylamine borane at room temperature by size-confinement effects. Chem Eur J 17:6594–6597
155.
Zurück zum Zitat Schüth F, Bogdanović B, Felderhoff M (2004) Light metal hydrides and complex hydrides for hydrogen storage. Chem Commun 20:2249–2258 Schüth F, Bogdanović B, Felderhoff M (2004) Light metal hydrides and complex hydrides for hydrogen storage. Chem Commun 20:2249–2258
156.
Zurück zum Zitat Gilliard RJ Jr, Abraham MY, Wang Y et al (2012) Carbene-stabilized beryllium borohydride. J Am Chem Soc 134:9953–9955 Gilliard RJ Jr, Abraham MY, Wang Y et al (2012) Carbene-stabilized beryllium borohydride. J Am Chem Soc 134:9953–9955
157.
Zurück zum Zitat Sun T, Wang H, Zhang QA et al (2011) Synergetic effects of hydrogenated Mg3La and TiCl3 on the dehydrogenation of LiBH4. J Mater Chem 21:9179–9184 Sun T, Wang H, Zhang QA et al (2011) Synergetic effects of hydrogenated Mg3La and TiCl3 on the dehydrogenation of LiBH4. J Mater Chem 21:9179–9184
158.
Zurück zum Zitat Wang FH, Liu YF, Gao MX et al (2009) Formation reactions and the thermodynamics and kinetics of dehydrogenation reaction of mixed alanate Na2LiAlH6. J Phys Chem C 113:7978–7984 Wang FH, Liu YF, Gao MX et al (2009) Formation reactions and the thermodynamics and kinetics of dehydrogenation reaction of mixed alanate Na2LiAlH6. J Phys Chem C 113:7978–7984
159.
Zurück zum Zitat Nakamori Y, Orimo S (2008) Borohydrides as hydrogen storage materials. In: Walker G (ed) Solid-state hydrogen storage. Woodhead Publishing, Cambridge, pp 420–449 Nakamori Y, Orimo S (2008) Borohydrides as hydrogen storage materials. In: Walker G (ed) Solid-state hydrogen storage. Woodhead Publishing, Cambridge, pp 420–449
160.
Zurück zum Zitat Zhang Y, Ding H, Liu C et al (2013) Significant effects of graphite fragments on hydrogen storage performances of LiBH4: a first-principles approach. Int J Hydrog Energy 38:13717–13727 Zhang Y, Ding H, Liu C et al (2013) Significant effects of graphite fragments on hydrogen storage performances of LiBH4: a first-principles approach. Int J Hydrog Energy 38:13717–13727
161.
Zurück zum Zitat Rafieudedin QXH, Li P et al (2011) Hydrogen sorption improvement of LiAlH4 catalyzed by Nb2O5 and Cr2O3 nanoparticles. J Phys Chem C 115:13088–13099 Rafieudedin QXH, Li P et al (2011) Hydrogen sorption improvement of LiAlH4 catalyzed by Nb2O5 and Cr2O3 nanoparticles. J Phys Chem C 115:13088–13099
162.
Zurück zum Zitat Muir SS, Yao X (2011) Progress in sodium borohydride as a hydrogen storage material: development of hydrolysis catalysts and reaction system. Int J Hydrog Energy 36:5983–5997 Muir SS, Yao X (2011) Progress in sodium borohydride as a hydrogen storage material: development of hydrolysis catalysts and reaction system. Int J Hydrog Energy 36:5983–5997
163.
Zurück zum Zitat Xiong R, Sang G, Yan X et al (2013) Separation and characterization of the active species in Ti-doped NaAlH4. Chem Commun 49:2046–2048 Xiong R, Sang G, Yan X et al (2013) Separation and characterization of the active species in Ti-doped NaAlH4. Chem Commun 49:2046–2048
164.
Zurück zum Zitat Michel KJ, Ozolin V (2011) Native defect concentrations in NaAlH4 and Na3AlH6. J Phys Chem C 115:21443–21453 Michel KJ, Ozolin V (2011) Native defect concentrations in NaAlH4 and Na3AlH6. J Phys Chem C 115:21443–21453
165.
Zurück zum Zitat Kurban Z, Lovell A, Bennington SM et al (2010) A solution selection model for coaxial electro spinning and its application to nanostructured hydrogen storage materials. J Phys Chem C 114:21201–21213 Kurban Z, Lovell A, Bennington SM et al (2010) A solution selection model for coaxial electro spinning and its application to nanostructured hydrogen storage materials. J Phys Chem C 114:21201–21213
166.
Zurück zum Zitat Nielsen TK, Besenbacherb F, Jensen TR (2011) Nanoconfined hydrides for energy storage. Nanoscale 3:2086–2098 Nielsen TK, Besenbacherb F, Jensen TR (2011) Nanoconfined hydrides for energy storage. Nanoscale 3:2086–2098
167.
Zurück zum Zitat Baldé CP, Hereijgers BPC, Bitter JH et al (2008) Sodium alanate nanoparticle-linking size to hydrogen storage properties. J Am Chem Soc 130:6761–6765 Baldé CP, Hereijgers BPC, Bitter JH et al (2008) Sodium alanate nanoparticle-linking size to hydrogen storage properties. J Am Chem Soc 130:6761–6765
168.
Zurück zum Zitat Kumar LH, Rao CV, Viswanathan B (2013) Catalytic effects of nitrogen-doped grapheme and carbon nanotube additives on hydrogen storage properties of sodium alanate. J Mater Chem A 1:3355–3361 Kumar LH, Rao CV, Viswanathan B (2013) Catalytic effects of nitrogen-doped grapheme and carbon nanotube additives on hydrogen storage properties of sodium alanate. J Mater Chem A 1:3355–3361
169.
Zurück zum Zitat Hsu C-P, Jiang D-H, Lee S-L et al (2013) Buckyball-, carbon nanotube-, graphite-, and graphene-enhanced dehydrogenation of lithium aluminum hydride. Chem Commun 49:8845–8847 Hsu C-P, Jiang D-H, Lee S-L et al (2013) Buckyball-, carbon nanotube-, graphite-, and graphene-enhanced dehydrogenation of lithium aluminum hydride. Chem Commun 49:8845–8847
170.
Zurück zum Zitat Hazrati E, Brpcls G, Wijsde GA (2012) First-principles study of LiBH4 nanoclusters and their hydrogen storage properties. J Phys Chem C 116:18038–18047 Hazrati E, Brpcls G, Wijsde GA (2012) First-principles study of LiBH4 nanoclusters and their hydrogen storage properties. J Phys Chem C 116:18038–18047
171.
Zurück zum Zitat Gao J, Ngene P, Lindemann I et al (2012) Enhanced reversibility of H2 sorption in nanoconfined complex metal hydrides by alkali metal addition. J Mater Chem 22:13209–13215 Gao J, Ngene P, Lindemann I et al (2012) Enhanced reversibility of H2 sorption in nanoconfined complex metal hydrides by alkali metal addition. J Mater Chem 22:13209–13215
172.
Zurück zum Zitat Xia G, Meng Q, Guo Z et al (2013) Nanoconfinement significantly improves the thermodynamics and kinetics of co-infiltrated 2LiBH4–LiAlH4 composites: stable reversibility of hydrogen absorption/resorption. Acta Mater 61:6882–6893 Xia G, Meng Q, Guo Z et al (2013) Nanoconfinement significantly improves the thermodynamics and kinetics of co-infiltrated 2LiBH4–LiAlH4 composites: stable reversibility of hydrogen absorption/resorption. Acta Mater 61:6882–6893
173.
Zurück zum Zitat Nielsen TK, Javadian P, Polanski M et al (2014) Nanoconfined NaAlH4: prolific effects from increased surface area and pore volume. Nanoscale 6:599–607 Nielsen TK, Javadian P, Polanski M et al (2014) Nanoconfined NaAlH4: prolific effects from increased surface area and pore volume. Nanoscale 6:599–607
174.
Zurück zum Zitat Vajeeston P, Sartori S, Ravindran P et al (2012) MgH2 in carbon scaffolds: a combined experimental theoretical investigation. J Phys Chem C 116:21139–21147 Vajeeston P, Sartori S, Ravindran P et al (2012) MgH2 in carbon scaffolds: a combined experimental theoretical investigation. J Phys Chem C 116:21139–21147
175.
Zurück zum Zitat Nielsen TK, Javadian P, Polanski M et al (2013) Nanoconfined NaAlH4: determination of distinct prolific effects from pore size, crystallite size, and surface interactions. J Phys Chem C 116:21046–21051 Nielsen TK, Javadian P, Polanski M et al (2013) Nanoconfined NaAlH4: determination of distinct prolific effects from pore size, crystallite size, and surface interactions. J Phys Chem C 116:21046–21051
176.
Zurück zum Zitat Wahab MA, Jia Y, Jia D et al (2013) Enhanced hydrogen desorption from Mg(BH4)2 by combing nanoconfinement and a Ni catalyst. J Mater Chem A 1:3471–3478 Wahab MA, Jia Y, Jia D et al (2013) Enhanced hydrogen desorption from Mg(BH4)2 by combing nanoconfinement and a Ni catalyst. J Mater Chem A 1:3471–3478
177.
Zurück zum Zitat Ward PA, Teprovich JA Jr, Peters B et al (2013) Reversible hydrogen storage in a LiBH4-C60 nanocomposite. J Phys Chem C 117:22569–22575 Ward PA, Teprovich JA Jr, Peters B et al (2013) Reversible hydrogen storage in a LiBH4-C60 nanocomposite. J Phys Chem C 117:22569–22575
178.
Zurück zum Zitat Ngene P, Adelhelm P, Beale AM et al (2010) LiBH4/SBA-15 nanocomposites prepared by melt infiltration under hydrogen pressure: synthesis and hydrogen sorption properties. J Phys Chem C 114:6163–6168 Ngene P, Adelhelm P, Beale AM et al (2010) LiBH4/SBA-15 nanocomposites prepared by melt infiltration under hydrogen pressure: synthesis and hydrogen sorption properties. J Phys Chem C 114:6163–6168
179.
Zurück zum Zitat Guo L, Jiao L, Li L et al (2013) Enhanced desorption properties of LiBH4 incorporated into mesoporous TiO2. Int J Hydrog Energy 38:162–168 Guo L, Jiao L, Li L et al (2013) Enhanced desorption properties of LiBH4 incorporated into mesoporous TiO2. Int J Hydrog Energy 38:162–168
180.
Zurück zum Zitat Schlesinger HI, Brown HC, Finholt AE et al (1940) Metallo borohydrides. III. lithium borohydride. J Am Chem Soc 62:3429–3435 Schlesinger HI, Brown HC, Finholt AE et al (1940) Metallo borohydrides. III. lithium borohydride. J Am Chem Soc 62:3429–3435
181.
Zurück zum Zitat Züttel A, Wenger P, Rentsch S et al (2003) LiBH4 a new hydrogen storage material. J Power Sources 118:1–7 Züttel A, Wenger P, Rentsch S et al (2003) LiBH4 a new hydrogen storage material. J Power Sources 118:1–7
182.
Zurück zum Zitat Mauron P, Buchter F, Friedrichs O et al (2008) Stability and reversibility of LiBH4. J Phys Chem B 112:906–910 Mauron P, Buchter F, Friedrichs O et al (2008) Stability and reversibility of LiBH4. J Phys Chem B 112:906–910
183.
Zurück zum Zitat Yan Y, Remhof A, Hwang SJ et al (2012) Pressure and temperature dependence of the decomposition pathway of LiBH4. Phys Chem Chem Phys 14:6514–6519 Yan Y, Remhof A, Hwang SJ et al (2012) Pressure and temperature dependence of the decomposition pathway of LiBH4. Phys Chem Chem Phys 14:6514–6519
184.
Zurück zum Zitat Vajo JJ, Olsen GL (2007) Tetrahydroborates as new hydrogen storage materials. Scr Mater 56:829–834 Vajo JJ, Olsen GL (2007) Tetrahydroborates as new hydrogen storage materials. Scr Mater 56:829–834
185.
Zurück zum Zitat Züttel A, Rentsch S, Fischer P et al (2003) Hydrogen storage properties of LiBH4. J Alloys Compd 356–357:515–520 Züttel A, Rentsch S, Fischer P et al (2003) Hydrogen storage properties of LiBH4. J Alloys Compd 356–357:515–520
186.
Zurück zum Zitat Zhang Y, Zhang WS, Wang AQ et al (2007) LiBH4 Nanoparticles supported by disordered mesoporous carbon: hydrogen storage performances and destabilization mechanisms. Int J Hydrog Energy 32:3976–3980 Zhang Y, Zhang WS, Wang AQ et al (2007) LiBH4 Nanoparticles supported by disordered mesoporous carbon: hydrogen storage performances and destabilization mechanisms. Int J Hydrog Energy 32:3976–3980
187.
Zurück zum Zitat Yu XB, Wu Z, Chen QR, Huang TS et al (2007) Improved hydrogen storage properties of LiBH4 destabilized by carbon. Appl Phys Lett 90:034106 Yu XB, Wu Z, Chen QR, Huang TS et al (2007) Improved hydrogen storage properties of LiBH4 destabilized by carbon. Appl Phys Lett 90:034106
188.
Zurück zum Zitat Fang ZZ, Kang XD, Wang P et al (2008) Improved reversible dehydrogenation of lithium borohydride by milling with as-prepared dingle-walled carbon nanotubes. J Phys Chem C 112:17023–17029 Fang ZZ, Kang XD, Wang P et al (2008) Improved reversible dehydrogenation of lithium borohydride by milling with as-prepared dingle-walled carbon nanotubes. J Phys Chem C 112:17023–17029
189.
Zurück zum Zitat Wang PJ, Fang ZZ, Ma LP et al (2008) Effect of SWNTs on the reversible hydrogen storage properties of LiBH4 − MgH2 composite. Int J Hydrog Energy 33:5611–5616 Wang PJ, Fang ZZ, Ma LP et al (2008) Effect of SWNTs on the reversible hydrogen storage properties of LiBH4 − MgH2 composite. Int J Hydrog Energy 33:5611–5616
190.
Zurück zum Zitat Gross AF, Vajo JJ, Van Atta SL et al (2008) Enhanced hydrogen storage kinetics of LiBH4 in nanoporous carbon scaffolds. J Phys Chem C 112:5651–5657 Gross AF, Vajo JJ, Van Atta SL et al (2008) Enhanced hydrogen storage kinetics of LiBH4 in nanoporous carbon scaffolds. J Phys Chem C 112:5651–5657
191.
Zurück zum Zitat Liu X, Peaslee D, Jost CZ et al (2010) Controlling the decomposition pathway of LiBH4 via confinement in highly ordered nanoporous carbon. J Phys Chem C 114:14036–14041 Liu X, Peaslee D, Jost CZ et al (2010) Controlling the decomposition pathway of LiBH4 via confinement in highly ordered nanoporous carbon. J Phys Chem C 114:14036–14041
192.
Zurück zum Zitat Wang PJ, Fang ZZ, Ma LP et al (2010) Effect of carbon addition on hydrogen storage behaviors of Li–Mg–B–H system. Int J Hydrog Energy 35:3072–3075 Wang PJ, Fang ZZ, Ma LP et al (2010) Effect of carbon addition on hydrogen storage behaviors of Li–Mg–B–H system. Int J Hydrog Energy 35:3072–3075
193.
Zurück zum Zitat Zhao-Karger Z, Witter R, Bardají EG et al (2013) Altered reaction pathways of eutectic LiBH4–Mg(BH4)2 by nanoconfinement. J Mater Chem A 1:3379–3386 Zhao-Karger Z, Witter R, Bardají EG et al (2013) Altered reaction pathways of eutectic LiBH4–Mg(BH4)2 by nanoconfinement. J Mater Chem A 1:3379–3386
194.
Zurück zum Zitat Liu X, Peaslee D, Jost CZ et al (2011) Systematic pore-size effects of nanoconfinement of LiBH4: elimination of diborane release and tunable behavior for hydrogen storage applications. Chem Mater 23:1331–1336 Liu X, Peaslee D, Jost CZ et al (2011) Systematic pore-size effects of nanoconfinement of LiBH4: elimination of diborane release and tunable behavior for hydrogen storage applications. Chem Mater 23:1331–1336
195.
Zurück zum Zitat Sun T, Liu J, Jia Y et al (2012) Confined LiBH4: enabling fast hydrogen release at 100 °C. Int J Hydrog Energy 37:18920–18926 Sun T, Liu J, Jia Y et al (2012) Confined LiBH4: enabling fast hydrogen release at 100 °C. Int J Hydrog Energy 37:18920–18926
196.
Zurück zum Zitat Fang ZZ, Wang P, Rufford TE et al (2008) Kinetic- and thermodynamic-based improvements of lithium borohydride incorporated into activated carbon. Acta Mater 56:6257–6263 Fang ZZ, Wang P, Rufford TE et al (2008) Kinetic- and thermodynamic-based improvements of lithium borohydride incorporated into activated carbon. Acta Mater 56:6257–6263
197.
Zurück zum Zitat Remhof A, Mauron P, Züttel A et al (2013) Hydrogen dynamics in nanoconfined lithiumborohydride. J Am Chem Soc 117:3789–3798 Remhof A, Mauron P, Züttel A et al (2013) Hydrogen dynamics in nanoconfined lithiumborohydride. J Am Chem Soc 117:3789–3798
198.
Zurück zum Zitat Nielsen TK, Bosenberg U, Dornheim M et al (2010) A reversible nanoconfined chemical reaction. ACS Nano 4:3903–3908 Nielsen TK, Bosenberg U, Dornheim M et al (2010) A reversible nanoconfined chemical reaction. ACS Nano 4:3903–3908
199.
Zurück zum Zitat Li C, Peng P, Zhou D et al (2011) Research and progress in LiBH4 for hydrogen storage: a review. Int J Hydrog Energy 36:14512–14526 Li C, Peng P, Zhou D et al (2011) Research and progress in LiBH4 for hydrogen storage: a review. Int J Hydrog Energy 36:14512–14526
200.
Zurück zum Zitat Sun W, Li S, Mao J et al (2011) Nanoconfinement of lithium borohydride in Cu-MOFs towards low temperature dehydrogenation. Dalton Trans 40:5673–5676 Sun W, Li S, Mao J et al (2011) Nanoconfinement of lithium borohydride in Cu-MOFs towards low temperature dehydrogenation. Dalton Trans 40:5673–5676
201.
Zurück zum Zitat Gross KJ, Majzoub EH, Spangler SW (2003) The effects of titanium precursors on hydriding properties of alanates. J Alloys Compd 356–357:423–428 Gross KJ, Majzoub EH, Spangler SW (2003) The effects of titanium precursors on hydriding properties of alanates. J Alloys Compd 356–357:423–428
202.
Zurück zum Zitat Claudia W, Pommerin A, Felderhoff M et al (2003) On the state of the titanium and zirconium in Ti- or Zr-doped NaAlH4 hydrogen storage material. Phys Chem Chem Phys 5:5149–5153 Claudia W, Pommerin A, Felderhoff M et al (2003) On the state of the titanium and zirconium in Ti- or Zr-doped NaAlH4 hydrogen storage material. Phys Chem Chem Phys 5:5149–5153
203.
Zurück zum Zitat Bogdanović B, Schwickardi M (1997) Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials. J Alloys Compd 253:1–9 Bogdanović B, Schwickardi M (1997) Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials. J Alloys Compd 253:1–9
204.
Zurück zum Zitat Bogdanović B, Brand RA, Marjanović A et al (2000) Metal-doped sodium aluminium hydrides as potential new hydrogen storage materials. J Alloys Compd 302:36–58 Bogdanović B, Brand RA, Marjanović A et al (2000) Metal-doped sodium aluminium hydrides as potential new hydrogen storage materials. J Alloys Compd 302:36–58
205.
Zurück zum Zitat Vegge T (2006) Equilibrium structure and Ti-catalyzed H2 desorption in NaAlH4 nanoparticles from density functional theory. Phys Chem Chem Phys 8:4853–4861 Vegge T (2006) Equilibrium structure and Ti-catalyzed H2 desorption in NaAlH4 nanoparticles from density functional theory. Phys Chem Chem Phys 8:4853–4861
206.
Zurück zum Zitat Zhao Y, Wang H, Guo J (2011) Energetics and structure of single Ti defects and their influence on the decomposition of NaAlH4. Phys Chem Chem Phys 13:552–562 Zhao Y, Wang H, Guo J (2011) Energetics and structure of single Ti defects and their influence on the decomposition of NaAlH4. Phys Chem Chem Phys 13:552–562
207.
Zurück zum Zitat Frankcombe TJ (2012) Proposed mechanisms for the catalytic activity of Ti in NaAlH4. Chem Rev 112:2164–2178 Frankcombe TJ (2012) Proposed mechanisms for the catalytic activity of Ti in NaAlH4. Chem Rev 112:2164–2178
208.
Zurück zum Zitat Wang P, Kang XD, Cheng HM (2005) Exploration of the nature of active Ti species in metallic Ti-doped NaAlH4. J Phys Chem B 109:20131–20136 Wang P, Kang XD, Cheng HM (2005) Exploration of the nature of active Ti species in metallic Ti-doped NaAlH4. J Phys Chem B 109:20131–20136
209.
Zurück zum Zitat Frankcombe TJ (2013) Catalyzed Rehydrogenation of NaAlH4: Ti and friends are active on NaH surfaces; Pt and friends are not. J Phys Chem C 117:8150–8155 Frankcombe TJ (2013) Catalyzed Rehydrogenation of NaAlH4: Ti and friends are active on NaH surfaces; Pt and friends are not. J Phys Chem C 117:8150–8155
210.
Zurück zum Zitat Xiao X, Fan X, Yu K et al (2009) Catalytic mechanism of new TiC-doped sodium alanate for hydrogen storage. J Phys Chem C 113:20745–20751 Xiao X, Fan X, Yu K et al (2009) Catalytic mechanism of new TiC-doped sodium alanate for hydrogen storage. J Phys Chem C 113:20745–20751
211.
Zurück zum Zitat Li L, Qiu F, Wang Y et al (2012) TiN catalyst for the reversible hydrogen storage performance of sodium alanate system. J Mater Chem 22:13782–13787 Li L, Qiu F, Wang Y et al (2012) TiN catalyst for the reversible hydrogen storage performance of sodium alanate system. J Mater Chem 22:13782–13787
212.
Zurück zum Zitat Suttisawat Y, Rangsunvigit P, Kitiyanan B et al (2007) Catalytic effect of Zr and Hf on hydrogen desorption/absorption of NaAlH4 and LiAlH4. Int J Hydrog Energy 32:1277–1285 Suttisawat Y, Rangsunvigit P, Kitiyanan B et al (2007) Catalytic effect of Zr and Hf on hydrogen desorption/absorption of NaAlH4 and LiAlH4. Int J Hydrog Energy 32:1277–1285
213.
Zurück zum Zitat Fan X, Xiao X, Chen L (2013) Significantly improved hydrogen storage properties of NaAlH4 catalyzed by Ce-based nanoparticles. J Mater Chem A 1:9752–9759 Fan X, Xiao X, Chen L (2013) Significantly improved hydrogen storage properties of NaAlH4 catalyzed by Ce-based nanoparticles. J Mater Chem A 1:9752–9759
214.
Zurück zum Zitat Anton DL (2003) Hydrogen desorption kinetics in transition metal modified NaAlH4. J Alloys Compd 356–357:400–404 Anton DL (2003) Hydrogen desorption kinetics in transition metal modified NaAlH4. J Alloys Compd 356–357:400–404
215.
Zurück zum Zitat Wang J, Ebner AD, Zidan R et al (2005) Synergistic effects of co-dopants on the dehydrogenation kinetics of sodium aluminum hydride. J Alloys Compd 391:245–255 Wang J, Ebner AD, Zidan R et al (2005) Synergistic effects of co-dopants on the dehydrogenation kinetics of sodium aluminum hydride. J Alloys Compd 391:245–255
216.
Zurück zum Zitat Fan X, Xiao X, Chen L et al (2011) Enhanced hydriding–dehydriding performance of CeAl2-doped NaAlH4 and the evolvement of Ce-containing species in the cycling. J Phys Chem C 115:2537–2543 Fan X, Xiao X, Chen L et al (2011) Enhanced hydriding–dehydriding performance of CeAl2-doped NaAlH4 and the evolvement of Ce-containing species in the cycling. J Phys Chem C 115:2537–2543
217.
Zurück zum Zitat Fan X, Xiao X, Chen L et al (2011) Hydriding-dehydriding kinetics and the microstructure of La- and Sm-doped NaAlH4 prepared via direct synthesis method. Int J Hydrog Energy 36:10861–10869 Fan X, Xiao X, Chen L et al (2011) Hydriding-dehydriding kinetics and the microstructure of La- and Sm-doped NaAlH4 prepared via direct synthesis method. Int J Hydrog Energy 36:10861–10869
218.
Zurück zum Zitat Gao J, Adelhelm P, Verkuijlen MHW et al (2010) Confinement of NaAlH4 in nanoporous carbon: impact on H2 release, reversibility, and thermodynamics. J Phys Chem C 114:4675–4682 Gao J, Adelhelm P, Verkuijlen MHW et al (2010) Confinement of NaAlH4 in nanoporous carbon: impact on H2 release, reversibility, and thermodynamics. J Phys Chem C 114:4675–4682
219.
Zurück zum Zitat Lohstroh W, Roth A, Hahn H et al (2010) Thermodynamic effects in nanoscale NaAlH4. Chem Phys Chem 11:789–792 Lohstroh W, Roth A, Hahn H et al (2010) Thermodynamic effects in nanoscale NaAlH4. Chem Phys Chem 11:789–792
220.
Zurück zum Zitat Stephens RD, Gross AF, Van Atta SL et al (2009) The kinetic enhancement of hydrogen cycling in NaAlH4 by melt infusion into nanoporous carbon aerogel. Nanotechnology 20:204018 Stephens RD, Gross AF, Van Atta SL et al (2009) The kinetic enhancement of hydrogen cycling in NaAlH4 by melt infusion into nanoporous carbon aerogel. Nanotechnology 20:204018
221.
Zurück zum Zitat Majzoub EH, Zhou F, Ozoliņš V (2011) First-principles calculated phase diagram for nanoclusters in the Na–Al–H system: a single-step decomposition pathway for NaAlH4. J Phys Chem C 115:2636–2643 Majzoub EH, Zhou F, Ozoliņš V (2011) First-principles calculated phase diagram for nanoclusters in the Na–Al–H system: a single-step decomposition pathway for NaAlH4. J Phys Chem C 115:2636–2643
222.
Zurück zum Zitat Mueller T, Ceder G (2010) Effect of particle size on hydrogen release from sodium alanate nanoparticles. ACS Nano 4:5647–5656 Mueller T, Ceder G (2010) Effect of particle size on hydrogen release from sodium alanate nanoparticles. ACS Nano 4:5647–5656
223.
Zurück zum Zitat Ngene P, van den Berg R, Verkuijlen MHW et al (2011) Reversibility of the hydrogen desorption from NaBH4 confinement in nanoporous. Energy Environ Sci 4:4108–4115 Ngene P, van den Berg R, Verkuijlen MHW et al (2011) Reversibility of the hydrogen desorption from NaBH4 confinement in nanoporous. Energy Environ Sci 4:4108–4115
224.
Zurück zum Zitat Minella CB, Lindemann I, Nolis P et al (2013) NaBH4 confined in ordered mesoporous carbon. Int J Hydrog Energy 38:8829–8837 Minella CB, Lindemann I, Nolis P et al (2013) NaBH4 confined in ordered mesoporous carbon. Int J Hydrog Energy 38:8829–8837
225.
Zurück zum Zitat Adelhelm P, de Jong KP, de Petra PE (2009) How intimate contact with nanoporous carbon benefits the reversible hydrogen desorption from NaH and NaAlH4. Chem Commun 41:6261–6263 Adelhelm P, de Jong KP, de Petra PE (2009) How intimate contact with nanoporous carbon benefits the reversible hydrogen desorption from NaH and NaAlH4. Chem Commun 41:6261–6263
226.
Zurück zum Zitat Bhakta RK, Herberg JL, Jacobs B et al (2009) Metal-organic frameworks as templates for nanoscale NaAlH4. J Am Chem Soc 131:13198–13199 Bhakta RK, Herberg JL, Jacobs B et al (2009) Metal-organic frameworks as templates for nanoscale NaAlH4. J Am Chem Soc 131:13198–13199
227.
Zurück zum Zitat Nhakta RK, Maharrey S, Stavila V et al (2012) Thermodynamics and kinetics of NaAlH4 nanocluster decomposition. Phys Chem Chem Phys 14:8160–8169 Nhakta RK, Maharrey S, Stavila V et al (2012) Thermodynamics and kinetics of NaAlH4 nanocluster decomposition. Phys Chem Chem Phys 14:8160–8169
228.
Zurück zum Zitat Stavila V, Bhakta RK, Alam TM et al (2012) Reversible hydrogen storage by NaAlH4 confined within a titanium-functionalized MOF-74(Mg) nanoreactor. ACS Nano 6:9807–9817 Stavila V, Bhakta RK, Alam TM et al (2012) Reversible hydrogen storage by NaAlH4 confined within a titanium-functionalized MOF-74(Mg) nanoreactor. ACS Nano 6:9807–9817
229.
Zurück zum Zitat Kelly KL, Coronado E, Zhao LL et al (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677 Kelly KL, Coronado E, Zhao LL et al (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677
230.
Zurück zum Zitat Tao AR, Habas S, Yang P (2008) Shape control of colloidal metal nanocrystals. Small 4:310–325 Tao AR, Habas S, Yang P (2008) Shape control of colloidal metal nanocrystals. Small 4:310–325
231.
Zurück zum Zitat Seo JK, Khetan A, Seo MH, Kim H et al (2013) First-principles thermodynamic study of the electrochemical stability of Pt nanoparticles in fuel cell applications. J Power Sources 238:137–143 Seo JK, Khetan A, Seo MH, Kim H et al (2013) First-principles thermodynamic study of the electrochemical stability of Pt nanoparticles in fuel cell applications. J Power Sources 238:137–143
232.
Zurück zum Zitat Kim YH, Zhang L, Yu T et al (2013) Droplet-based microreactors for continuous production of palladium nanocrystals with controlled sizes and shapes. Small 9:3462–3467 Kim YH, Zhang L, Yu T et al (2013) Droplet-based microreactors for continuous production of palladium nanocrystals with controlled sizes and shapes. Small 9:3462–3467
233.
Zurück zum Zitat Chen Y, Fernandes AA, Erbe A (2013) Control of shape and surface crystallography of gold nanocrystals for electrochemical applications. Electrochim Acta 113:810–816 Chen Y, Fernandes AA, Erbe A (2013) Control of shape and surface crystallography of gold nanocrystals for electrochemical applications. Electrochim Acta 113:810–816
234.
Zurück zum Zitat Gong J, Zhou F, Li Z et al (2013) Controlled synthesis of non-epitaxially grown Pd@Ag core–shell nanocrystals of interesting optical performance. Chem Commun 49:4379–4381 Gong J, Zhou F, Li Z et al (2013) Controlled synthesis of non-epitaxially grown Pd@Ag core–shell nanocrystals of interesting optical performance. Chem Commun 49:4379–4381
235.
Zurück zum Zitat Kang Y, Li M, Cai Y et al (2013) Heterogeneous catalysts need not be so “Heterogeneous”: monodisperse Pt nanocrystals by combining shape-controlled synthesis and purification by colloidal recrystallization. J Am Chem Soc 135:2741–2747 Kang Y, Li M, Cai Y et al (2013) Heterogeneous catalysts need not be so “Heterogeneous”: monodisperse Pt nanocrystals by combining shape-controlled synthesis and purification by colloidal recrystallization. J Am Chem Soc 135:2741–2747
236.
Zurück zum Zitat Quan Z, Wang Y, Fang J (2013) High-index faceted noble metal nanocrystals. Acc Chem Res 46:191–202 Quan Z, Wang Y, Fang J (2013) High-index faceted noble metal nanocrystals. Acc Chem Res 46:191–202
237.
Zurück zum Zitat Zhang Q, Le I, Joo JB (2013) Core-shell nanostructured catalysts. Acc Chem Res 46:1816–1824 Zhang Q, Le I, Joo JB (2013) Core-shell nanostructured catalysts. Acc Chem Res 46:1816–1824
238.
Zurück zum Zitat Guo H, Chen Y, Ping H et al (2013) Facile synthesis of Cu and Cu@Cu–Ni nanocubes and nanowires in hydrophobic solution in the presence of nickel and chloride ions. Nanoscale 5:2394–2402 Guo H, Chen Y, Ping H et al (2013) Facile synthesis of Cu and Cu@Cu–Ni nanocubes and nanowires in hydrophobic solution in the presence of nickel and chloride ions. Nanoscale 5:2394–2402
239.
Zurück zum Zitat Sun Y (2013) Controlled synthesis of colloidal silver nanoparticles in organic solutions: empirical rules for nucleation engineering. Chem Soc Rev 42:2497–2511 Sun Y (2013) Controlled synthesis of colloidal silver nanoparticles in organic solutions: empirical rules for nucleation engineering. Chem Soc Rev 42:2497–2511
240.
Zurück zum Zitat Burda C, Chen X, Narayanan R et al (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102 Burda C, Chen X, Narayanan R et al (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102
241.
Zurück zum Zitat Moghimi N, Abdellah M, Thomas JP et al (2013) Bimetallic FeNi concave nanocubes and nanocages. J Am Chem Soc 135:10958–10961 Moghimi N, Abdellah M, Thomas JP et al (2013) Bimetallic FeNi concave nanocubes and nanocages. J Am Chem Soc 135:10958–10961
242.
Zurück zum Zitat Aslan K, Wu M, Lakowicz JR et al (2007) Fluorescent core-shell Ag@SiO2 nanocomposites for metal-enhanced fluorescence and single nanoparticle sensing platforms. J Am Chem Soc 129:1524–1525 Aslan K, Wu M, Lakowicz JR et al (2007) Fluorescent core-shell Ag@SiO2 nanocomposites for metal-enhanced fluorescence and single nanoparticle sensing platforms. J Am Chem Soc 129:1524–1525
243.
Zurück zum Zitat Joo SH, Park JY, Tsung C-K et al (2009) Thermally stable Pt/mesoporous silica core-shell nanocatalysts for high-temperature reactions. Nat Mater 8:126–131 Joo SH, Park JY, Tsung C-K et al (2009) Thermally stable Pt/mesoporous silica core-shell nanocatalysts for high-temperature reactions. Nat Mater 8:126–131
244.
Zurück zum Zitat Joo SH, Choi SJ, Oh I et al (2001) Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature 412:169–172 Joo SH, Choi SJ, Oh I et al (2001) Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature 412:169–172
245.
Zurück zum Zitat Song H, Rioux RM, Hoefelmeyer JD et al (2006) Hydrothermal growth of mesoporous SBA-15 silica in the presence of PVP-stabilized Pt nanoparticles: synthesis, characterization, and catalytic properties. J Am Chem Soc 128:3027–3037 Song H, Rioux RM, Hoefelmeyer JD et al (2006) Hydrothermal growth of mesoporous SBA-15 silica in the presence of PVP-stabilized Pt nanoparticles: synthesis, characterization, and catalytic properties. J Am Chem Soc 128:3027–3037
246.
Zurück zum Zitat Lim D-W, Yoon JW, Ryu KY et al (2012) Magnesium nanocrystals embedded in a metal-organic framework: hybrid hydrogen storage with synergistic effect on physic and chemisorption. Angew Chem Int Ed 51:9814–9817 Lim D-W, Yoon JW, Ryu KY et al (2012) Magnesium nanocrystals embedded in a metal-organic framework: hybrid hydrogen storage with synergistic effect on physic and chemisorption. Angew Chem Int Ed 51:9814–9817
247.
Zurück zum Zitat Park YK, Choi SB, Nam HJ et al (2010) Catalytic nickel nanoparticles embedded in a mesoporous metal-organic framework. Chem Commun 46:3086–3088 Park YK, Choi SB, Nam HJ et al (2010) Catalytic nickel nanoparticles embedded in a mesoporous metal-organic framework. Chem Commun 46:3086–3088
248.
Zurück zum Zitat Yadav M, Aijaz A, Xu Q (2012) Highly catalytically active palladium nanoparticles incorporated inside metal-organic framework pores by double solvents method. Funct Mater Lett 5:1250039–1250042 Yadav M, Aijaz A, Xu Q (2012) Highly catalytically active palladium nanoparticles incorporated inside metal-organic framework pores by double solvents method. Funct Mater Lett 5:1250039–1250042
249.
Zurück zum Zitat Hermannsdörfer J, Friedrich M, Kempe R (2013) Colloidal size effect and metal-particle migration in M@MOF/PCP catalysis. Chem Eur J 19:13652–13657 Hermannsdörfer J, Friedrich M, Kempe R (2013) Colloidal size effect and metal-particle migration in M@MOF/PCP catalysis. Chem Eur J 19:13652–13657
250.
Zurück zum Zitat Li Z, Zeng HC (2013) Surface and bulk integrations of single-layered Au or Ag nanoparticles onto designated crystal planes {110} or {100} of ZIF-8. Chem Mater 25:1761–1768 Li Z, Zeng HC (2013) Surface and bulk integrations of single-layered Au or Ag nanoparticles onto designated crystal planes {110} or {100} of ZIF-8. Chem Mater 25:1761–1768
251.
Zurück zum Zitat Wu R, Qian X, Zhou K et al (2013) Highly dispersed Au nanoparticles immobilized on Zr-based metal-organic frameworks as heterostructured catalyst for CO oxidation. J Mater Chem A 1:14294–14299 Wu R, Qian X, Zhou K et al (2013) Highly dispersed Au nanoparticles immobilized on Zr-based metal-organic frameworks as heterostructured catalyst for CO oxidation. J Mater Chem A 1:14294–14299
252.
Zurück zum Zitat Pan Y, Yuan B, Li Y et al (2010) Multifunctional catalysis by Pd@MIL-101: one-step synthesis of methyl isobutyl ketone over palladium nanoparticles deposited on a metal-organic framework. Chem Commun 46:2280–2282 Pan Y, Yuan B, Li Y et al (2010) Multifunctional catalysis by Pd@MIL-101: one-step synthesis of methyl isobutyl ketone over palladium nanoparticles deposited on a metal-organic framework. Chem Commun 46:2280–2282
253.
Zurück zum Zitat Li H, Zhu Z, Zhang F et al (2011) Palladium nanoparticles confined in the cages of MIL-101: an efficient catalyst for the one-pot indole synthesis in water. ACS Catal 1:1604–1612MathSciNet Li H, Zhu Z, Zhang F et al (2011) Palladium nanoparticles confined in the cages of MIL-101: an efficient catalyst for the one-pot indole synthesis in water. ACS Catal 1:1604–1612MathSciNet
254.
Zurück zum Zitat Shen L, Wu W, Liang R et al (2013) Highly dispersed palladium nanoparticles anchored on UiO-66(NH2) metal-organic framework as a reusable and dual functional visible-light-driven photocatalyst. Nanoscale 5:9374–9382 Shen L, Wu W, Liang R et al (2013) Highly dispersed palladium nanoparticles anchored on UiO-66(NH2) metal-organic framework as a reusable and dual functional visible-light-driven photocatalyst. Nanoscale 5:9374–9382
255.
Zurück zum Zitat Meilikhov M, Yusenko K, Esken D et al (2010) Selective palladium-loaded MIL-101 catalysts. Eur J Inorg Chem 2010:3701–3714 Meilikhov M, Yusenko K, Esken D et al (2010) Selective palladium-loaded MIL-101 catalysts. Eur J Inorg Chem 2010:3701–3714
256.
Zurück zum Zitat Cheon YE, Suh MP (2009) Enhanced hydrogen storage by palladium nanoparticles fabricated in a redox-active metal-organic framework. Angew Chem Int Ed 48:2899–2903 Cheon YE, Suh MP (2009) Enhanced hydrogen storage by palladium nanoparticles fabricated in a redox-active metal-organic framework. Angew Chem Int Ed 48:2899–2903
257.
Zurück zum Zitat Aijaz A, Akita T, Tsumori N, Xu Q (2013) Metal-organic framework-immobilized polyhedral metal nanocrystals: reduction at solid–gas interface, metal segregation, core–shell structure, and high catalytic activity. J Am Chem Soc 135:16356–16359 Aijaz A, Akita T, Tsumori N, Xu Q (2013) Metal-organic framework-immobilized polyhedral metal nanocrystals: reduction at solid–gas interface, metal segregation, core–shell structure, and high catalytic activity. J Am Chem Soc 135:16356–16359
258.
Zurück zum Zitat Khajavi H, Stil HA, Kuipers PCEH et al (2013) Shape and transition state selective hydrogenations using egg-shell Pt-MIL-101(Cr) catalyst. ACS Catal 3:2617–2626 Khajavi H, Stil HA, Kuipers PCEH et al (2013) Shape and transition state selective hydrogenations using egg-shell Pt-MIL-101(Cr) catalyst. ACS Catal 3:2617–2626
259.
Zurück zum Zitat Huang Y, Lin Z, Cao R (2011) Palladium nanoparticles encapsulated in a metal-organic framework as efficient heterogeneous catalysts for direct C2 arylation of indoles. Chem Eur J 17:12706–12712 Huang Y, Lin Z, Cao R (2011) Palladium nanoparticles encapsulated in a metal-organic framework as efficient heterogeneous catalysts for direct C2 arylation of indoles. Chem Eur J 17:12706–12712
260.
Zurück zum Zitat Yadav M, Xu Q (2013) Catalytic chromium reduction using formic acid and metal nanoparticles immobilized in a metal-organic framework. Chem Commun 49:3327–3329 Yadav M, Xu Q (2013) Catalytic chromium reduction using formic acid and metal nanoparticles immobilized in a metal-organic framework. Chem Commun 49:3327–3329
261.
Zurück zum Zitat Zlotea C, Campesi R, Cuevas F et al (2013) Pd nanoparticles embedded into a metal-organic framework: synthesis, structural characteristics, and hydrogen sorption properties. J Am Chem Soc 132:2991–2997 Zlotea C, Campesi R, Cuevas F et al (2013) Pd nanoparticles embedded into a metal-organic framework: synthesis, structural characteristics, and hydrogen sorption properties. J Am Chem Soc 132:2991–2997
262.
Zurück zum Zitat Wu F, Qiu L-G, Ke F, Jiang X (2013) Copper nanoparticles embedded in metal-organic framework MIL-101(Cr) as a high performance catalyst for reduction of aromatic nitro compounds. Inorg Chem Commun 32:5–8 Wu F, Qiu L-G, Ke F, Jiang X (2013) Copper nanoparticles embedded in metal-organic framework MIL-101(Cr) as a high performance catalyst for reduction of aromatic nitro compounds. Inorg Chem Commun 32:5–8
263.
Zurück zum Zitat Jiang HL, Akita T, Ishida T et al (2011) Synergistic catalysis of Au@Ag core-shell nanoparticles stabilized on metal-organic framework. J Am Chem Soc 133:1304–1313 Jiang HL, Akita T, Ishida T et al (2011) Synergistic catalysis of Au@Ag core-shell nanoparticles stabilized on metal-organic framework. J Am Chem Soc 133:1304–1313
264.
Zurück zum Zitat Long J, Liu H, Liao S et al (2013) Selective oxidation of saturated hydrocarbons using Au–Pd alloy nanoparticles supported on metal-organic frameworks. ACS Catal 3:647–654 Long J, Liu H, Liao S et al (2013) Selective oxidation of saturated hydrocarbons using Au–Pd alloy nanoparticles supported on metal-organic frameworks. ACS Catal 3:647–654
265.
Zurück zum Zitat Chen G, Wu S, Liu H et al (2013) Palladium supported on an acidic metal-organic framework as an efficient catalyst in selective aerobic oxidation of alcohols. Green Chem 15:230–235 Chen G, Wu S, Liu H et al (2013) Palladium supported on an acidic metal-organic framework as an efficient catalyst in selective aerobic oxidation of alcohols. Green Chem 15:230–235
266.
Zurück zum Zitat Antonels NC, Meijboom R (2013) Preparation of well-defined dendrimer Encapsulated ruthenium nanoparticles and their evaluation in the reduction of 4-nitrophenol according to the Langmuir–Hinshelwood approach. Langmuir 29:13433–13442 Antonels NC, Meijboom R (2013) Preparation of well-defined dendrimer Encapsulated ruthenium nanoparticles and their evaluation in the reduction of 4-nitrophenol according to the Langmuir–Hinshelwood approach. Langmuir 29:13433–13442
267.
Zurück zum Zitat Zhao Y, Zhang J, Song J et al (2011) Ru nanoparticles immobilized on metal-organic framework nanorods by supercritical CO2-methanol solution: highly efficient catalyst. Green Chem 13:2078–2082 Zhao Y, Zhang J, Song J et al (2011) Ru nanoparticles immobilized on metal-organic framework nanorods by supercritical CO2-methanol solution: highly efficient catalyst. Green Chem 13:2078–2082
268.
Zurück zum Zitat Li PZ, Aranishi K, Xu Q (2012) ZIF-8 immobilized nickel nanoparticles: highly effective catalysts for hydrogen generation from hydrolysis of ammonia borane. Chem Commun 48:3173–3175 Li PZ, Aranishi K, Xu Q (2012) ZIF-8 immobilized nickel nanoparticles: highly effective catalysts for hydrogen generation from hydrolysis of ammonia borane. Chem Commun 48:3173–3175
269.
Zurück zum Zitat Huang XC, Lin YY, Zhang JP et al (2006) Ligand-directed strategy for zeolite-type metal-organic frameworks: Zinc(II) imidazolates with unusual zeolitic topologies. Angew Chem Int Ed 45:1557–1559 Huang XC, Lin YY, Zhang JP et al (2006) Ligand-directed strategy for zeolite-type metal-organic frameworks: Zinc(II) imidazolates with unusual zeolitic topologies. Angew Chem Int Ed 45:1557–1559
270.
Zurück zum Zitat Hermes S, Schröter MK, Schmid R et al (2005) Metal@MOF: loading of highly porous coordination polymers host lattices by metal organic chemical vapor deposition. Angew Chem Int Ed 44:6237–6241 Hermes S, Schröter MK, Schmid R et al (2005) Metal@MOF: loading of highly porous coordination polymers host lattices by metal organic chemical vapor deposition. Angew Chem Int Ed 44:6237–6241
271.
Zurück zum Zitat Gu X, Lu ZH, Jiang HL et al (2011) Synergistic catalysis of metal-organic framework-immobilized Au-Pd nanoparticles in dehydrogenation of formic acid for chemical hydrogen storage. J Am Chem Soc 133:11822–11825 Gu X, Lu ZH, Jiang HL et al (2011) Synergistic catalysis of metal-organic framework-immobilized Au-Pd nanoparticles in dehydrogenation of formic acid for chemical hydrogen storage. J Am Chem Soc 133:11822–11825
272.
Zurück zum Zitat Zahmakiran M, Ozkar S (2013) Transition metal nanoparticles in catalysis for the hydrogen generation from the hydrolysis of ammonia borane. Top Catal 56:1171–1183 Zahmakiran M, Ozkar S (2013) Transition metal nanoparticles in catalysis for the hydrogen generation from the hydrolysis of ammonia borane. Top Catal 56:1171–1183
273.
Zurück zum Zitat Chandra M, Xu Q (2007) Room temperature hydrogen generation from aqueous ammonia-borane using noble metal nano-clusters as highly active catalysts. J Power Sources 168:135–142 Chandra M, Xu Q (2007) Room temperature hydrogen generation from aqueous ammonia-borane using noble metal nano-clusters as highly active catalysts. J Power Sources 168:135–142
274.
Zurück zum Zitat Zhu Q-L, Li J, Xu Q (2013) Immobilizing metal nanoparticles to metal-organic frameworks with size and location control for optimizing catalytic performance. J Am Chem Soc 135:10210–10213 Zhu Q-L, Li J, Xu Q (2013) Immobilizing metal nanoparticles to metal-organic frameworks with size and location control for optimizing catalytic performance. J Am Chem Soc 135:10210–10213
275.
Zurück zum Zitat Yan J-M, Zhang X-B, Han S et al (2008) Iron-nanoparticle-catalyzed hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage. Angew Chem Int Ed 47:2287–2289 Yan J-M, Zhang X-B, Han S et al (2008) Iron-nanoparticle-catalyzed hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage. Angew Chem Int Ed 47:2287–2289
276.
Zurück zum Zitat Yan J-M, Zhang X-B, Akita T et al (2010) One-step seeding growth of magnetically recyclable Au@Co core−shell nanoparticles: highly efficient catalyst for hydrolytic dehydrogenation of ammonia borane. J Am Chem Soc 132:5326–5327 Yan J-M, Zhang X-B, Akita T et al (2010) One-step seeding growth of magnetically recyclable Au@Co core−shell nanoparticles: highly efficient catalyst for hydrolytic dehydrogenation of ammonia borane. J Am Chem Soc 132:5326–5327
277.
Zurück zum Zitat Li PZ, Aijaz A, Xu Q (2012) Highly dispersed surfactant – free nickel nanoparticles and their remarkable catalytic activity in the hydrolysis of ammonia borane for hydrogen generation. Angew Chem Int Ed 47:6753–6756 Li PZ, Aijaz A, Xu Q (2012) Highly dispersed surfactant – free nickel nanoparticles and their remarkable catalytic activity in the hydrolysis of ammonia borane for hydrogen generation. Angew Chem Int Ed 47:6753–6756
278.
Zurück zum Zitat Sanyal U, Demirci UB, Jagirdar BR et al (2011) Hydrolysis of ammonia borane as a hydrogen source: fundamental issues and potential solutions towards implementation. ChemSusChem 4:1731–1739 Sanyal U, Demirci UB, Jagirdar BR et al (2011) Hydrolysis of ammonia borane as a hydrogen source: fundamental issues and potential solutions towards implementation. ChemSusChem 4:1731–1739
279.
Zurück zum Zitat Tranchmontagne DJ, Hunt JR, Yaghi OM (2008) Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0. Tetrahedron 64:8553–8557 Tranchmontagne DJ, Hunt JR, Yaghi OM (2008) Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0. Tetrahedron 64:8553–8557
280.
Zurück zum Zitat Gucan M, Zahmakiran M, Özkar S (2014) Palladium(0) nanoparticles supported on metal organic framework as highly active and reusable nanocatalyst in dehydrogenation of dimethylamine-borane. Appl Catal B Environ 147:394–401 Gucan M, Zahmakiran M, Özkar S (2014) Palladium(0) nanoparticles supported on metal organic framework as highly active and reusable nanocatalyst in dehydrogenation of dimethylamine-borane. Appl Catal B Environ 147:394–401
281.
Zurück zum Zitat Zheng M, Cheng R, Chen X et al (2005) A novel approach for CO-free H2 production via catalytic decomposition of hydrazine. Int J Hydrog Energy 30:1081–1089 Zheng M, Cheng R, Chen X et al (2005) A novel approach for CO-free H2 production via catalytic decomposition of hydrazine. Int J Hydrog Energy 30:1081–1089
282.
Zurück zum Zitat Chen X, Zhang T, Xia L et al (2002) Catalytic decomposition of hydrazine over supported molybdenum nitride catalysts in a monopropellant thruster. Catal Lett 79:21–25 Chen X, Zhang T, Xia L et al (2002) Catalytic decomposition of hydrazine over supported molybdenum nitride catalysts in a monopropellant thruster. Catal Lett 79:21–25
283.
Zurück zum Zitat Zheng M, Chen X, Cheng N et al (2005) Catalytic decomposition of hydrazine on iron nitride catalysts. Catal Commun 7:187–191 Zheng M, Chen X, Cheng N et al (2005) Catalytic decomposition of hydrazine on iron nitride catalysts. Catal Commun 7:187–191
284.
Zurück zum Zitat Chen X, Zhang T, Ying P et al (2002) A novel catalyst for hydrazine decomposition: molybdenum carbide supported on γ-Al2O3. Chem Commun 2:288–289 Chen X, Zhang T, Ying P et al (2002) A novel catalyst for hydrazine decomposition: molybdenum carbide supported on γ-Al2O3. Chem Commun 2:288–289
285.
Zurück zum Zitat Chen X, Zhang T, Zheng M et al (2004) The reaction route and active site of catalytic decomposition of hydrazine over molybdenum nitride catalyst. J Catal 224:473–478 Chen X, Zhang T, Zheng M et al (2004) The reaction route and active site of catalytic decomposition of hydrazine over molybdenum nitride catalyst. J Catal 224:473–478
286.
Zurück zum Zitat Al-Haydari YK, Saleh JM, Matloob MH (1985) Adsorption and decomposition of hydrazine on metal films of iron, nickel, and copper. J Phys Chem 89:3286–3290 Al-Haydari YK, Saleh JM, Matloob MH (1985) Adsorption and decomposition of hydrazine on metal films of iron, nickel, and copper. J Phys Chem 89:3286–3290
287.
Zurück zum Zitat Alberas DJ, Kiss J, Liu ZM et al (1992) Surface chemistry of hydrazine on Pt (111). Surf Sci 278:51–61 Alberas DJ, Kiss J, Liu ZM et al (1992) Surface chemistry of hydrazine on Pt (111). Surf Sci 278:51–61
288.
Zurück zum Zitat Prasad J, Gland JL (1991) Hydrazine decomposition on a clean rhodium surface: a temperature programmed reaction spectroscopy study. Langmuir 7:722–726 Prasad J, Gland JL (1991) Hydrazine decomposition on a clean rhodium surface: a temperature programmed reaction spectroscopy study. Langmuir 7:722–726
289.
Zurück zum Zitat Hazari N (2010) Homogeneous iron complexes for the conversion of dinitrogen into ammonia and hydrazine. Chem Soc Rev 39:4044–4056 Hazari N (2010) Homogeneous iron complexes for the conversion of dinitrogen into ammonia and hydrazine. Chem Soc Rev 39:4044–4056
290.
Zurück zum Zitat Chin JM, Schrock RR, Müller P (2010) Synthesis of diamidopyrrolyl molybdenum complexes relevant to reduction of dinitrogen to ammonia. Inorg Chem 49:7904–7916 Chin JM, Schrock RR, Müller P (2010) Synthesis of diamidopyrrolyl molybdenum complexes relevant to reduction of dinitrogen to ammonia. Inorg Chem 49:7904–7916
291.
Zurück zum Zitat Murakami T, Nishikiori T, Nohira T, Ito Y (2003) Electrolytic synthesis of ammonia in molten salts under atmospheric pressure. J Am Chem Soc 125:334–335 Murakami T, Nishikiori T, Nohira T, Ito Y (2003) Electrolytic synthesis of ammonia in molten salts under atmospheric pressure. J Am Chem Soc 125:334–335
292.
Zurück zum Zitat Sridhar S, Srinivasan T, Virendra U, Khan AA (2003) Pervaporation of ketazine aqueous layer in production of hydrazine hydrate by peroxide process. Chem Eng J 94:51–56 Sridhar S, Srinivasan T, Virendra U, Khan AA (2003) Pervaporation of ketazine aqueous layer in production of hydrazine hydrate by peroxide process. Chem Eng J 94:51–56
293.
Zurück zum Zitat Hayashi H (1998) Hydrazine synthesis: commercial routes, catalysis and intermediates. Res Chem Intermed 24:183–196 Hayashi H (1998) Hydrazine synthesis: commercial routes, catalysis and intermediates. Res Chem Intermed 24:183–196
294.
Zurück zum Zitat Hayashi H (1990) Hydrazine synthesis by a catalytic oxidation process. Catal Rev 32:229–277 Hayashi H (1990) Hydrazine synthesis by a catalytic oxidation process. Catal Rev 32:229–277
295.
Zurück zum Zitat Singh KS, Zhang X-B, Xu Q (2009) Room-temperature hydrogen generation from hydrous hydrazine for chemical hydrogen storage. J Am Chem Soc 131:9894–9895 Singh KS, Zhang X-B, Xu Q (2009) Room-temperature hydrogen generation from hydrous hydrazine for chemical hydrogen storage. J Am Chem Soc 131:9894–9895
296.
Zurück zum Zitat Singh KS, Xu Q (2010) Bimetallic Ni−Pt nanocatalysts for selective decomposition of hydrazine in aqueous solution to hydrogen at room temperature for chemical hydrogen storage. Inorg Chem 49:6148–6152 Singh KS, Xu Q (2010) Bimetallic Ni−Pt nanocatalysts for selective decomposition of hydrazine in aqueous solution to hydrogen at room temperature for chemical hydrogen storage. Inorg Chem 49:6148–6152
297.
Zurück zum Zitat Singh KS, Xu Q (2010) Bimetallic nickel-iridium nanocatalysts for hydrogen generation by decomposition of hydrous hydrazine. Chem Commun 46:6545–6547 Singh KS, Xu Q (2010) Bimetallic nickel-iridium nanocatalysts for hydrogen generation by decomposition of hydrous hydrazine. Chem Commun 46:6545–6547
298.
Zurück zum Zitat Singh KS, Iizuka Y, Xu Q (2011) Nickel-palladium nanoparticle catalyzed hydrogen generation from hydrous hydrazine for chemical hydrogen storage. Int J Hydrog Energy 36:11794–11801 Singh KS, Iizuka Y, Xu Q (2011) Nickel-palladium nanoparticle catalyzed hydrogen generation from hydrous hydrazine for chemical hydrogen storage. Int J Hydrog Energy 36:11794–11801
299.
Zurück zum Zitat Singh KS, Lu ZH, Xu Q (2011) Temperature-induced enhancement of catalytic performance in selective hydrogen generation from hydrous hydrazine with Ni-based nanocatalysts for chemical hydrogen storage. Eur J Inorg Chem 2011:2232–2237 Singh KS, Lu ZH, Xu Q (2011) Temperature-induced enhancement of catalytic performance in selective hydrogen generation from hydrous hydrazine with Ni-based nanocatalysts for chemical hydrogen storage. Eur J Inorg Chem 2011:2232–2237
300.
Zurück zum Zitat Singh KS, Singh KA, Aranishi K, Xu Q (2011) Noble-metal-free bimetallic nanoparticle-catalyzed selective hydrogen generation from hydrous hydrazine for chemical hydrogen storage. J Am Chem Soc 133:19638–19641 Singh KS, Singh KA, Aranishi K, Xu Q (2011) Noble-metal-free bimetallic nanoparticle-catalyzed selective hydrogen generation from hydrous hydrazine for chemical hydrogen storage. J Am Chem Soc 133:19638–19641
301.
Zurück zum Zitat Singh KS, Xu Q (2009) Complete conversion of hydrous hydrazine to hydrogen at room temperature for chemical hydrogen storage. J Am Chem Soc 131:18032–18033 Singh KS, Xu Q (2009) Complete conversion of hydrous hydrazine to hydrogen at room temperature for chemical hydrogen storage. J Am Chem Soc 131:18032–18033
302.
Zurück zum Zitat Singh KA, Xu Q (2013) Synergistic catalysis over bimetallic alloy nanoparticles. ChemCatChem 5:652–676 Singh KA, Xu Q (2013) Synergistic catalysis over bimetallic alloy nanoparticles. ChemCatChem 5:652–676
303.
Zurück zum Zitat Wang J, Zhang X, Wang Z, Wang L, Zhang Y (2012) Rhodium–nickel nanoparticles grown on graphene as highly efficient catalyst for complete decomposition of hydrous hydrazine at room temperature for chemical hydrogen storage. Energy Environ Sci 5:6885–6888 Wang J, Zhang X, Wang Z, Wang L, Zhang Y (2012) Rhodium–nickel nanoparticles grown on graphene as highly efficient catalyst for complete decomposition of hydrous hydrazine at room temperature for chemical hydrogen storage. Energy Environ Sci 5:6885–6888
304.
Zurück zum Zitat Tong DG, Tang DM, Chu W, Gua GF, Wu P (2013) Monodisperse Ni3Fe single-crystalline nanospheres as a highly efficient catalyst for the complete conversion of hydrous hydrazine to hydrogen at room temperature. J Mater Chem A 1:6425–6432 Tong DG, Tang DM, Chu W, Gua GF, Wu P (2013) Monodisperse Ni3Fe single-crystalline nanospheres as a highly efficient catalyst for the complete conversion of hydrous hydrazine to hydrogen at room temperature. J Mater Chem A 1:6425–6432
305.
Zurück zum Zitat Singh KA, Xu Q (2013) Metal-organic framework supported bimetallic Ni-Pt nanoparticles as high-performance catalysts for hydrogen generation from hydrazine in aqueous solution. Chem Cat Chem 5:3000–3004 Singh KA, Xu Q (2013) Metal-organic framework supported bimetallic Ni-Pt nanoparticles as high-performance catalysts for hydrogen generation from hydrazine in aqueous solution. Chem Cat Chem 5:3000–3004
306.
Zurück zum Zitat Hayashi H, Côté AP, Furukawa H et al (2007) Zeolite imidazolate frameworks. Nat Mater 6:501–506 Hayashi H, Côté AP, Furukawa H et al (2007) Zeolite imidazolate frameworks. Nat Mater 6:501–506
307.
Zurück zum Zitat Johnson TC, Morris DJ, Wills M (2010) Hydrogen generation from formic acid and alcohols using homogeneous catalysts. Chem Soc Rev 39:81–88 Johnson TC, Morris DJ, Wills M (2010) Hydrogen generation from formic acid and alcohols using homogeneous catalysts. Chem Soc Rev 39:81–88
308.
Zurück zum Zitat Joó F (2008) Breakthroughs in hydrogen storage – formic acid as a sustainable storage material for hydrogen. ChemSusChem 1:805–808 Joó F (2008) Breakthroughs in hydrogen storage – formic acid as a sustainable storage material for hydrogen. ChemSusChem 1:805–808
309.
Zurück zum Zitat Zhou X, Huang Y, Xing W, Liu C, Liao J, Lu T (2008) High-quality hydrogen from the catalyzed decomposition of formic acid by Pd–Au/C and Pd–Ag/C. Chem Commun 2008:3540–3542 Zhou X, Huang Y, Xing W, Liu C, Liao J, Lu T (2008) High-quality hydrogen from the catalyzed decomposition of formic acid by Pd–Au/C and Pd–Ag/C. Chem Commun 2008:3540–3542
310.
Zurück zum Zitat Himeda Y, Miyazawa S, Horose T (2011) Interconversion between formic acid and H2/CO2 using rhodium and ruthenium catalysts for CO2 fixation and H2 storage. ChemSusChem 4:487–493 Himeda Y, Miyazawa S, Horose T (2011) Interconversion between formic acid and H2/CO2 using rhodium and ruthenium catalysts for CO2 fixation and H2 storage. ChemSusChem 4:487–493
311.
Zurück zum Zitat Faur Ghenciu A (2002) Review of fuel processing catalysts for hydrogen production in PEM fuel cell systems. Curr Opin Solid State Mater Sci 6:389–399 Faur Ghenciu A (2002) Review of fuel processing catalysts for hydrogen production in PEM fuel cell systems. Curr Opin Solid State Mater Sci 6:389–399
312.
Zurück zum Zitat Morris DJ, Clarkson GJ, Wills M (2009) Insights into hydrogen generation from formic acid using ruthenium complexes. Organometallics 28:4133–4140 Morris DJ, Clarkson GJ, Wills M (2009) Insights into hydrogen generation from formic acid using ruthenium complexes. Organometallics 28:4133–4140
313.
Zurück zum Zitat Gao Y, Kuncheria J, Puddephatt RJ, Yap GPA (1998) An efficient binuclear catalyst for decomposition of formic acid. Chem Commun 21:2365–2366 Gao Y, Kuncheria J, Puddephatt RJ, Yap GPA (1998) An efficient binuclear catalyst for decomposition of formic acid. Chem Commun 21:2365–2366
314.
Zurück zum Zitat Fukuzumi S, Kobayashi T, Suenobu T (2010) Unusually large tunneling effect on highly efficient generation of hydrogen and hydrogen isotopes in pH-selective decomposition of formic acid catalyzed by a heterodinuclear iridium−ruthenium complex in water. J Am Chem Soc 132:1496–1497 Fukuzumi S, Kobayashi T, Suenobu T (2010) Unusually large tunneling effect on highly efficient generation of hydrogen and hydrogen isotopes in pH-selective decomposition of formic acid catalyzed by a heterodinuclear iridium−ruthenium complex in water. J Am Chem Soc 132:1496–1497
315.
Zurück zum Zitat Tedsree K, Li T, Jones S, Chan CWA, Yu KMK, Bagot PAJ, Marquis EA, Smith GDW, Tsang SCE (2011) Hydrogen production from formic acid decomposition at room temperature using a Ag−Pd core−shell nanocatalyst. Nat Nano 6:302–307 Tedsree K, Li T, Jones S, Chan CWA, Yu KMK, Bagot PAJ, Marquis EA, Smith GDW, Tsang SCE (2011) Hydrogen production from formic acid decomposition at room temperature using a Ag−Pd core−shell nanocatalyst. Nat Nano 6:302–307
316.
Zurück zum Zitat Gan W, Dyson PJ, Laurenczy G (2013) Heterogeneous silica-supported ruthenium phosphine catalysts for selective formic acid decomposition. ChemCatChem 10:3124–3130 Gan W, Dyson PJ, Laurenczy G (2013) Heterogeneous silica-supported ruthenium phosphine catalysts for selective formic acid decomposition. ChemCatChem 10:3124–3130
317.
Zurück zum Zitat Bulushev DA, Beloshapkin S, Ross JRH (2010) Hydrogen from formic acid decomposition over Pd and Au catalysts. Catal Today 154:7–12 Bulushev DA, Beloshapkin S, Ross JRH (2010) Hydrogen from formic acid decomposition over Pd and Au catalysts. Catal Today 154:7–12
318.
Zurück zum Zitat Wang Z-L, Yan J-M, Wang H-L, Ping Y, Jiang Q (2012) Pd/C synthesized with citric acid: an efficient catalyst for hydrogen generation from formic acid/sodium formate. Sci Rep 2(598):1–6MATH Wang Z-L, Yan J-M, Wang H-L, Ping Y, Jiang Q (2012) Pd/C synthesized with citric acid: an efficient catalyst for hydrogen generation from formic acid/sodium formate. Sci Rep 2(598):1–6MATH
319.
Zurück zum Zitat Yadav M, Singh AK, Tsumori N, Xu Q (2012) Palladium silica nanosphere-catalyzed decomposition of formic acid for chemical hydrogen storage. J Mater Chem 22:19146–19150 Yadav M, Singh AK, Tsumori N, Xu Q (2012) Palladium silica nanosphere-catalyzed decomposition of formic acid for chemical hydrogen storage. J Mater Chem 22:19146–19150
320.
Zurück zum Zitat Zhou X, Huang Y, Liu C, Lioa J, Lu T, Xing W (2010) Available hydrogen from formic acid decomposed by rare earth elements promoted Pd-Au/C catalysts at low temperature. ChemSusChem 3:1379–1382 Zhou X, Huang Y, Liu C, Lioa J, Lu T, Xing W (2010) Available hydrogen from formic acid decomposed by rare earth elements promoted Pd-Au/C catalysts at low temperature. ChemSusChem 3:1379–1382
321.
Zurück zum Zitat Martis M, Mori K, Fujiwara Ke et al (2013) Amine-functionalized MIL-125 with imbedded palladium nanoparticles as an efficient catalyst for dehydrogenation of formic acid at ambient temperature. J Phys Chem C 117:22805–22810 Martis M, Mori K, Fujiwara Ke et al (2013) Amine-functionalized MIL-125 with imbedded palladium nanoparticles as an efficient catalyst for dehydrogenation of formic acid at ambient temperature. J Phys Chem C 117:22805–22810
322.
Zurück zum Zitat Dan-Hardi M, Serre C, Frot T et al (2009) New photoactive crystalline highly porous titanium(IV) dicarboxylate. J Am Chem Soc 131:10857–10859 Dan-Hardi M, Serre C, Frot T et al (2009) New photoactive crystalline highly porous titanium(IV) dicarboxylate. J Am Chem Soc 131:10857–10859
323.
Zurück zum Zitat Fu Y, Sun D, Chen Y et al (2012) An amine-functionalized titanium metal-organic framework photocatalyst with visible-light-induced activity for CO2 reduction. Angew Chem Int Ed 124:3420–3423 Fu Y, Sun D, Chen Y et al (2012) An amine-functionalized titanium metal-organic framework photocatalyst with visible-light-induced activity for CO2 reduction. Angew Chem Int Ed 124:3420–3423
324.
Zurück zum Zitat Yadav M, Akita T, Tsumori N et al (2012) Strong metal-molecular support interaction (SMMSI): amine-functionalized gold nanoparticles encapsulated in silica nanospheres highly active for catalytic decomposition of formic acid. J Mater Chem 22:12582–12586 Yadav M, Akita T, Tsumori N et al (2012) Strong metal-molecular support interaction (SMMSI): amine-functionalized gold nanoparticles encapsulated in silica nanospheres highly active for catalytic decomposition of formic acid. J Mater Chem 22:12582–12586
325.
Zurück zum Zitat Li Y, Xie L, Li Y et al (2009) Metal-organic-framework-based catalyst for highly efficient H2 generation from aqueous NH3BH3 solution. Chem Eur J 15:8951–8954 Li Y, Xie L, Li Y et al (2009) Metal-organic-framework-based catalyst for highly efficient H2 generation from aqueous NH3BH3 solution. Chem Eur J 15:8951–8954
326.
Zurück zum Zitat Li Y, Song P, Zheng J et al (2010) Promoted H2 generation from NH3BH3 thermal dehydrogenation catalyzed by metal-organic framework based catalysts. Chem Eur J 16:10887–10892 Li Y, Song P, Zheng J et al (2010) Promoted H2 generation from NH3BH3 thermal dehydrogenation catalyzed by metal-organic framework based catalysts. Chem Eur J 16:10887–10892
327.
Zurück zum Zitat Song P, Li Y, Li W et al (2011) A highly efficient Co(0) catalyst derived from metal-organic framework for the hydrolysis of ammonia borane. Int J Hydrog Energy 36:10468–10473 Song P, Li Y, Li W et al (2011) A highly efficient Co(0) catalyst derived from metal-organic framework for the hydrolysis of ammonia borane. Int J Hydrog Energy 36:10468–10473
328.
Zurück zum Zitat Li Q, Kim H (2012) Hydrogen production from NaBH4 hydrolysis via Co-ZIF-9 catalyst. Fuel Process Technol 100:43–48 Li Q, Kim H (2012) Hydrogen production from NaBH4 hydrolysis via Co-ZIF-9 catalyst. Fuel Process Technol 100:43–48
329.
Zurück zum Zitat Schlesinger HI, Brown HC, Finholt AB, Gilbreath JR, Hockstra HR, Hydo EK (1953) Sodium borohydride as the hydrogen supplier for proton exchange membrane fuel cell systems. J Am Chem Soc 75:215–219 Schlesinger HI, Brown HC, Finholt AB, Gilbreath JR, Hockstra HR, Hydo EK (1953) Sodium borohydride as the hydrogen supplier for proton exchange membrane fuel cell systems. J Am Chem Soc 75:215–219
330.
Zurück zum Zitat Brown HC, Brown CA (1962) New, highly active metal catalysts for the hydrolysis of borohydride. J Am Chem Soc 84:1493–1494 Brown HC, Brown CA (1962) New, highly active metal catalysts for the hydrolysis of borohydride. J Am Chem Soc 84:1493–1494
331.
Zurück zum Zitat Demirci UB, Akdim O, Andrieux J, Hannauer J, Chamoun R, Miele P (2010) Sodium borohydride hydrolysis as hydrogen generator: issues, state of the art and applicability upstream from a fuel cell. Fuel Cells 10:335–350 Demirci UB, Akdim O, Andrieux J, Hannauer J, Chamoun R, Miele P (2010) Sodium borohydride hydrolysis as hydrogen generator: issues, state of the art and applicability upstream from a fuel cell. Fuel Cells 10:335–350
332.
Zurück zum Zitat Jeong SU, Kim RK, Cho EA, Kim HJ, Nam SW, Oh I, Hong SA, Kim SH (2005) A study on hydrogen generation from NaBH4 solution using the high-performance Co-B catalyst. J Power Sources 144:129–134 Jeong SU, Kim RK, Cho EA, Kim HJ, Nam SW, Oh I, Hong SA, Kim SH (2005) A study on hydrogen generation from NaBH4 solution using the high-performance Co-B catalyst. J Power Sources 144:129–134
333.
Zurück zum Zitat Wu C, Wu F, Bai Y, Yi B, Zhang H (2005) Cobalt boride catalysts for hydrogen generation from alkaline NaBH4 solution. Mater Lett 59:1748–1751 Wu C, Wu F, Bai Y, Yi B, Zhang H (2005) Cobalt boride catalysts for hydrogen generation from alkaline NaBH4 solution. Mater Lett 59:1748–1751
334.
Zurück zum Zitat Walter JC, Zurawski A, Montgomery D, Thornburg M, Revankar S (2008) Sodium borohydride hydrolysis kinetics comparison for nickel, cobalt, and ruthenium boride catalysts. J Power Sources 179:335–339 Walter JC, Zurawski A, Montgomery D, Thornburg M, Revankar S (2008) Sodium borohydride hydrolysis kinetics comparison for nickel, cobalt, and ruthenium boride catalysts. J Power Sources 179:335–339
335.
Zurück zum Zitat Patel N, Guella G, Kale A, Miotello A, Patton B, Zanchetta C, Mirenghi L, Rotolo P (2007) Thin films of Co–B prepared by pulsed laser deposition as efficient catalysts in hydrogen producing reactions. Appl Catal A 323:18–24 Patel N, Guella G, Kale A, Miotello A, Patton B, Zanchetta C, Mirenghi L, Rotolo P (2007) Thin films of Co–B prepared by pulsed laser deposition as efficient catalysts in hydrogen producing reactions. Appl Catal A 323:18–24
336.
Zurück zum Zitat Patel N, Fernandes R, Guella G, Kale A, Miotello A, Patton B, Zanchetta C (2008) Structured and nanoparticle assembled Co-B thin films prepared by pulsed laser deposition: a very efficient catalyst for hydrogen production. J Phys Chem C 112:6968–6976 Patel N, Fernandes R, Guella G, Kale A, Miotello A, Patton B, Zanchetta C (2008) Structured and nanoparticle assembled Co-B thin films prepared by pulsed laser deposition: a very efficient catalyst for hydrogen production. J Phys Chem C 112:6968–6976
337.
Zurück zum Zitat Gupta S, Patek N, Fernandes R, Kothari DC, Miotello KA (2013) Mesoporous Co–B nanocatalyst for efficient hydrogen production by hydrolysis of sodium borohydride. Int J Hydrog Energy 38:14685–14692 Gupta S, Patek N, Fernandes R, Kothari DC, Miotello KA (2013) Mesoporous Co–B nanocatalyst for efficient hydrogen production by hydrolysis of sodium borohydride. Int J Hydrog Energy 38:14685–14692
338.
Zurück zum Zitat Figen AK (2013) Dehydrogenation characteristics of ammonia borane via boron-based catalysts (Co–B, Ni–B, Cu–B) under different hydrolysis conditions. Int J Hydrog Energy 38:9186–9197 Figen AK (2013) Dehydrogenation characteristics of ammonia borane via boron-based catalysts (Co–B, Ni–B, Cu–B) under different hydrolysis conditions. Int J Hydrog Energy 38:9186–9197
339.
Zurück zum Zitat Figen AK, Coşkuner B (2013) A novel perspective for hydrogen generation from ammonia borane (NH3BH3) with Co–B catalysts: “Ultrasonic Hydrolysis”. Int J Hydrog Energy 38:2824–2835 Figen AK, Coşkuner B (2013) A novel perspective for hydrogen generation from ammonia borane (NH3BH3) with Co–B catalysts: “Ultrasonic Hydrolysis”. Int J Hydrog Energy 38:2824–2835
340.
Zurück zum Zitat Ma J, Xu L, Xu L, Wang H, Xu S, Li H, Xie S, Li H (2013) Highly dispersed Pd on Co–B amorphous alloy: facile synthesis via galvanic replacement reaction and synergetic effect between Pd and Co. ACS Catal 3:985–992 Ma J, Xu L, Xu L, Wang H, Xu S, Li H, Xie S, Li H (2013) Highly dispersed Pd on Co–B amorphous alloy: facile synthesis via galvanic replacement reaction and synergetic effect between Pd and Co. ACS Catal 3:985–992
Metadaten
Titel
Metal-Organic Frameworks as Platforms for Hydrogen Generation from Chemical Hydrides
verfasst von
Yanying Zhao
Qiang Xu
Copyright-Jahr
2015
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-46054-2_15