Skip to main content

08.10.2024

Minimum capital requirement portfolios according to the new Basel framework for market risk

verfasst von: Alessandro Avellone, Ilaria Foroni, Chiara Pederzoli

Erschienen in: Financial Markets and Portfolio Management

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the new Basel framework for market risk finalized in January 2019, the minimum capital requirement for banks involves a liquidity-adjusted Stressed Expected Shortfall and a penalization factor that depends on the outcome of a Value at Risk-based backtesting procedure. This paper examines the optimization problem of a bank aiming to minimize its capital requirement, expressed analytically by a non-convex and non-differentiable function, being the penalization a discrete function of the number of Value at Risk violations. To address the portfolio selection problem, we implement an algorithm based on the Particle Swarm Optimization metaheuristic. In the empirical analysis, we compare portfolios obtained by minimizing the capital requirement with those selected by standard risk measures, i.e. Expected Shortfall, Value at Risk, and variance. Two data samples are considered: one from the recent Covid-19 pandemic period and the other from a quieter phase. Our findings suggest that minimizing the capital requirement during highly volatile periods, such as the global pandemic, would help contain the number of backtesting violations compared to other strategies. By contrast, during tranquil periods the inclusion of the penalization multiplier in the objective function would have no impact. However, portfolios selected to minimize Expected Shortfall, Value at Risk, and variance in both cases are far from the regulatory capital efficient frontier, resulting in varying degrees of efficiency losses.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
The innovations introduced in the Basel regulatory framework in the recent years go beyond the CR. See, for instance, Birindelli et al. (2022) for a comprehensive analysis of the impact of Basel III on banks’ stability.
 
2
The implementation of the revised market risk framework, originally planned for January \(1^\text {th}\) 2022, had been postponed to January 2023 because of the Covid-19 pandemic (BCBS 2020).
 
3
VaR is the maximum portfolio loss at a specified confidence level over a given holding period. ES is the expected loss conditional on VaR being exceeded.
 
4
The Basel Committee on Banking Supervision (BCBS 2012) mentions the reduction in the procyclicality of the minimum CR for trading books as one of the goals for revisions to the Basel framework. We refer to Alexander et al. (2014), Danielsson et al. (2001), Gordy and Howells (2006), Pederzoli et al. (2010), among the others, for comments on the potential procyclicality effects implied in Basel II.
 
5
The CR calculation rule will be shortly explained in Sect. 2.
 
6
The datasets analyzed during the current study are available in the FactSet repository.
 
7
Under standard assumptions, the Markowitz approach to portfolio optimization allows the construction of the efficient frontier in the mean-variance plane. However, the inclusion of real-world factors can alter the shape of this frontier (see, among the others, Michaud 1989; Ritter 2003; Pattitoni and Savioli 2011; Elton et al. 2014).
 
8
We refer to Righi and Borenstein (2018) for a list of risk measures adopted by researchers and practitioners in portfolio optimization and for their empirical comparison.
 
9
The interested reader may refer to Rockafellar and Uryasev (2002), which is the milestone in this field, to Rockafellar and Uryasev (2002); Lim et al. (2010).
 
10
Some papers analyze the problem of minimizing the CR of a given portfolio by choosing the most favorable risk model (the passive approach in the terminology of Santos et al. 2012). McAleer (2009) deals with the CR minimization problem where the decision consists in choosing the more suitable VaR model. In the same vein, Liu and Stentoft (2021) compare different models for the dynamic of the portfolio losses in terms of the CR in the new FRTB.
 
11
We refer to BCBS (2019) for an exhaustive description.
 
12
See Balter and McNeil (2018) for a justification of the adjustment formula.
 
13
In this presentation, we are neglecting some elements which are not relevant for our analysis. Specifically, we did not mention that: (1) Stressed ES can be obtained as a proxy from the ES estimated on the latest observations and Stressed ES over a subset of risk factors; (2) risk factors must be considered as well; (3) a default risk charge must be added to the CR; (4) a capital surcharge is added for desks falling in the amber zone of the newly introduced profit and loss attribution test; (5) the regulatory CR is determined as the maximum of the current sES estimate and the average sES over the preceding 60 business days multiplied by the penalty factor. Focusing on the last point, we note that the penalty factor applies to the average ES only: actually, since\(k\ge 1.5\) the max operator will select sES only in the case of an exceptionally high estimation of the ES in the current date. We can reasonably expect that the penalization factor enters the quantification of the CR. Moreover, under the hypothesis of our empirical work (constant portfolio and estimation via historical simulation) the 60-days average sES necessarily coincides with the current sES. We refer to BCBS (2019) for the detailed illustration of these points.
 
14
Santos et al. (2012) actually consider the evolution of the portfolio weights over a period of 8 years; however, they fix the portfolio to the currently determined one when modeling the number of VaR violations as a constraint. Our approach is essentially in line with Drenovak et al. (2017), even if they fix the asset holdings instead of the asset weights.
 
15
In other contexts, VaR estimated for \(t+1\) based on the information available in t is denoted as \(\text {VaR}_{t+1/t}\) or simply \(\text {VaR}_{t+1}\).
 
16
For the sake of precision, the ES corresponds to the so called \(\hbox {CVaR}^+\) (upper Conditional VaR), as defined in Rockafellar and Uryasev (2002). While CVaR is always convex, the same cannot be said for \(\hbox {CVaR}^+\). However, since we do not rely on techniques for convex programming, in our work the difference is actually not relevant.
 
17
Actually, by including only the stocks with long historical series available, we had at our disposal 46 stocks.
 
18
As stated in BCBS (2019) - MAR 33.4 - the 10-days return time series can be computed with overlapping observations. Therefore, we needed to go back 260 days to obtain the stress period.
 
19
In our analysis, we decided to disregard the assets held in the portfolio with a weight of less than 1%.
 
20
We recall that the sES is estimated over the financial crisis stress period and it is not influenced by the data of the actual sample under consideration (LV or HV). However the optimal solutions for problem (I) depend on the expected returns of portfolios that we have estimated over the 500 days preceding the optimization date T and, therefore, they may differ for the HV and the LV samples.
 
21
The benefits of diversification during financial crises are actually a topic of ongoing research, as highlighted in the review by Koumou (2020).
 
Literatur
Zurück zum Zitat Acerbi, C., Tasche, D.: On the coherence of expected shortfall. J. Bank. Financ. 26(7), 1487–1503 (2002)CrossRef Acerbi, C., Tasche, D.: On the coherence of expected shortfall. J. Bank. Financ. 26(7), 1487–1503 (2002)CrossRef
Zurück zum Zitat Alexander, G.J., Baptista, A.M.: Does the Basle capital accord reduce bank fragility? An assessment of the value-at-risk approach. J. Monetary Econ. 53(7), 1631–1660 (2006)CrossRef Alexander, G.J., Baptista, A.M.: Does the Basle capital accord reduce bank fragility? An assessment of the value-at-risk approach. J. Monetary Econ. 53(7), 1631–1660 (2006)CrossRef
Zurück zum Zitat Alexander, G.J., Baptista, A.M., Yan, S.: Bank regulation and international financial stability: a case against the 2006 Basel framework for controlling tail risk in trading books. J. Int. Money Financ. 43, 107–130 (2014)CrossRef Alexander, G.J., Baptista, A.M., Yan, S.: Bank regulation and international financial stability: a case against the 2006 Basel framework for controlling tail risk in trading books. J. Int. Money Financ. 43, 107–130 (2014)CrossRef
Zurück zum Zitat Alexander, G.J., Baptista, A.M., Yan, S.: Regulation of bank proprietary trading post 2007–09 crisis: an examination of the Basel framework and Volcker rule. J. Int. Money Financ. 119, 102490 (2021)CrossRef Alexander, G.J., Baptista, A.M., Yan, S.: Regulation of bank proprietary trading post 2007–09 crisis: an examination of the Basel framework and Volcker rule. J. Int. Money Financ. 119, 102490 (2021)CrossRef
Zurück zum Zitat Artzner, P., Delbaen, F., Eber, J.-M., Heath, D.: Coherent measures of risk. Math. Financ. 9(3), 203–228 (1999)CrossRef Artzner, P., Delbaen, F., Eber, J.-M., Heath, D.: Coherent measures of risk. Math. Financ. 9(3), 203–228 (1999)CrossRef
Zurück zum Zitat Balter, J., McNeil, A.J.: On the Basel liquidity formula for elliptical distributions. Risks 6(3), 92 (2018)CrossRef Balter, J., McNeil, A.J.: On the Basel liquidity formula for elliptical distributions. Risks 6(3), 92 (2018)CrossRef
Zurück zum Zitat BCBS: Amendment to the capital accord to incorporate market risks. Technical report, Basel Committee on Banking Supervision (1996) BCBS: Amendment to the capital accord to incorporate market risks. Technical report, Basel Committee on Banking Supervision (1996)
Zurück zum Zitat BCBS: Revisions to the Basel II market risk. Technical report, Basel Committee on Banking Supervision (2011) BCBS: Revisions to the Basel II market risk. Technical report, Basel Committee on Banking Supervision (2011)
Zurück zum Zitat BCBS: Fundamental review of the trading book - consultative document. Technical report, Basel Committee on Banking Supervision (2012) BCBS: Fundamental review of the trading book - consultative document. Technical report, Basel Committee on Banking Supervision (2012)
Zurück zum Zitat BCBS: Minimum capital requirements for market risk standards. Technical report, Basel Committee on Banking Supervision (2019) BCBS: Minimum capital requirements for market risk standards. Technical report, Basel Committee on Banking Supervision (2019)
Zurück zum Zitat BCBS: Governors and heads of supervision announce deferral of Basel III implementation to increase operational capacity of banks and supervisors to respond to Covid-19" Technical report, Basel Committee on Banking Supervision (2020) BCBS: Governors and heads of supervision announce deferral of Basel III implementation to increase operational capacity of banks and supervisors to respond to Covid-19" Technical report, Basel Committee on Banking Supervision (2020)
Zurück zum Zitat Birindelli, G., Ferretti, P., Ferri, G., Savioli, M.: Regulatory reform and banking diversity: reassessing Basel 3. Ann. Financ. 18, 429–456 (2022)CrossRef Birindelli, G., Ferretti, P., Ferri, G., Savioli, M.: Regulatory reform and banking diversity: reassessing Basel 3. Ann. Financ. 18, 429–456 (2022)CrossRef
Zurück zum Zitat Danielsson, J., Embrechts, P., Goodhart, C., Keating, C., Muennich, F., Renault, O., Shin, H.S.: An academic response to Basel II (2001) Danielsson, J., Embrechts, P., Goodhart, C., Keating, C., Muennich, F., Renault, O., Shin, H.S.: An academic response to Basel II (2001)
Zurück zum Zitat Drenovak, M., Ranković, V., Ivanović, M., Urošević, B., Jelic, R.: Market risk management in a post-Basel II regulatory environment. Eur. J. Oper. Res. 257(3), 1030–1044 (2017)CrossRef Drenovak, M., Ranković, V., Ivanović, M., Urošević, B., Jelic, R.: Market risk management in a post-Basel II regulatory environment. Eur. J. Oper. Res. 257(3), 1030–1044 (2017)CrossRef
Zurück zum Zitat EBA: Results from the 2017 market risk benchmarking exercise. Technical report, European Bank Authority (2017) EBA: Results from the 2017 market risk benchmarking exercise. Technical report, European Bank Authority (2017)
Zurück zum Zitat Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. MHS’95. Proceedings of the sixth international symposium on micro machine and human science, 39–43, Ieee (1995) Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. MHS’95. Proceedings of the sixth international symposium on micro machine and human science, 39–43, Ieee (1995)
Zurück zum Zitat Elton, E.J., Gruber, M.J., Brown, S.J., Goetzmann, W.N.: Modern portfolio theory and investment analysis, 9th Edition Wiley, Hoboken (2014) Elton, E.J., Gruber, M.J., Brown, S.J., Goetzmann, W.N.: Modern portfolio theory and investment analysis, 9th Edition Wiley, Hoboken (2014)
Zurück zum Zitat Farkas, W., Fringuellotti, F., Tunaru, R.: A cost-benefit analysis of capital requirements adjusted for model risk. J. Corp. Financ. 65, 101753 (2020)CrossRef Farkas, W., Fringuellotti, F., Tunaru, R.: A cost-benefit analysis of capital requirements adjusted for model risk. J. Corp. Financ. 65, 101753 (2020)CrossRef
Zurück zum Zitat Feng, M., Wächter, A., Staum, J.: Practical algorithms for value-at-risk portfolio optimization problems. Quant. Financ. Lett. 3(1), 1–9 (2015)CrossRef Feng, M., Wächter, A., Staum, J.: Practical algorithms for value-at-risk portfolio optimization problems. Quant. Financ. Lett. 3(1), 1–9 (2015)CrossRef
Zurück zum Zitat Gaivoronski, A.A., Pflug, G.: Value-at-risk in portfolio optimization: properties and computational approach. J. Risk 7(2), 1–31 (2005)CrossRef Gaivoronski, A.A., Pflug, G.: Value-at-risk in portfolio optimization: properties and computational approach. J. Risk 7(2), 1–31 (2005)CrossRef
Zurück zum Zitat Gordy, M.B., Howells, B.: Procyclicality in Basel II: can we treat the disease without killing the patient? J. Financ. Intermed. 15(3), 395–417 (2006)CrossRef Gordy, M.B., Howells, B.: Procyclicality in Basel II: can we treat the disease without killing the patient? J. Financ. Intermed. 15(3), 395–417 (2006)CrossRef
Zurück zum Zitat Lim, C., Sherali, H.D., Uryasev, S.: Portfolio optimization by minimizing conditional value-at-risk via nondifferentiable optimization. Comput. Optim. Appl. 46(3), 391–415 (2010)CrossRef Lim, C., Sherali, H.D., Uryasev, S.: Portfolio optimization by minimizing conditional value-at-risk via nondifferentiable optimization. Comput. Optim. Appl. 46(3), 391–415 (2010)CrossRef
Zurück zum Zitat Liu, F., Stentoft, L.: Regulatory capital and incentives for risk model choice under Basel 3. J. Financ. Economet. 19(1), 53–96 (2021)CrossRef Liu, F., Stentoft, L.: Regulatory capital and incentives for risk model choice under Basel 3. J. Financ. Economet. 19(1), 53–96 (2021)CrossRef
Zurück zum Zitat Lwin, K.T., Qu, R., MacCarthy, B.L.: Mean-VaR portfolio optimization: a nonparametric approach. Eur. J. Oper. Res. 260(2), 751–766 (2017)CrossRef Lwin, K.T., Qu, R., MacCarthy, B.L.: Mean-VaR portfolio optimization: a nonparametric approach. Eur. J. Oper. Res. 260(2), 751–766 (2017)CrossRef
Zurück zum Zitat Kleinknecht, M., Ng, W.L.: Minimizing Basel III capital requirements with unconditional coverage constraint. Intell. Syst. Account. Financ. Manag. 22(4), 263–281 (2015)CrossRef Kleinknecht, M., Ng, W.L.: Minimizing Basel III capital requirements with unconditional coverage constraint. Intell. Syst. Account. Financ. Manag. 22(4), 263–281 (2015)CrossRef
Zurück zum Zitat Koumou, G.B.: Diversification and portfolio theory: a review. Financ. Mark. Portf. Manag. 34(3), 267–312 (2020)CrossRef Koumou, G.B.: Diversification and portfolio theory: a review. Financ. Mark. Portf. Manag. 34(3), 267–312 (2020)CrossRef
Zurück zum Zitat Markowitz, H.M.: Portfolio selection. J. Financ. 7(1), 77–91 (1952) Markowitz, H.M.: Portfolio selection. J. Financ. 7(1), 77–91 (1952)
Zurück zum Zitat Markowitz, H.M.: Portfolio Selection. Yale University Press, New Haven (1968) Markowitz, H.M.: Portfolio Selection. Yale University Press, New Haven (1968)
Zurück zum Zitat McAleer, M.: The ten commandments for optimizing value-at-risk and daily capital charges. J. Econ. Surv. 23(5), 831–849 (2009)CrossRef McAleer, M.: The ten commandments for optimizing value-at-risk and daily capital charges. J. Econ. Surv. 23(5), 831–849 (2009)CrossRef
Zurück zum Zitat Mehta, A., Neukirchen, M., Pfetsch, S., Poppensieker, T.: Managing market risk: today and tomorrow. McKinsey Company McKinsey Working Papers Risk 32(1), 24–36 (2012) Mehta, A., Neukirchen, M., Pfetsch, S., Poppensieker, T.: Managing market risk: today and tomorrow. McKinsey Company McKinsey Working Papers Risk 32(1), 24–36 (2012)
Zurück zum Zitat Michaud, R.O.: The Markowitz optimization enigma: is ‘optimized’ optimal? Financ. Anal. J. 45(1), 31–42 (1989)CrossRef Michaud, R.O.: The Markowitz optimization enigma: is ‘optimized’ optimal? Financ. Anal. J. 45(1), 31–42 (1989)CrossRef
Zurück zum Zitat Padhye, N., Mittal, P., Deb, K.: Feasibility preserving constraint-handling strategies for real parameter evolutionary optimization. Comput. Optim. Appl. 62(3), 851–890 (2015)CrossRef Padhye, N., Mittal, P., Deb, K.: Feasibility preserving constraint-handling strategies for real parameter evolutionary optimization. Comput. Optim. Appl. 62(3), 851–890 (2015)CrossRef
Zurück zum Zitat Pattitoni, P., Savioli, M.: Investment choices: indivisible non-marketable assets and suboptimal solutions. Econ. Model. 28(6), 2387–2394 (2011)CrossRef Pattitoni, P., Savioli, M.: Investment choices: indivisible non-marketable assets and suboptimal solutions. Econ. Model. 28(6), 2387–2394 (2011)CrossRef
Zurück zum Zitat Pederzoli, C., Torricelli, C., Tsomocos, D.P.: Rating systems, procyclicality and Basel II: an evaluation in a general equilibrium framework. Ann. Financ. 6(1), 33–49 (2010)CrossRef Pederzoli, C., Torricelli, C., Tsomocos, D.P.: Rating systems, procyclicality and Basel II: an evaluation in a general equilibrium framework. Ann. Financ. 6(1), 33–49 (2010)CrossRef
Zurück zum Zitat Righi, M.B., Borenstein, D.: A simulation comparison of risk measures for portfolio optimization. Financ. Res. Lett. 24, 105–112 (2018)CrossRef Righi, M.B., Borenstein, D.: A simulation comparison of risk measures for portfolio optimization. Financ. Res. Lett. 24, 105–112 (2018)CrossRef
Zurück zum Zitat Ritter, J.R.: Behavioral finance. Pac. Basin Financ. J. 11(4), 429–437 (2003)CrossRef Ritter, J.R.: Behavioral finance. Pac. Basin Financ. J. 11(4), 429–437 (2003)CrossRef
Zurück zum Zitat Rockafellar, R.T., Uryasev, S.: Optimization of conditional value-at-risk. J. Risk. 2, 21–42 (2000)CrossRef Rockafellar, R.T., Uryasev, S.: Optimization of conditional value-at-risk. J. Risk. 2, 21–42 (2000)CrossRef
Zurück zum Zitat Rockafellar, R.T., Uryasev, S.: Conditional value-at-risk for general loss distributions. J. Bank. Financ. 26(7), 1443–1471 (2002)CrossRef Rockafellar, R.T., Uryasev, S.: Conditional value-at-risk for general loss distributions. J. Bank. Financ. 26(7), 1443–1471 (2002)CrossRef
Zurück zum Zitat Santos, A.A.P., Nogales, F.J., Ruiz, E., Van Dijk, D.: Optimal portfolios with minimum capital requirements. J. Bank. Financ. 36(7), 1928–1942 (2012)CrossRef Santos, A.A.P., Nogales, F.J., Ruiz, E., Van Dijk, D.: Optimal portfolios with minimum capital requirements. J. Bank. Financ. 36(7), 1928–1942 (2012)CrossRef
Metadaten
Titel
Minimum capital requirement portfolios according to the new Basel framework for market risk
verfasst von
Alessandro Avellone
Ilaria Foroni
Chiara Pederzoli
Publikationsdatum
08.10.2024
Verlag
Springer Berlin Heidelberg
Erschienen in
Financial Markets and Portfolio Management
Print ISSN: 1934-4554
Elektronische ISSN: 2373-8529
DOI
https://doi.org/10.1007/s11408-024-00454-5

Premium Partner