Skip to main content

2013 | OriginalPaper | Buchkapitel

2. MOSFET: Basics, Characteristics, and Characterization

verfasst von : Samares Kar

Erschienen in: High Permittivity Gate Dielectric Materials

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter attempts to provide a theoretical basis for the Metal Oxide (Insulator) Semiconductor (MOS/MIS) Structure and the MOS/MIS Field Effect Transistor (MOSFET/MISFET), their characteristics, and their characterization (parameter extraction); the theoretical treatment starts from the first principles. While deriving the mathematical relations, assumptions have been avoided as far as possible. A comprehensive treatment is included which covers the important aspects of the function, mechanism, and operation of the MOS/MIS devices; in particular topics have been covered which are relevant to all the later chapters of the book and which will aid in reading the rest of this book. We begin this chapter with the theory of the classical MOS structure (non-leaky and SiO2 single gate dielectric) and the classical MOSFET and then graduate to the MOS structure and the MOSFET with the high-k gate stack and the high mobility channels. Various aspects of the MOS/MOSFET devices analyzed in this chapter include the energy band profiles, circuit representations, electrostatic analysis (charge–voltage and capacitance–voltage relations), drain current versus drain voltage relation, quantum-mechanical phenomena (wave function penetration, tunneling, carrier confinement), nature of the high-k gate stack traps, and the pseudo-Fermi function inside the gate stack and the occupancy of the gate stack traps. Features such as capacitance–voltage (C–V) characteristics, flat-band and threshold voltages (VFB and VT), VT versus EOT characteristics permeate the chapters; hence these features and characteristics such as conductance–voltage (G–V) characteristics have been discussed. A significant part of this chapter contains topics which are rarely seen in the literature and are yet to be well understood. As these topics (composition of the high-k gate stack, nature of the high-k gate stack charges, effects of the degradation factors) are of vital significance for the progress of the high-k gate stack technology, we have tried to analyze these issues. The final part of this chapter treats the various methods available for characterization of the high-k gate stacks, in particular, for the determination of the trap parameters—trap density, trap energy, trap capture cross-section, and the trap location inside the gate stack.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A.S. Grove, Physics and Technology of Semiconductor Devices (Wiley, New York, 1967) A.S. Grove, Physics and Technology of Semiconductor Devices (Wiley, New York, 1967)
2.
Zurück zum Zitat S.M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981) S.M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981)
3.
Zurück zum Zitat E.H. Nicollian, J.R. Brews, MOS Physics and Technology (Wiley, New York, 1982) E.H. Nicollian, J.R. Brews, MOS Physics and Technology (Wiley, New York, 1982)
4.
Zurück zum Zitat E.H. Nicollian, A. Goetzberger, The Si-SiO2 interface—electrical properties as determined by the MIS conductance technique. Bell Syst. Tech. J. 46, 1055 (1967) E.H. Nicollian, A. Goetzberger, The Si-SiO2 interface—electrical properties as determined by the MIS conductance technique. Bell Syst. Tech. J. 46, 1055 (1967)
5.
Zurück zum Zitat E.H. Rhoderic, R.H. Williams, Metal-Semiconductor Contacts (Clarendon Press, Oxford, 1988) E.H. Rhoderic, R.H. Williams, Metal-Semiconductor Contacts (Clarendon Press, Oxford, 1988)
6.
Zurück zum Zitat S.M. Sze (ed.), Modern Semiconductor Devices (Wiley, New York, 1998) S.M. Sze (ed.), Modern Semiconductor Devices (Wiley, New York, 1998)
7.
Zurück zum Zitat H. Lueth, Surfaces and Interfaces of Solid Materials (Springer, Berlin, 1995)CrossRef H. Lueth, Surfaces and Interfaces of Solid Materials (Springer, Berlin, 1995)CrossRef
8.
Zurück zum Zitat C.G.B. Garrett, W.H. Brattain, Physical theory of semiconductor surfaces. Phys. Rev. 99, 376 (1955)CrossRef C.G.B. Garrett, W.H. Brattain, Physical theory of semiconductor surfaces. Phys. Rev. 99, 376 (1955)CrossRef
9.
Zurück zum Zitat S. Kar, Interface charge characteristics of MOS structures with different metals on steam grown oxides. Solid-St. Electron. 18, 723–732 (1975)CrossRef S. Kar, Interface charge characteristics of MOS structures with different metals on steam grown oxides. Solid-St. Electron. 18, 723–732 (1975)CrossRef
10.
Zurück zum Zitat S. Kar, Determination of Si-metal work function differences by MOS capacitance technique. Solid-St. Electron. 18, 169–181 (1975)CrossRef S. Kar, Determination of Si-metal work function differences by MOS capacitance technique. Solid-St. Electron. 18, 169–181 (1975)CrossRef
11.
13.
Zurück zum Zitat C.G. Parker, G. Lucovsky, J.R. Hauser, Ultrathin oxide–nitride gate dielectric MOSFET’s. IEEE Electron Device Lett. 19(4), 106 (1998)CrossRef C.G. Parker, G. Lucovsky, J.R. Hauser, Ultrathin oxide–nitride gate dielectric MOSFET’s. IEEE Electron Device Lett. 19(4), 106 (1998)CrossRef
14.
Zurück zum Zitat S. Kar, M. Houssa, S. Van Elshocht, D. Misra, K. Kita (eds.), Physics and technology of high-Κ materials IX. ECS Trans. 41(3) (2011), ch. 8, ch. 7 S. Kar, M. Houssa, S. Van Elshocht, D. Misra, K. Kita (eds.), Physics and technology of high-Κ materials IX. ECS Trans. 41(3) (2011), ch. 8, ch. 7
15.
Zurück zum Zitat S. Kar, S. Van Elshocht, D. Misra, K. Kita (eds.), Physics and technology of high-Κ materials X. ECS Trans. 41(3) 2012 S. Kar, S. Van Elshocht, D. Misra, K. Kita (eds.), Physics and technology of high-Κ materials X. ECS Trans. 41(3) 2012
18.
Zurück zum Zitat T. Hori, Gate Dielectrics and MOS ULSIs (Springer, Berlin, 1997). (ch. 3)CrossRef T. Hori, Gate Dielectrics and MOS ULSIs (Springer, Berlin, 1997). (ch. 3)CrossRef
19.
Zurück zum Zitat S.M. Sze, Modern Semiconductor Device Physics (Wiley, New York, 1998). (ch. 3) S.M. Sze, Modern Semiconductor Device Physics (Wiley, New York, 1998). (ch. 3)
20.
Zurück zum Zitat C.C. Hu, Modern Semiconductor Devices for Integrated Circuits (Prentice Hall, Upper Saddle River, 2009). (ch. 6) C.C. Hu, Modern Semiconductor Devices for Integrated Circuits (Prentice Hall, Upper Saddle River, 2009). (ch. 6)
22.
Zurück zum Zitat S. Kar, S. Rawat, S. Rakheja, D. Reddy, IEEE Trans. Electron Devices 52, 1187 (2005)CrossRef S. Kar, S. Rawat, S. Rakheja, D. Reddy, IEEE Trans. Electron Devices 52, 1187 (2005)CrossRef
23.
Zurück zum Zitat R. Choi, S.J. Rhee, J.C. Lee, B.H. Lee, G. Bersuker, IEEE Electron Device Lett. 26, 197 (2005)CrossRef R. Choi, S.J. Rhee, J.C. Lee, B.H. Lee, G. Bersuker, IEEE Electron Device Lett. 26, 197 (2005)CrossRef
24.
25.
Zurück zum Zitat A. Toriuma, K. Kita, ECS. Trans. 19(1), 243 (2009) A. Toriuma, K. Kita, ECS. Trans. 19(1), 243 (2009)
27.
28.
Zurück zum Zitat R. Xie, T.H. Phung, W. He, M. Yu, C. Zhu, IEEE Trans. Electron Devices ED-56, 1330 (2009) R. Xie, T.H. Phung, W. He, M. Yu, C. Zhu, IEEE Trans. Electron Devices ED-56, 1330 (2009)
32.
Zurück zum Zitat R. Chau, S. Datta, M. Doczy, B. Doyle, J. Kavalieros, M. Metz, High-k/Metal–gate stack and its MOSFET characteristics. IEEE Electron Device Lett. 25(6), 408 (2004)CrossRef R. Chau, S. Datta, M. Doczy, B. Doyle, J. Kavalieros, M. Metz, High-k/Metal–gate stack and its MOSFET characteristics. IEEE Electron Device Lett. 25(6), 408 (2004)CrossRef
33.
Zurück zum Zitat N. Nakagawa, H. Y. Hwang, and D. A. Muller, Nat. Mater. 5, 204 (2006) N. Nakagawa, H. Y. Hwang, and D. A. Muller, Nat. Mater. 5, 204 (2006)
34.
Zurück zum Zitat H. Watanabe, D. Matsushita, K. Muraoka, IEEE Trans. Electron Devices 53, 1323 (2006)CrossRef H. Watanabe, D. Matsushita, K. Muraoka, IEEE Trans. Electron Devices 53, 1323 (2006)CrossRef
35.
Zurück zum Zitat S. Borowitz, Fundamentals of Quantum Mechanics (W. A. Benjamin, New York, 1967)MATH S. Borowitz, Fundamentals of Quantum Mechanics (W. A. Benjamin, New York, 1967)MATH
36.
Zurück zum Zitat E. Merzbacher, Quantum Mechanics (Wiley, New York, 1961)MATH E. Merzbacher, Quantum Mechanics (Wiley, New York, 1961)MATH
37.
Zurück zum Zitat T. Ando, A. B. Fowler, F. Stern, Rev. Mod. Phys. 54, 437 (1982) T. Ando, A. B. Fowler, F. Stern, Rev. Mod. Phys. 54, 437 (1982)
38.
Zurück zum Zitat H. Lueth, Surfaces and Interfaces in Solid Materials (Springer, Berlin, 1995)CrossRef H. Lueth, Surfaces and Interfaces in Solid Materials (Springer, Berlin, 1995)CrossRef
39.
Zurück zum Zitat C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1967) C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1967)
40.
Zurück zum Zitat J.R. Hauser, K. Ahmed, Characterization of ultra-thin oxides using electrical CV and IV measurements, in International Conference on Characterization and Metrology for ULSI Technology Proceedings (1998) pp. 235–239 J.R. Hauser, K. Ahmed, Characterization of ultra-thin oxides using electrical CV and IV measurements, in International Conference on Characterization and Metrology for ULSI Technology Proceedings (1998) pp. 235–239
41.
Zurück zum Zitat S. Krishnamurthy, S. Jallepalli, C.-F. Yeap, K. Hasnat, A.F. Tasch, C.M. Maziar, A computationally efficient model for inversion layer quantization effects in deep submicron N-channel MOSFETs. IEEE Trans. Electron Devices 43(1), 90–96 (1996)CrossRef S. Krishnamurthy, S. Jallepalli, C.-F. Yeap, K. Hasnat, A.F. Tasch, C.M. Maziar, A computationally efficient model for inversion layer quantization effects in deep submicron N-channel MOSFETs. IEEE Trans. Electron Devices 43(1), 90–96 (1996)CrossRef
42.
Zurück zum Zitat L.F. Register, A.F. Tasch, S.K. Banerjee, Understanding the effects of wave function penetration on the inversion layer capacitance of NMOSFETs. Electron Device Lett. 22(3), 145–147 (2001)CrossRef L.F. Register, A.F. Tasch, S.K. Banerjee, Understanding the effects of wave function penetration on the inversion layer capacitance of NMOSFETs. Electron Device Lett. 22(3), 145–147 (2001)CrossRef
43.
Zurück zum Zitat V. Heine, Theory of surface state. Phys. Rev. 138, A1689–A1696 (1965). MIGSCrossRef V. Heine, Theory of surface state. Phys. Rev. 138, A1689–A1696 (1965). MIGSCrossRef
44.
Zurück zum Zitat A. Rose, Concepts in Photoconductivity and Allied Problems (Wiley Interscience, New York, 1963) A. Rose, Concepts in Photoconductivity and Allied Problems (Wiley Interscience, New York, 1963)
45.
Zurück zum Zitat D. Muñoz Ramo, J.L. Gavartin, A.L. Shluger, G. Bersuker, Phys. Rev. B 75, 205336 (2007)CrossRef D. Muñoz Ramo, J.L. Gavartin, A.L. Shluger, G. Bersuker, Phys. Rev. B 75, 205336 (2007)CrossRef
48.
Zurück zum Zitat G.J. Gerardi, E.H. Poindexter, P.J. Caplan, N.M. Johnson, Interface traps and Pb centers in oxidized (100) silicon wafers. Appl. Phys. Lett. 49, 348 (1986)CrossRef G.J. Gerardi, E.H. Poindexter, P.J. Caplan, N.M. Johnson, Interface traps and Pb centers in oxidized (100) silicon wafers. Appl. Phys. Lett. 49, 348 (1986)CrossRef
49.
Zurück zum Zitat A.H. Edwards, Theory of the Pb center at the <111> Si/SiO2 interface. Phys. Rev. B 36, 9638 (1987)CrossRef A.H. Edwards, Theory of the Pb center at the <111> Si/SiO2 interface. Phys. Rev. B 36, 9638 (1987)CrossRef
50.
Zurück zum Zitat J. Dong, D.A. Drabold, Atomistic structure of band-tail states in amorphous silicon. Phys. Rev. Lett. 80(9), 1928–1931 (1998)CrossRef J. Dong, D.A. Drabold, Atomistic structure of band-tail states in amorphous silicon. Phys. Rev. Lett. 80(9), 1928–1931 (1998)CrossRef
51.
Zurück zum Zitat S. Kar, W.E. Dahlke, Interface states in MOS structures with 20–40 Åthick SiO2 films on non-degenerate Si. Solid-State Electron. 15, 221–232 (1972)CrossRef S. Kar, W.E. Dahlke, Interface states in MOS structures with 20–40 Åthick SiO2 films on non-degenerate Si. Solid-State Electron. 15, 221–232 (1972)CrossRef
52.
Zurück zum Zitat A.V. Kimmel, P.V. Sushko, A.L. Shluger, G. Bersuker, ECS Trans. 19(2), 3 (2009)CrossRef A.V. Kimmel, P.V. Sushko, A.L. Shluger, G. Bersuker, ECS Trans. 19(2), 3 (2009)CrossRef
53.
Zurück zum Zitat A. Toriumi, K. Kita, ECS Trans. 19(1), 243 (2009) A. Toriumi, K. Kita, ECS Trans. 19(1), 243 (2009)
54.
55.
Zurück zum Zitat J. Tersoff, Schottky barrier heights and the continuum of gap states. Phys. Rev. Lett. 52, 465–468 (1984)CrossRef J. Tersoff, Schottky barrier heights and the continuum of gap states. Phys. Rev. Lett. 52, 465–468 (1984)CrossRef
56.
Zurück zum Zitat M.R. Visokay, J.J. Chambers, A.L.P. Rotondaro, A. Shanware, L. Colombo, Appl. Phys. Lett. 80, 3183 (2002)CrossRef M.R. Visokay, J.J. Chambers, A.L.P. Rotondaro, A. Shanware, L. Colombo, Appl. Phys. Lett. 80, 3183 (2002)CrossRef
57.
Zurück zum Zitat J.-H. Lee et al., in 2002 Symposium on VLSI Technology Digest of Technical Papers, 2002 J.-H. Lee et al., in 2002 Symposium on VLSI Technology Digest of Technical Papers, 2002
58.
Zurück zum Zitat Y.H. Wu, M.Y. Yang, A. Chin, W.J. Chen, C.M. Kwei, IEEE Electron Device Lett. 21, 341 (2000)MATHCrossRef Y.H. Wu, M.Y. Yang, A. Chin, W.J. Chen, C.M. Kwei, IEEE Electron Device Lett. 21, 341 (2000)MATHCrossRef
59.
Zurück zum Zitat H. Harris, K. Choi, N. Mehta, A. Chandolu, N. Biswas, G. Kipshidze, S. Nikishin, S. Gangopapadhyay, H. Temkin, Appl. Phys. Lett. 81, 1065 (2002)CrossRef H. Harris, K. Choi, N. Mehta, A. Chandolu, N. Biswas, G. Kipshidze, S. Nikishin, S. Gangopapadhyay, H. Temkin, Appl. Phys. Lett. 81, 1065 (2002)CrossRef
60.
62.
Zurück zum Zitat A. Ali, H. Madan, S. Koveshnikov, S. Datta, ECS Trans. 25(6), 271 (2009)CrossRef A. Ali, H. Madan, S. Koveshnikov, S. Datta, ECS Trans. 25(6), 271 (2009)CrossRef
64.
Zurück zum Zitat S. Kar, C. Miramond, D. Vuillaume, Properties of electronic traps at silicon/1-octadecene interfaces. Appl. Phys. Lett. 78, 1288 (2001)CrossRef S. Kar, C. Miramond, D. Vuillaume, Properties of electronic traps at silicon/1-octadecene interfaces. Appl. Phys. Lett. 78, 1288 (2001)CrossRef
66.
Zurück zum Zitat J. Maserjian, G. Petersson, C. Svensson, Solid-State Electron. 17, 335 (1974)CrossRef J. Maserjian, G. Petersson, C. Svensson, Solid-State Electron. 17, 335 (1974)CrossRef
67.
Zurück zum Zitat J. Maserjian, in The Physics and Chemistry of SiO2 and the Si/SiO2 Interface, ed. by C.R. Helms, B.E. Deal (Plenum Press, New York, 1988) J. Maserjian, in The Physics and Chemistry of SiO2 and the Si/SiO2 Interface, ed. by C.R. Helms, B.E. Deal (Plenum Press, New York, 1988)
68.
Zurück zum Zitat B. Ricco, P. Olivo, T.N. Nguyen, T.-S. Kuan, G. Ferriani, IEEE Trans. Electron Devices 35, 432 (1988)CrossRef B. Ricco, P. Olivo, T.N. Nguyen, T.-S. Kuan, G. Ferriani, IEEE Trans. Electron Devices 35, 432 (1988)CrossRef
69.
Zurück zum Zitat K. Ahmad, E. Ibok, G. Bains, D. Chi, B. Ogle, J.J. Wortman, J.R. Hauser, IEEE Trans. Electron Devices 47, 1349 (2000)CrossRef K. Ahmad, E. Ibok, G. Bains, D. Chi, B. Ogle, J.J. Wortman, J.R. Hauser, IEEE Trans. Electron Devices 47, 1349 (2000)CrossRef
70.
Zurück zum Zitat J.S. Brugler, P.G.A. Jespers, IEEE Trans. Electron Devices 16, 207 (1969)CrossRef J.S. Brugler, P.G.A. Jespers, IEEE Trans. Electron Devices 16, 207 (1969)CrossRef
71.
Zurück zum Zitat G. Groeseneken, H.E. Maes, N. Beltran, R.F. deKeersmaecker, IEEE Trans. Electron Devices 31, 42 (1984)CrossRef G. Groeseneken, H.E. Maes, N. Beltran, R.F. deKeersmaecker, IEEE Trans. Electron Devices 31, 42 (1984)CrossRef
73.
Zurück zum Zitat K. Shiraishi, K. Yamada, K. Torii, Y. Akasaka, K. Nakajima, M. Konno, T. Chikyo, H. Kitajima, T. Arikado, Y. Nara, Thin Solid Films 508, 305 (2006)CrossRef K. Shiraishi, K. Yamada, K. Torii, Y. Akasaka, K. Nakajima, M. Konno, T. Chikyo, H. Kitajima, T. Arikado, Y. Nara, Thin Solid Films 508, 305 (2006)CrossRef
76.
77.
Zurück zum Zitat S. Kar, Characterization of silicon MOS tunnel diodes. IEDM Tech. Dig. 79 (1976) S. Kar, Characterization of silicon MOS tunnel diodes. IEDM Tech. Dig. 79 (1976)
78.
Zurück zum Zitat S. Kar, Two limiting thinnesses of the ultrathin gate oxides, in Silicon Nitride and Silicon Dioxide Thin Insulating Films, ed. by K.B. Sundaram, M.J. Deen, D. Landheer, W.D. Brown, D. Misra, M.D. Allendorf, R.E. Sah, Electrochem. Soc. Proc., vol PV-2001-7, 60 (2001) S. Kar, Two limiting thinnesses of the ultrathin gate oxides, in Silicon Nitride and Silicon Dioxide Thin Insulating Films, ed. by K.B. Sundaram, M.J. Deen, D. Landheer, W.D. Brown, D. Misra, M.D. Allendorf, R.E. Sah, Electrochem. Soc. Proc., vol PV-2001-7, 60 (2001)
79.
Zurück zum Zitat R. Chau, B. Boyanov, B. Doyle, M. Doczy, S. Datta, S. Hareland, B. Jin, J. Kavalieros, M. Metz, Silicon nano-transistors for logic applications. Physica E 19, 1 (2003)CrossRef R. Chau, B. Boyanov, B. Doyle, M. Doczy, S. Datta, S. Hareland, B. Jin, J. Kavalieros, M. Metz, Silicon nano-transistors for logic applications. Physica E 19, 1 (2003)CrossRef
80.
Zurück zum Zitat D.A. Muller, T. Sorsch, S. Moccio, F.H. Baumann, K. Evans-Lutterodt, G. Timp, The electronic structure at the atomic scale of ultrathin gate oxides. Nature 399, 758 (1999). 24 JuneCrossRef D.A. Muller, T. Sorsch, S. Moccio, F.H. Baumann, K. Evans-Lutterodt, G. Timp, The electronic structure at the atomic scale of ultrathin gate oxides. Nature 399, 758 (1999). 24 JuneCrossRef
82.
Zurück zum Zitat R. Nieh, R. Choi, S. Gopalan, K. Onishi, C.S. Kang, H.-J. Cho, S. Krishnan, J.C. Lee, Evaluation of silicon surface nitridation effects on ultra-thin ZrO2 gate dielectrics. Appl. Phys. Lett. 81, 1663–1665 (2002)CrossRef R. Nieh, R. Choi, S. Gopalan, K. Onishi, C.S. Kang, H.-J. Cho, S. Krishnan, J.C. Lee, Evaluation of silicon surface nitridation effects on ultra-thin ZrO2 gate dielectrics. Appl. Phys. Lett. 81, 1663–1665 (2002)CrossRef
83.
Zurück zum Zitat C.H. Lee, J.J. Lee, W.P. Bai, S.H. Bae, J.H. Sim, X. Lei, R.D. Clark, Y. Harada, M. Niwa, D.L. Kwong, Self-aligned ultra thin HfO2 CMOS transistors with high quality CVD TaN gate electrode, in 2002 Symposium on VLSI Technology Digest of Technical Papers C.H. Lee, J.J. Lee, W.P. Bai, S.H. Bae, J.H. Sim, X. Lei, R.D. Clark, Y. Harada, M. Niwa, D.L. Kwong, Self-aligned ultra thin HfO2 CMOS transistors with high quality CVD TaN gate electrode, in 2002 Symposium on VLSI Technology Digest of Technical Papers
84.
Zurück zum Zitat Y.-S. Lin, R. Puthenkovilakam, J.P. Chang, Dielectric property and thermal stability of HfO2 on silicon. Appl. Phys. Lett. 81, 2041–2043 (2002)CrossRef Y.-S. Lin, R. Puthenkovilakam, J.P. Chang, Dielectric property and thermal stability of HfO2 on silicon. Appl. Phys. Lett. 81, 2041–2043 (2002)CrossRef
Metadaten
Titel
MOSFET: Basics, Characteristics, and Characterization
verfasst von
Samares Kar
Copyright-Jahr
2013
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-36535-5_2

Neuer Inhalt