Skip to main content

2021 | OriginalPaper | Buchkapitel

Nanomaterials for Medical Imaging and In Vivo Sensing

verfasst von : N. Ashwin Kumar, B. S. Suresh Anand, Ganapathy Krishnamurthy

Erschienen in: Nanomaterials and Their Biomedical Applications

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Pre-clinical imaging is a technique that could help in investigating deep inside the rodents to obtain information regarding disease site and drug development process using a non-invasive approach. Diverse FDA approved contrast agents have been implemented since the evolution of these imaging technologies. The current limitations of these contrast agents include faster clearance and photo instability and could be unsuitable for multi-modal and hybrid imaging. These impediments can be overcome with the aid of developing new nanotechnology-based contrast agents. This opens up a new paradigm for researchers to visualize cancer to obtain nanomolecular information. During the past two decades, nano-based contrast agents have revolutionized pre-clinical imaging science, which offers to detect cancers early, rapidly, and effectively. Despite the fact, the concept and technology of imaging are old, the way we look at the disease using nanomaterials in a different perspective. Additionally, the imaging techniques combined with nanotechnology-based contrast agents can be used to investigate the interaction of drugs at a pre-clinical stage and the cellular level. Pre-clinical imaging is performed with two different strategies. The former techniques give anatomical information, which includes computed tomography, magnetic resonance imaging, and ultrasound. While the latter presents molecular information using optical techniques, photon-acoustic imaging, and positron emission tomography. Recent developments in nanotechnology-based contrast agents have opened new avenues to alter and improve the current imaging modalities resulting in hybrid and multi-modal imaging approaches. Here, we intend to provide fundamental knowledge and general considerations of using nanomaterials in pre-clinical imaging modalities. This chapter provides extensive information about the advancements in nanomaterials for pre-clinical imaging applications. In the later part, we discuss the science behind individual nanomaterials with different imaging systems and its improvements in pre-clinical imaging. Also, the advantages and drawbacks associated with nanomaterials are presented. Finally, we discuss the application of different nano-based contrast agents and their application in biomedical imaging.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
3.
Zurück zum Zitat Bushberg JT, Seibert JA, Leidholdt EM, Boone JM (2011) The essential physics of medical imaging. Wolters Kluwer Health Bushberg JT, Seibert JA, Leidholdt EM, Boone JM (2011) The essential physics of medical imaging. Wolters Kluwer Health
9.
Zurück zum Zitat Exner DV, Kavanagh KM, Slawnych MP, Mitchell LB, Ramadan D, Aggarwal SG, Noullett C, Van Schaik A, Mitchell RT, Shibata MA, Gulamhussein S, McMeekin J, Tymchak W, Schnell G, Gillis AM, Sheldon RS, Fick GH, Duff HJ, Investigators R (2007) Noninvasive risk assessment early after a myocardial infarction the REFINE study. J Am Coll Cardiol 50(24):2275–2284. https://doi.org/10.1016/j.jacc.2007.08.042CrossRef Exner DV, Kavanagh KM, Slawnych MP, Mitchell LB, Ramadan D, Aggarwal SG, Noullett C, Van Schaik A, Mitchell RT, Shibata MA, Gulamhussein S, McMeekin J, Tymchak W, Schnell G, Gillis AM, Sheldon RS, Fick GH, Duff HJ, Investigators R (2007) Noninvasive risk assessment early after a myocardial infarction the REFINE study. J Am Coll Cardiol 50(24):2275–2284. https://​doi.​org/​10.​1016/​j.​jacc.​2007.​08.​042CrossRef
13.
Zurück zum Zitat Nagai M, Kato K, Soga S, Santra TS, Shibata T (2020) Scalable parallel manipulation of single cells using micronozzle array integrated with bidirectional electrokinetic pumps. Micromachines (Basel) 11(4). https://doi.org/10.3390/mi11040442 Nagai M, Kato K, Soga S, Santra TS, Shibata T (2020) Scalable parallel manipulation of single cells using micronozzle array integrated with bidirectional electrokinetic pumps. Micromachines (Basel) 11(4). https://​doi.​org/​10.​3390/​mi11040442
64.
Zurück zum Zitat Kattumuri V, Katti K, Bhaskaran S, Boote EJ, Casteel SW, Fent GM, Robertson DJ, Chandrasekhar M, Kannan R, Katti KV (2007) Gum arabic as a phytochemical construct for the stabilization of gold nanoparticles: in vivo pharmacokinetics and X-ray-contrast-imaging studies. Small 3(2):333–341. https://doi.org/10.1002/smll.200600427CrossRef Kattumuri V, Katti K, Bhaskaran S, Boote EJ, Casteel SW, Fent GM, Robertson DJ, Chandrasekhar M, Kannan R, Katti KV (2007) Gum arabic as a phytochemical construct for the stabilization of gold nanoparticles: in vivo pharmacokinetics and X-ray-contrast-imaging studies. Small 3(2):333–341. https://​doi.​org/​10.​1002/​smll.​200600427CrossRef
72.
Zurück zum Zitat Naha PC, Lau KC, Hsu JC, Hajfathalian M, Mian S, Chhour P, Uppuluri L, McDonald ES, Maidment AD, Cormode DP (2016) Gold silver alloy nanoparticles (GSAN): an imaging probe for breast cancer screening with dual-energy mammography or computed tomography. Nanoscale 8(28):13740–13754. https://doi.org/10.1039/c6nr02618dADSCrossRef Naha PC, Lau KC, Hsu JC, Hajfathalian M, Mian S, Chhour P, Uppuluri L, McDonald ES, Maidment AD, Cormode DP (2016) Gold silver alloy nanoparticles (GSAN): an imaging probe for breast cancer screening with dual-energy mammography or computed tomography. Nanoscale 8(28):13740–13754. https://​doi.​org/​10.​1039/​c6nr02618dADSCrossRef
82.
92.
Zurück zum Zitat Zhang C, Li C, Liu Y, Zhang J, Bao C, Liang S, Wang Q, Yang Y, Fu H, Wang K, Cui D (2015) Gold nanoclusters-based nanoprobes for simultaneous fluorescence imaging and targeted photodynamic therapy with superior penetration and retention behavior in tumors. Adv Func Mater 25(8):1314–1325. https://doi.org/10.1002/adfm.201403095CrossRef Zhang C, Li C, Liu Y, Zhang J, Bao C, Liang S, Wang Q, Yang Y, Fu H, Wang K, Cui D (2015) Gold nanoclusters-based nanoprobes for simultaneous fluorescence imaging and targeted photodynamic therapy with superior penetration and retention behavior in tumors. Adv Func Mater 25(8):1314–1325. https://​doi.​org/​10.​1002/​adfm.​201403095CrossRef
95.
96.
Zurück zum Zitat Shahbazi MA, Faghfouri L, Ferreira MPA, Figueiredo P, Maleki H, Sefat F, Hirvonen J, Santos HA (2020) The versatile biomedical applications of bismuth-based nanoparticles and composites: therapeutic, diagnostic, biosensing, and regenerative properties. Chem Soc Rev 49(4):1253–1321. https://doi.org/10.1039/c9cs00283aCrossRef Shahbazi MA, Faghfouri L, Ferreira MPA, Figueiredo P, Maleki H, Sefat F, Hirvonen J, Santos HA (2020) The versatile biomedical applications of bismuth-based nanoparticles and composites: therapeutic, diagnostic, biosensing, and regenerative properties. Chem Soc Rev 49(4):1253–1321. https://​doi.​org/​10.​1039/​c9cs00283aCrossRef
97.
Zurück zum Zitat Brown AL, Naha PC, Benavides-Montes V, Litt HI, Goforth AM, Cormode DP (2014) Synthesis, X-ray opacity, and biological compatibility of ultra-high payload elemental bismuth nanoparticle X-ray contrast agents. Chem Mater: A Publ Am Chem Soc 26(7):2266–2274. https://doi.org/10.1021/cm500077zCrossRef Brown AL, Naha PC, Benavides-Montes V, Litt HI, Goforth AM, Cormode DP (2014) Synthesis, X-ray opacity, and biological compatibility of ultra-high payload elemental bismuth nanoparticle X-ray contrast agents. Chem Mater: A Publ Am Chem Soc 26(7):2266–2274. https://​doi.​org/​10.​1021/​cm500077zCrossRef
101.
Zurück zum Zitat Liu J, Zheng X, Yan L, Zhou L, Tian G, Yin W, Wang L, Liu Y, Hu Z, Gu Z, Chen C, Zhao Y (2015) Bismuth sulfide nanorods as a precision nanomedicine for in vivo multimodal imaging-guided photothermal therapy of tumor. ACS Nano 9(1):696–707. https://doi.org/10.1021/nn506137nCrossRef Liu J, Zheng X, Yan L, Zhou L, Tian G, Yin W, Wang L, Liu Y, Hu Z, Gu Z, Chen C, Zhao Y (2015) Bismuth sulfide nanorods as a precision nanomedicine for in vivo multimodal imaging-guided photothermal therapy of tumor. ACS Nano 9(1):696–707. https://​doi.​org/​10.​1021/​nn506137nCrossRef
104.
Zurück zum Zitat Kinsella JM, Jimenez RE, Karmali PP, Rush AM, Kotamraju VR, Gianneschi NC, Ruoslahti E, Stupack D, Sailor MJ (2011) X-ray computed tomography imaging of breast cancer by using targeted peptide-labeled bismuth sulfide nanoparticles. Angew Chem 50(51):12308–12311. https://doi.org/10.1002/anie.201104507CrossRef Kinsella JM, Jimenez RE, Karmali PP, Rush AM, Kotamraju VR, Gianneschi NC, Ruoslahti E, Stupack D, Sailor MJ (2011) X-ray computed tomography imaging of breast cancer by using targeted peptide-labeled bismuth sulfide nanoparticles. Angew Chem 50(51):12308–12311. https://​doi.​org/​10.​1002/​anie.​201104507CrossRef
105.
Zurück zum Zitat Li L, Lu Y, Jiang C, Zhu Y, Yang X, Hu X, Lin Z, Zhang Y, Peng M, Xia H, Mao C (2018) Actively targeted deep tissue imaging and photothermal-chemo therapy of breast cancer by antibody-functionalized drug-loaded X-ray-responsive bismuth sulfide@mesoporous silica core-shell nanoparticles. Adv Funct Mater 28(5). https://doi.org/10.1002/adfm.201704623 Li L, Lu Y, Jiang C, Zhu Y, Yang X, Hu X, Lin Z, Zhang Y, Peng M, Xia H, Mao C (2018) Actively targeted deep tissue imaging and photothermal-chemo therapy of breast cancer by antibody-functionalized drug-loaded X-ray-responsive bismuth sulfide@mesoporous silica core-shell nanoparticles. Adv Funct Mater 28(5). https://​doi.​org/​10.​1002/​adfm.​201704623
106.
107.
109.
Zurück zum Zitat Zhou D, Li C, He M, Ma M, Li P, Gong Y, Ran H, Wang Z, Wang Z, Zheng Y, Sun Y (2016) Folate-targeted perfluorohexane nanoparticles carrying bismuth sulfide for use in US/CT dual-mode imaging and synergistic high-intensity focused ultrasound ablation of cervical cancer. J Mater Chem B 4(23):4164–4181. https://doi.org/10.1039/c6tb00261gCrossRef Zhou D, Li C, He M, Ma M, Li P, Gong Y, Ran H, Wang Z, Wang Z, Zheng Y, Sun Y (2016) Folate-targeted perfluorohexane nanoparticles carrying bismuth sulfide for use in US/CT dual-mode imaging and synergistic high-intensity focused ultrasound ablation of cervical cancer. J Mater Chem B 4(23):4164–4181. https://​doi.​org/​10.​1039/​c6tb00261gCrossRef
110.
Zurück zum Zitat Oh MH, Lee N, Kim H, Park SP, Piao Y, Lee J, Jun SW, Moon WK, Choi SH, Hyeon T (2011) Large-scale synthesis of bioinert tantalum oxide nanoparticles for X-ray computed tomography imaging and bimodal image-guided sentinel lymph node mapping. J Am Chem Soc 133(14):5508–5515. https://doi.org/10.1021/ja200120kCrossRef Oh MH, Lee N, Kim H, Park SP, Piao Y, Lee J, Jun SW, Moon WK, Choi SH, Hyeon T (2011) Large-scale synthesis of bioinert tantalum oxide nanoparticles for X-ray computed tomography imaging and bimodal image-guided sentinel lymph node mapping. J Am Chem Soc 133(14):5508–5515. https://​doi.​org/​10.​1021/​ja200120kCrossRef
115.
Zurück zum Zitat Freedman JD, Lusic H, Snyder BD, Grinstaff MW (2014) Tantalum oxide nanoparticles for the imaging of articular cartilage using X-ray computed tomography: visualization of ex vivo/in vivo murine tibia and ex vivo human index finger cartilage. Angew Chem 53(32):8406–8410. https://doi.org/10.1002/anie.201404519CrossRef Freedman JD, Lusic H, Snyder BD, Grinstaff MW (2014) Tantalum oxide nanoparticles for the imaging of articular cartilage using X-ray computed tomography: visualization of ex vivo/in vivo murine tibia and ex vivo human index finger cartilage. Angew Chem 53(32):8406–8410. https://​doi.​org/​10.​1002/​anie.​201404519CrossRef
116.
118.
120.
123.
Zurück zum Zitat Chakravarty S, Hix JML, Wiewiora KA, Volk MC, Kenyon E, Shuboni-Mulligan DD, Blanco-Fernandez B, Kiupel M, Thomas J, Sempere LF, Shapiro EM (2020) Tantalum oxide nanoparticles as versatile contrast agents for X-ray computed tomography. Nanoscale. https://doi.org/10.1039/d0nr01234cCrossRef Chakravarty S, Hix JML, Wiewiora KA, Volk MC, Kenyon E, Shuboni-Mulligan DD, Blanco-Fernandez B, Kiupel M, Thomas J, Sempere LF, Shapiro EM (2020) Tantalum oxide nanoparticles as versatile contrast agents for X-ray computed tomography. Nanoscale. https://​doi.​org/​10.​1039/​d0nr01234cCrossRef
129.
Zurück zum Zitat Krause W, Schuhmann-Giampieri G, Bauer M, Press W-R, Muschick P (1996) Ytterbium- and dysprosium-EOB-DTPA: a new prototype of liver-specific contrast agents for computed tomography. Investig Radiol 31(8):502–511 Krause W, Schuhmann-Giampieri G, Bauer M, Press W-R, Muschick P (1996) Ytterbium- and dysprosium-EOB-DTPA: a new prototype of liver-specific contrast agents for computed tomography. Investig Radiol 31(8):502–511
134.
Zurück zum Zitat Liu Z, Pu F, Liu J, Jiang L, Yuan Q, Li Z, Ren J, Qu X (2013) PEGylated hybrid ytterbia nanoparticles as high-performance diagnostic probes for in vivo magnetic resonance and X-ray computed tomography imaging with low systemic toxicity. Nanoscale 5(10):4252–4261. https://doi.org/10.1039/c3nr00491kADSCrossRef Liu Z, Pu F, Liu J, Jiang L, Yuan Q, Li Z, Ren J, Qu X (2013) PEGylated hybrid ytterbia nanoparticles as high-performance diagnostic probes for in vivo magnetic resonance and X-ray computed tomography imaging with low systemic toxicity. Nanoscale 5(10):4252–4261. https://​doi.​org/​10.​1039/​c3nr00491kADSCrossRef
137.
Zurück zum Zitat Pan D, Schirra CO, Senpan A, Schmieder AH, Stacy AJ, Roessl E, Thran A, Wickline SA, Proska R, Lanza GM (2012) An early investigation of ytterbium nanocolloids for selective and quantitative “multicolor” spectral CT imaging. ACS Nano 6(4):3364–3370. https://doi.org/10.1021/nn300392xCrossRef Pan D, Schirra CO, Senpan A, Schmieder AH, Stacy AJ, Roessl E, Thran A, Wickline SA, Proska R, Lanza GM (2012) An early investigation of ytterbium nanocolloids for selective and quantitative “multicolor” spectral CT imaging. ACS Nano 6(4):3364–3370. https://​doi.​org/​10.​1021/​nn300392xCrossRef
144.
Zurück zum Zitat Constantinides C (2016) Magnetic resonance imaging: the basics. CRC Press Constantinides C (2016) Magnetic resonance imaging: the basics. CRC Press
157.
Zurück zum Zitat Kahakachchi CL, Moore DA (2009) Speciation of gadolinium in gadolinium-based magnetic resonance imaging agents by high performance liquid chromatography inductively coupled plasma optical emission spectrometry. J Anal At Spectrom 24(10):1389. https://doi.org/10.1039/b907044cCrossRef Kahakachchi CL, Moore DA (2009) Speciation of gadolinium in gadolinium-based magnetic resonance imaging agents by high performance liquid chromatography inductively coupled plasma optical emission spectrometry. J Anal At Spectrom 24(10):1389. https://​doi.​org/​10.​1039/​b907044cCrossRef
158.
Zurück zum Zitat Salehi B, Selamoglu Z, K SM, Pezzani R, Redaelli M, Cho WC, Kobarfard F, Rajabi S, Martorell M, Kumar P, Martins N, Subhra Santra T, Sharifi-Rad J (2019) Liposomal cytarabine as cancer therapy: from chemistry to medicine. Biomolecules 9(12). https://doi.org/10.3390/biom9120773 Salehi B, Selamoglu Z, K SM, Pezzani R, Redaelli M, Cho WC, Kobarfard F, Rajabi S, Martorell M, Kumar P, Martins N, Subhra Santra T, Sharifi-Rad J (2019) Liposomal cytarabine as cancer therapy: from chemistry to medicine. Biomolecules 9(12). https://​doi.​org/​10.​3390/​biom9120773
160.
166.
Zurück zum Zitat Goldman E, Zinger A, da Silva D, Yaari Z, Kajal A, Vardi-Oknin D, Goldfeder M, Schroeder JE, Shainsky-Roitman J, Hershkovitz D, Schroeder A (2017) Nanoparticles target early-stage breast cancer metastasis in vivo. Nanotechnology 28(43):43LT01. https://doi.org/10.1088/1361-6528/aa8a3d Goldman E, Zinger A, da Silva D, Yaari Z, Kajal A, Vardi-Oknin D, Goldfeder M, Schroeder JE, Shainsky-Roitman J, Hershkovitz D, Schroeder A (2017) Nanoparticles target early-stage breast cancer metastasis in vivo. Nanotechnology 28(43):43LT01. https://​doi.​org/​10.​1088/​1361-6528/​aa8a3d
168.
Zurück zum Zitat Lorenzato C, Oerlemans C, van Elk M, Geerts WJ, Denis de Senneville B, Moonen C, Bos C (2016) MRI monitoring of nanocarrier accumulation and release using Gadolinium-SPIO co-labelled thermosensitive liposomes. Contrast Media Mol Imaging 11(3):184–194. https://doi.org/10.1002/cmmi.1679CrossRef Lorenzato C, Oerlemans C, van Elk M, Geerts WJ, Denis de Senneville B, Moonen C, Bos C (2016) MRI monitoring of nanocarrier accumulation and release using Gadolinium-SPIO co-labelled thermosensitive liposomes. Contrast Media Mol Imaging 11(3):184–194. https://​doi.​org/​10.​1002/​cmmi.​1679CrossRef
170.
Zurück zum Zitat Ahren M, Selegard L, Klasson A, Soderlind F, Abrikossova N, Skoglund C, Bengtsson T, Engstrom M, Kall PO, Uvdal K (2010) Synthesis and characterization of PEGylated Gd2O3 nanoparticles for MRI contrast enhancement. Langmuir: ACS J Surf Colloids 26(8):5753–5762. https://doi.org/10.1021/la903566yCrossRef Ahren M, Selegard L, Klasson A, Soderlind F, Abrikossova N, Skoglund C, Bengtsson T, Engstrom M, Kall PO, Uvdal K (2010) Synthesis and characterization of PEGylated Gd2O3 nanoparticles for MRI contrast enhancement. Langmuir: ACS J Surf Colloids 26(8):5753–5762. https://​doi.​org/​10.​1021/​la903566yCrossRef
174.
Zurück zum Zitat Park JY, Baek MJ, Choi ES, Woo S, Kim JH, Kim TJ, Jung JC, Chae KS, Chang Y, Lee GH (2009) Paramagnetic ultrasmall gadolinium oxide nanoparticles as advanced T1 MRI contrast agent: account for large longitudinal relaxivity, optimal particle diameter, and in vivo T1 MR images. ACS Nano 3(11):3663–3669. https://doi.org/10.1021/nn900761sCrossRef Park JY, Baek MJ, Choi ES, Woo S, Kim JH, Kim TJ, Jung JC, Chae KS, Chang Y, Lee GH (2009) Paramagnetic ultrasmall gadolinium oxide nanoparticles as advanced T1 MRI contrast agent: account for large longitudinal relaxivity, optimal particle diameter, and in vivo T1 MR images. ACS Nano 3(11):3663–3669. https://​doi.​org/​10.​1021/​nn900761sCrossRef
175.
Zurück zum Zitat Bridot JL, Faure AC, Laurent S, Riviere C, Billotey C, Hiba B, Janier M, Josserand V, Coll JL, Elst LV, Muller R, Roux S, Perriat P, Tillement O (2007) Hybrid gadolinium oxide nanoparticles: multimodal contrast agents for in vivo imaging. J Am Chem Soc 129(16):5076–5084. https://doi.org/10.1021/ja068356jCrossRef Bridot JL, Faure AC, Laurent S, Riviere C, Billotey C, Hiba B, Janier M, Josserand V, Coll JL, Elst LV, Muller R, Roux S, Perriat P, Tillement O (2007) Hybrid gadolinium oxide nanoparticles: multimodal contrast agents for in vivo imaging. J Am Chem Soc 129(16):5076–5084. https://​doi.​org/​10.​1021/​ja068356jCrossRef
176.
179.
Zurück zum Zitat Miao X, Ho SL, Tegafaw T, Cha H, Chang Y, Oh IT, Yaseen AM, Marasini S, Ghazanfari A, Yue H, Chae KS, Lee GH (2018) Stable and non-toxic ultrasmall gadolinium oxide nanoparticle colloids (coating material = polyacrylic acid) as high-performance T1 magnetic resonance imaging contrast agents. RSC Adv 8(6):3189–3197. https://doi.org/10.1039/c7ra11830aADSCrossRef Miao X, Ho SL, Tegafaw T, Cha H, Chang Y, Oh IT, Yaseen AM, Marasini S, Ghazanfari A, Yue H, Chae KS, Lee GH (2018) Stable and non-toxic ultrasmall gadolinium oxide nanoparticle colloids (coating material = polyacrylic acid) as high-performance T1 magnetic resonance imaging contrast agents. RSC Adv 8(6):3189–3197. https://​doi.​org/​10.​1039/​c7ra11830aADSCrossRef
182.
Zurück zum Zitat Mortezazadeh T, Gholibegloo E, Riyahi Alam N, Haghgoo S, Musa A, E., Khoobi M (2020) Glucosamine conjugated gadolinium (III) oxide nanoparticles as a novel targeted contrast agent for cancer diagnosis in MRI. J Biomed Phys Eng 10(1):25–38. http://doi.org/10.31661/jbpe.v0i0.1018 Mortezazadeh T, Gholibegloo E, Riyahi Alam N, Haghgoo S, Musa A, E., Khoobi M (2020) Glucosamine conjugated gadolinium (III) oxide nanoparticles as a novel targeted contrast agent for cancer diagnosis in MRI. J Biomed Phys Eng 10(1):25–38. http://​doi.​org/​10.​31661/​jbpe.​v0i0.​1018
183.
Zurück zum Zitat Mortezazadeh T, Gholibegloo E, Alam NR, Dehghani S, Haghgoo S, Ghanaati H, Khoobi M (2019) Gadolinium (III) oxide nanoparticles coated with folic acid-functionalized poly(beta-cyclodextrin-co-pentetic acid) as a biocompatible targeted nano-contrast agent for cancer diagnostic: in vitro and in vivo studies. MAGMA 32(4):487–500. https://doi.org/10.1007/s10334-019-00738-2CrossRef Mortezazadeh T, Gholibegloo E, Alam NR, Dehghani S, Haghgoo S, Ghanaati H, Khoobi M (2019) Gadolinium (III) oxide nanoparticles coated with folic acid-functionalized poly(beta-cyclodextrin-co-pentetic acid) as a biocompatible targeted nano-contrast agent for cancer diagnostic: in vitro and in vivo studies. MAGMA 32(4):487–500. https://​doi.​org/​10.​1007/​s10334-019-00738-2CrossRef
188.
Zurück zum Zitat Li IF, Su C-H, Sheu H-S, Chiu H-C, Lo Y-W, Lin W-T, Chen J-H, Yeh C-S (2008) Gd2O(CO3)2 H2O particles and the corresponding Gd2O3: synthesis and applications of magnetic resonance contrast agents and template particles for hollow spheres and hybrid composites. Adv Func Mater 18(5):766–776. https://doi.org/10.1002/adfm.200700702CrossRef Li IF, Su C-H, Sheu H-S, Chiu H-C, Lo Y-W, Lin W-T, Chen J-H, Yeh C-S (2008) Gd2O(CO3)2 H2O particles and the corresponding Gd2O3: synthesis and applications of magnetic resonance contrast agents and template particles for hollow spheres and hybrid composites. Adv Func Mater 18(5):766–776. https://​doi.​org/​10.​1002/​adfm.​200700702CrossRef
189.
190.
Zurück zum Zitat Sook Choi E, Young Park J, Ju Baek M, Xu W, Kattel K, Hyun Kim J, Jun Lee J, Chang Y, Jeong Kim T, Eun Bae J, Seok Chae K, Jin Suh K (2010) Ho Lee G (2010) water-soluble ultra-small manganese oxide surface doped gadolinium oxide (Gd2O3@MnO) nanoparticles for MRI contrast agent. Eur J Inorg Chem 28:4555–4560. https://doi.org/10.1002/ejic.201000374CrossRef Sook Choi E, Young Park J, Ju Baek M, Xu W, Kattel K, Hyun Kim J, Jun Lee J, Chang Y, Jeong Kim T, Eun Bae J, Seok Chae K, Jin Suh K (2010) Ho Lee G (2010) water-soluble ultra-small manganese oxide surface doped gadolinium oxide (Gd2O3@MnO) nanoparticles for MRI contrast agent. Eur J Inorg Chem 28:4555–4560. https://​doi.​org/​10.​1002/​ejic.​201000374CrossRef
192.
193.
Zurück zum Zitat Liu J, Tian X, Luo N, Yang C, Xiao J, Shao Y, Chen X, Yang G, Chen D, Li L (2014) Sub-10 nm monoclinic Gd2O3:Eu3+ nanoparticles as dual-modal nanoprobes for magnetic resonance and fluorescence imaging. Langmuir: ACS Journal Surf Coll 30(43):13005–13013. https://doi.org/10.1021/la503228vCrossRef Liu J, Tian X, Luo N, Yang C, Xiao J, Shao Y, Chen X, Yang G, Chen D, Li L (2014) Sub-10 nm monoclinic Gd2O3:Eu3+ nanoparticles as dual-modal nanoprobes for magnetic resonance and fluorescence imaging. Langmuir: ACS Journal Surf Coll 30(43):13005–13013. https://​doi.​org/​10.​1021/​la503228vCrossRef
194.
Zurück zum Zitat Kamińska I, Fronc K, Sikora B, Mouawad M, Siemiarczuk A, Szewczyk M, Sobczak K, Wojciechowski T, Zaleszczyk W, Minikayev R, Paszkowicz W, Stępień P, Dziawa P, Ciszak K, Piątkowski D, Maćkowski S, Kaliszewski M, Włodarski M, Młyńczak J, Kopczyński K, Łapiński M, Elbaum D (2015) Upconverting/magnetic: Gd2O3:(Er3+, Yb3+, Zn2+) nanoparticles for biological applications: effect of Zn2+ doping. RSC Advances 5(95):78361–78373. https://doi.org/10.1039/c5ra11888cADSCrossRef Kamińska I, Fronc K, Sikora B, Mouawad M, Siemiarczuk A, Szewczyk M, Sobczak K, Wojciechowski T, Zaleszczyk W, Minikayev R, Paszkowicz W, Stępień P, Dziawa P, Ciszak K, Piątkowski D, Maćkowski S, Kaliszewski M, Włodarski M, Młyńczak J, Kopczyński K, Łapiński M, Elbaum D (2015) Upconverting/magnetic: Gd2O3:(Er3+, Yb3+, Zn2+) nanoparticles for biological applications: effect of Zn2+ doping. RSC Advances 5(95):78361–78373. https://​doi.​org/​10.​1039/​c5ra11888cADSCrossRef
195.
Zurück zum Zitat Li H, Song S, Wang W, Chen K (2015) In vitro photodynamic therapy based on magnetic-luminescent Gd2O3:Yb, Er nanoparticles with bright three-photon up-conversion fluorescence under near-infrared light. Dalton Trans 44(36):16081–16090. https://doi.org/10.1039/c5dt01015bCrossRef Li H, Song S, Wang W, Chen K (2015) In vitro photodynamic therapy based on magnetic-luminescent Gd2O3:Yb, Er nanoparticles with bright three-photon up-conversion fluorescence under near-infrared light. Dalton Trans 44(36):16081–16090. https://​doi.​org/​10.​1039/​c5dt01015bCrossRef
203.
Zurück zum Zitat Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108(6):2064–2110. https://doi.org/10.1021/cr068445eCrossRef Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108(6):2064–2110. https://​doi.​org/​10.​1021/​cr068445eCrossRef
205.
Zurück zum Zitat Lee H, Lee E, Kim DK, Jang NK, Jeong YY, Jon S (2006) Antibiofouling polymer-coated superparamagnetic iron oxide nanoparticles as potential magnetic resonance contrast agents for in vivo cancer imaging. J Am Chem Soc 128(22):7383–7389. https://doi.org/10.1021/ja061529kCrossRef Lee H, Lee E, Kim DK, Jang NK, Jeong YY, Jon S (2006) Antibiofouling polymer-coated superparamagnetic iron oxide nanoparticles as potential magnetic resonance contrast agents for in vivo cancer imaging. J Am Chem Soc 128(22):7383–7389. https://​doi.​org/​10.​1021/​ja061529kCrossRef
209.
Zurück zum Zitat Ye F, Laurent S, Fornara A, Astolfi L, Qin J, Roch A, Martini A, Toprak MS, Muller RN, Muhammed M (2012) Uniform mesoporous silica coated iron oxide nanoparticles as a highly efficient, nontoxic MRI T(2) contrast agent with tunable proton relaxivities. Contrast Media Mol Imaging 7(5):460–468. https://doi.org/10.1002/cmmi.1473CrossRef Ye F, Laurent S, Fornara A, Astolfi L, Qin J, Roch A, Martini A, Toprak MS, Muller RN, Muhammed M (2012) Uniform mesoporous silica coated iron oxide nanoparticles as a highly efficient, nontoxic MRI T(2) contrast agent with tunable proton relaxivities. Contrast Media Mol Imaging 7(5):460–468. https://​doi.​org/​10.​1002/​cmmi.​1473CrossRef
210.
Zurück zum Zitat Mahmoudi M, Hosseinkhani H, Hosseinkhani M, Boutry S, Simchi A, Journeay WS, Subramani K, Laurent S (2011) Magnetic resonance imaging tracking of stem cells in vivo using iron oxide nanoparticles as a tool for the advancement of clinical regenerative medicine. Chem Rev 111(2):253–280. https://doi.org/10.1021/cr1001832CrossRef Mahmoudi M, Hosseinkhani H, Hosseinkhani M, Boutry S, Simchi A, Journeay WS, Subramani K, Laurent S (2011) Magnetic resonance imaging tracking of stem cells in vivo using iron oxide nanoparticles as a tool for the advancement of clinical regenerative medicine. Chem Rev 111(2):253–280. https://​doi.​org/​10.​1021/​cr1001832CrossRef
213.
Zurück zum Zitat Zare S, Mehrabani D, Jalli R, Saeedi Moghadam M, Manafi N, Mehrabani G, Jamhiri I, Ahadian S (2019) MRI-tracking of dental pulp stem cells in vitro and in vivo using dextran-coated superparamagnetic iron oxide nanoparticles. J Clin Med 8(9). https://doi.org/10.3390/jcm8091418 Zare S, Mehrabani D, Jalli R, Saeedi Moghadam M, Manafi N, Mehrabani G, Jamhiri I, Ahadian S (2019) MRI-tracking of dental pulp stem cells in vitro and in vivo using dextran-coated superparamagnetic iron oxide nanoparticles. J Clin Med 8(9). https://​doi.​org/​10.​3390/​jcm8091418
215.
216.
221.
Zurück zum Zitat Afzalipour R, Khoei S, Khoee S, Shirvalilou S, Jamali Raoufi N, Motevalian M, Karimi MR (2019) Dual-targeting temozolomide loaded in folate-conjugated magnetic triblock copolymer nanoparticles to improve the therapeutic efficiency of rat brain gliomas. ACS Biomater Sci Eng 5(11):6000–6011. https://doi.org/10.1021/acsbiomaterials.9b00856CrossRef Afzalipour R, Khoei S, Khoee S, Shirvalilou S, Jamali Raoufi N, Motevalian M, Karimi MR (2019) Dual-targeting temozolomide loaded in folate-conjugated magnetic triblock copolymer nanoparticles to improve the therapeutic efficiency of rat brain gliomas. ACS Biomater Sci Eng 5(11):6000–6011. https://​doi.​org/​10.​1021/​acsbiomaterials.​9b00856CrossRef
222.
Zurück zum Zitat Du C, Liu X, Hu H, Li H, Yu L, Geng D, Chen Y, Zhang J (2020) Dual-targeting and excretable ultrasmall SPIONs for T1-weighted positive MR imaging of intracranial glioblastoma cells by targeting the lipoprotein receptor-related protein. J Mater Chem B 8(11):2296–2306. https://doi.org/10.1039/c9tb02391gCrossRef Du C, Liu X, Hu H, Li H, Yu L, Geng D, Chen Y, Zhang J (2020) Dual-targeting and excretable ultrasmall SPIONs for T1-weighted positive MR imaging of intracranial glioblastoma cells by targeting the lipoprotein receptor-related protein. J Mater Chem B 8(11):2296–2306. https://​doi.​org/​10.​1039/​c9tb02391gCrossRef
225.
Zurück zum Zitat Lin R, Huang J, Wang L, Li Y, Lipowska M, Wu H, Yang J, Mao H (2018) Bevacizumab and near infrared probe conjugated iron oxide nanoparticles for vascular endothelial growth factor targeted MR and optical imaging. Biomater Sci 6(6):1517–1525. https://doi.org/10.1039/c8bm00225hCrossRef Lin R, Huang J, Wang L, Li Y, Lipowska M, Wu H, Yang J, Mao H (2018) Bevacizumab and near infrared probe conjugated iron oxide nanoparticles for vascular endothelial growth factor targeted MR and optical imaging. Biomater Sci 6(6):1517–1525. https://​doi.​org/​10.​1039/​c8bm00225hCrossRef
231.
239.
240.
Zurück zum Zitat Wang R, Luo Y, Yang S, Lin J, Gao D, Zhao Y, Liu J, Shi X, Wang X (2016) Hyaluronic acid-modified manganese-chelated dendrimer-entrapped gold nanoparticles for the targeted CT/MR dual-mode imaging of hepatocellular carcinoma. Sci Rep 6:33844. https://doi.org/10.1038/srep33844ADSCrossRef Wang R, Luo Y, Yang S, Lin J, Gao D, Zhao Y, Liu J, Shi X, Wang X (2016) Hyaluronic acid-modified manganese-chelated dendrimer-entrapped gold nanoparticles for the targeted CT/MR dual-mode imaging of hepatocellular carcinoma. Sci Rep 6:33844. https://​doi.​org/​10.​1038/​srep33844ADSCrossRef
242.
Zurück zum Zitat Ding X, Liu J, Li J, Wang F, Wang Y, Song S, Zhang H (2016) Polydopamine coated manganese oxide nanoparticles with ultrahigh relaxivity as nanotheranostic agents for magnetic resonance imaging guided synergetic chemo-/photothermal therapy. Chem Sci 7(11):6695–6700. https://doi.org/10.1039/c6sc01320aCrossRef Ding X, Liu J, Li J, Wang F, Wang Y, Song S, Zhang H (2016) Polydopamine coated manganese oxide nanoparticles with ultrahigh relaxivity as nanotheranostic agents for magnetic resonance imaging guided synergetic chemo-/photothermal therapy. Chem Sci 7(11):6695–6700. https://​doi.​org/​10.​1039/​c6sc01320aCrossRef
243.
Zurück zum Zitat Ragg R, Schilmann AM, Korschelt K, Wieseotte C, Kluenker M, Viel M, Volker L, Preiss S, Herzberger J, Frey H, Heinze K, Blumler P, Tahir MN, Natalio F, Tremel W (2016) Intrinsic superoxide dismutase activity of MnO nanoparticles enhances the magnetic resonance imaging contrast. J Mater Chem B 4(46):7423–7428. https://doi.org/10.1039/c6tb02078jCrossRef Ragg R, Schilmann AM, Korschelt K, Wieseotte C, Kluenker M, Viel M, Volker L, Preiss S, Herzberger J, Frey H, Heinze K, Blumler P, Tahir MN, Natalio F, Tremel W (2016) Intrinsic superoxide dismutase activity of MnO nanoparticles enhances the magnetic resonance imaging contrast. J Mater Chem B 4(46):7423–7428. https://​doi.​org/​10.​1039/​c6tb02078jCrossRef
244.
Zurück zum Zitat Zhan Y, Shi S, Ehlerding EB, Graves SA, Goel S, Engle JW, Liang J, Tian J, Cai W (2017) Radiolabeled, antibody-conjugated manganese oxide nanoparticles for tumor vasculature targeted positron emission tomography and magnetic resonance imaging. ACS Appl Mater Interfaces 9(44):38304–38312. https://doi.org/10.1021/acsami.7b12216CrossRef Zhan Y, Shi S, Ehlerding EB, Graves SA, Goel S, Engle JW, Liang J, Tian J, Cai W (2017) Radiolabeled, antibody-conjugated manganese oxide nanoparticles for tumor vasculature targeted positron emission tomography and magnetic resonance imaging. ACS Appl Mater Interfaces 9(44):38304–38312. https://​doi.​org/​10.​1021/​acsami.​7b12216CrossRef
250.
267.
Zurück zum Zitat Huang HY, Hu SH, Hung SY, Chiang CS, Liu HL, Chiu TL, Lai HY, Chen YY, Chen SY (2013) SPIO nanoparticle-stabilized PAA-F127 thermosensitive nanobubbles with MR/US dual-modality imaging and HIFU-triggered drug release for magnetically guided in vivo tumor therapy. J Controll Release: Off J Controll Release Soc 172(1):118–127. https://doi.org/10.1016/j.jconrel.2013.07.029CrossRef Huang HY, Hu SH, Hung SY, Chiang CS, Liu HL, Chiu TL, Lai HY, Chen YY, Chen SY (2013) SPIO nanoparticle-stabilized PAA-F127 thermosensitive nanobubbles with MR/US dual-modality imaging and HIFU-triggered drug release for magnetically guided in vivo tumor therapy. J Controll Release: Off J Controll Release Soc 172(1):118–127. https://​doi.​org/​10.​1016/​j.​jconrel.​2013.​07.​029CrossRef
270.
278.
Zurück zum Zitat Choi HS, Frangioni JV (2010) Nanoparticles for biomedical imaging: fundamentals of clinical translation. Mol Imaging 9(6):291–310CrossRef Choi HS, Frangioni JV (2010) Nanoparticles for biomedical imaging: fundamentals of clinical translation. Mol Imaging 9(6):291–310CrossRef
288.
290.
Zurück zum Zitat Gao D, Zhang P, Sheng Z, Hu D, Gong P, Chen C, Wan Q, Gao G, Cai L (2014) Highly bright and compact alloyed quantum rods with near infrared emitting: a potential multifunctional nanoplatform for multimodal imaging in vivo. Adv Func Mater 24(25):3897–3905. https://doi.org/10.1002/adfm.201304225CrossRef Gao D, Zhang P, Sheng Z, Hu D, Gong P, Chen C, Wan Q, Gao G, Cai L (2014) Highly bright and compact alloyed quantum rods with near infrared emitting: a potential multifunctional nanoplatform for multimodal imaging in vivo. Adv Func Mater 24(25):3897–3905. https://​doi.​org/​10.​1002/​adfm.​201304225CrossRef
308.
313.
Zurück zum Zitat Abdukayum A, Chen J-T, Zhao Q, Yan X-P (2013) Functional near infrared-emitting Cr3+/Pr3+Co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging. J Am Chem Soc 135(38):14125–14133. https://doi.org/10.1021/ja404243vCrossRef Abdukayum A, Chen J-T, Zhao Q, Yan X-P (2013) Functional near infrared-emitting Cr3+/Pr3+Co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging. J Am Chem Soc 135(38):14125–14133. https://​doi.​org/​10.​1021/​ja404243vCrossRef
327.
Zurück zum Zitat Cheng S-H, Yu D, Tsai H-M, Morshed RA, Kanojia D, Lo L-W, Leoni L, Govind Y, Zhang L, Aboody KS, Lesniak MS, Chen C-T, Balyasnikova IV (2016) Dynamic in vivo spect imaging of neural stem cells functionalized with radiolabeled nanoparticles for tracking of glioblastoma. J Nucl Med 57(2):279–284CrossRef Cheng S-H, Yu D, Tsai H-M, Morshed RA, Kanojia D, Lo L-W, Leoni L, Govind Y, Zhang L, Aboody KS, Lesniak MS, Chen C-T, Balyasnikova IV (2016) Dynamic in vivo spect imaging of neural stem cells functionalized with radiolabeled nanoparticles for tracking of glioblastoma. J Nucl Med 57(2):279–284CrossRef
Metadaten
Titel
Nanomaterials for Medical Imaging and In Vivo Sensing
verfasst von
N. Ashwin Kumar
B. S. Suresh Anand
Ganapathy Krishnamurthy
Copyright-Jahr
2021
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-33-6252-9_13

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.