Skip to main content

2018 | OriginalPaper | Buchkapitel

3. New Trends in Solar Cells Research

verfasst von : Mihaela Girtan

Erschienen in: Future Solar Energy Devices

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Solar cells converts the solar photons energy into electrical energy. The first solar cell was realized in 1954 at Bell Laboratories. The functioning principles of this first generation solar cells are based on a p-n homojunction realized in a bulk semiconductor (Silicon or GaAs). Figure 3.1 depicts the charge carriers’ distribution and band diagram levels before and after junction formation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A. Fahrenbruch, R. Bube, Fundamentals of solar cells: photovoltaic solar energy conversion ( Academic Press, London, 1983) A. Fahrenbruch, R. Bube, Fundamentals of solar cells: photovoltaic solar energy conversion ( Academic Press, London, 1983)
2.
Zurück zum Zitat W. Ma, C. Yang, X. Gong, K. Lee, A.J. Heeger, Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv. Funct. Mater. 15, 1617–1622 (2005)CrossRef W. Ma, C. Yang, X. Gong, K. Lee, A.J. Heeger, Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv. Funct. Mater. 15, 1617–1622 (2005)CrossRef
3.
Zurück zum Zitat T. Soga, Nanostructured Materials for Solar Energy Conversion (Elsevier, Amsterdam, 2006) T. Soga, Nanostructured Materials for Solar Energy Conversion (Elsevier, Amsterdam, 2006)
5.
Zurück zum Zitat F.C. Krebs et al., A complete process for production of flexible large area polymer solar cells entirely using screen printing-First public demonstration. Sol Energy Mater. Sol. Cells 93(4), 422–441 (2009)CrossRef F.C. Krebs et al., A complete process for production of flexible large area polymer solar cells entirely using screen printing-First public demonstration. Sol Energy Mater. Sol. Cells 93(4), 422–441 (2009)CrossRef
7.
Zurück zum Zitat CNRS Innovation letters No. 15, (18/04/2015 au 11/06/2015) communicate 10/06/2015 CNRS Innovation letters No. 15, (18/04/2015 au 11/06/2015) communicate 10/06/2015
8.
Zurück zum Zitat B. Wang, L.L. Kerr, Dye sensitized solar cells on paper substrates. Sol. Energy Mater. Sol. Cells 95(8), 2531–2535 (2011)CrossRef B. Wang, L.L. Kerr, Dye sensitized solar cells on paper substrates. Sol. Energy Mater. Sol. Cells 95(8), 2531–2535 (2011)CrossRef
9.
Zurück zum Zitat L. Leonat et al., 4% efficient polymer solar cells on paper substrates. J. Phys. Chem. C 118(30), 16813–16817 (2014)CrossRef L. Leonat et al., 4% efficient polymer solar cells on paper substrates. J. Phys. Chem. C 118(30), 16813–16817 (2014)CrossRef
10.
Zurück zum Zitat H. Águas, T. Mateus, A. Vicente, D. Gaspar, M.J. Mendes, W.A. Schmidt, L. Pereira, E. Fortunato, R. Martins, Thin film silicon photovoltaic cells on paper for flexible indoor applications. Adv. Funct. Mater. 25, 3592–3598 (2015)CrossRef H. Águas, T. Mateus, A. Vicente, D. Gaspar, M.J. Mendes, W.A. Schmidt, L. Pereira, E. Fortunato, R. Martins, Thin film silicon photovoltaic cells on paper for flexible indoor applications. Adv. Funct. Mater. 25, 3592–3598 (2015)CrossRef
11.
Zurück zum Zitat D.B. Fraser, H.D. Cook, Highly conductive, transparent films of sputtered In2−x SnxO3−y. J. Electrochem. Soc. 119, 1368 (1972)CrossRef D.B. Fraser, H.D. Cook, Highly conductive, transparent films of sputtered In2−x SnxO3−y. J. Electrochem. Soc. 119, 1368 (1972)CrossRef
12.
Zurück zum Zitat G. Haacke, New figure of merit for transparent conductors. J. Appl. Phys. 47, 4086 (1976)CrossRef G. Haacke, New figure of merit for transparent conductors. J. Appl. Phys. 47, 4086 (1976)CrossRef
13.
Zurück zum Zitat M. Girtan, R. Mallet, D. Caillou, G.G. Rusu, M. Rusu, Thermal stability of poly(3,4-ethylenedioxythiophene)–polystyrenesulfonic acid films electrical properties. Superlattices Microstruct. 46, 44–51 (2009)CrossRef M. Girtan, R. Mallet, D. Caillou, G.G. Rusu, M. Rusu, Thermal stability of poly(3,4-ethylenedioxythiophene)–polystyrenesulfonic acid films electrical properties. Superlattices Microstruct. 46, 44–51 (2009)CrossRef
14.
Zurück zum Zitat M. Girtan, Comparison of ITO/metal/ITO and ZnO/metal/ZnO characteristics as transparent electrodes for third generation solar cells. Sol. Energy Mater. Sol. Cells 100, 153–161 (2012)CrossRef M. Girtan, Comparison of ITO/metal/ITO and ZnO/metal/ZnO characteristics as transparent electrodes for third generation solar cells. Sol. Energy Mater. Sol. Cells 100, 153–161 (2012)CrossRef
15.
Zurück zum Zitat P. Kubis et al., High precision processing of flexible P3HT/PCBM modules with geometric fill factor over 95%. Org. Electron. 15(10), 2256–2263 (2014)CrossRef P. Kubis et al., High precision processing of flexible P3HT/PCBM modules with geometric fill factor over 95%. Org. Electron. 15(10), 2256–2263 (2014)CrossRef
16.
Zurück zum Zitat S. Berny et al., Solar trees: First large-scale demonstration of fully solution coated, semitransparent, flexible organic photovoltaic modules. Adv. Sci. 1500342 (2015) S. Berny et al., Solar trees: First large-scale demonstration of fully solution coated, semitransparent, flexible organic photovoltaic modules. Adv. Sci. 1500342 (2015)
17.
Zurück zum Zitat S. Bae et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5(8), 574–578 (2010)CrossRef S. Bae et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5(8), 574–578 (2010)CrossRef
18.
Zurück zum Zitat Zhinke Liu, Jinhua Li, Feng Yan, Package-free flexible organic solar cells with graphene top electrodes. Adv. Mater. 25, 4296–4301 (2013)CrossRef Zhinke Liu, Jinhua Li, Feng Yan, Package-free flexible organic solar cells with graphene top electrodes. Adv. Mater. 25, 4296–4301 (2013)CrossRef
19.
Zurück zum Zitat F. Bonaccorso, Z. Sun, T. Hasan, A.C. Ferrari, Graphene photonics and optoelectronics. Nat. Photonics 4, 611–622 (2010)CrossRef F. Bonaccorso, Z. Sun, T. Hasan, A.C. Ferrari, Graphene photonics and optoelectronics. Nat. Photonics 4, 611–622 (2010)CrossRef
20.
Zurück zum Zitat M. Girtan, On the stability of the electrical and photoelectrical properties of P3HT and P3HT:PCBM blends thin films. Org. Electron. 14(1), 200–205 (2013)CrossRef M. Girtan, On the stability of the electrical and photoelectrical properties of P3HT and P3HT:PCBM blends thin films. Org. Electron. 14(1), 200–205 (2013)CrossRef
21.
Zurück zum Zitat H.L. Yip, A.K.Y. Jen, Recent advances in solution-processed interfacial materials for efficient and stable polymer solar cells. Energy Environemental Sci. 5, 5994 (2012)CrossRef H.L. Yip, A.K.Y. Jen, Recent advances in solution-processed interfacial materials for efficient and stable polymer solar cells. Energy Environemental Sci. 5, 5994 (2012)CrossRef
22.
Zurück zum Zitat P. Kumar, S. Chand, Recent progress and future aspects of organic solar cells. Prog. Photovoltaics Res. Appl. 20, 377–415 (2012)MathSciNetCrossRef P. Kumar, S. Chand, Recent progress and future aspects of organic solar cells. Prog. Photovoltaics Res. Appl. 20, 377–415 (2012)MathSciNetCrossRef
23.
Zurück zum Zitat M. Girtan, M. Rusu, Role of ITO and PEDOT:PSS in stability/degradation of polymer: fullerene bulk heterojunctions solar cells. Sol. Energy Mater. Sol. Cells 94, 446–450 (2010)CrossRef M. Girtan, M. Rusu, Role of ITO and PEDOT:PSS in stability/degradation of polymer: fullerene bulk heterojunctions solar cells. Sol. Energy Mater. Sol. Cells 94, 446–450 (2010)CrossRef
24.
Zurück zum Zitat M.C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A.J. Heeger, C.J. Brabec, Design rules for donors in bulk-heterojunction solar cells—towards 10% energy-conversion efficiency. Adv. Mater. 18, 789–794 (2006)CrossRef M.C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A.J. Heeger, C.J. Brabec, Design rules for donors in bulk-heterojunction solar cells—towards 10% energy-conversion efficiency. Adv. Mater. 18, 789–794 (2006)CrossRef
25.
Zurück zum Zitat H.A. Atwater, A. Polman, Plasmonics for improved photovoltaic devices. Nat. Mater. 9(3), 205–213 (2010)CrossRef H.A. Atwater, A. Polman, Plasmonics for improved photovoltaic devices. Nat. Mater. 9(3), 205–213 (2010)CrossRef
28.
Zurück zum Zitat L.Y. Chang, R.R. Lunt, P.R. Brown, V. Bulovic, M.G. Bawendi, Low-temperature solution-processed solar cells based on PbS Colloidal Quantum Dot/CdS heterojunctions. Nano Lett. 13(3), 994–999 (2013)CrossRef L.Y. Chang, R.R. Lunt, P.R. Brown, V. Bulovic, M.G. Bawendi, Low-temperature solution-processed solar cells based on PbS Colloidal Quantum Dot/CdS heterojunctions. Nano Lett. 13(3), 994–999 (2013)CrossRef
29.
Zurück zum Zitat A. Luque, A. Marti, Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels. Phys. Rev. Lett. 78, 5014–5017 (1997)CrossRef A. Luque, A. Marti, Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels. Phys. Rev. Lett. 78, 5014–5017 (1997)CrossRef
30.
Zurück zum Zitat I. Ramiro, A. Marti, E. Antolin, A. Luque, Review of experimental results related to the operation of intermediate band solar cells. IEEE J. Photovolt. 4, 736–748 (2014)CrossRef I. Ramiro, A. Marti, E. Antolin, A. Luque, Review of experimental results related to the operation of intermediate band solar cells. IEEE J. Photovolt. 4, 736–748 (2014)CrossRef
31.
Zurück zum Zitat C.Y. Yang, M.S. Qin, Y.M. Wang, D.Y. Wan, F.Q. Huang, J.H. Lin, Observation of an intermediate band in Sn-doped chalcopyrites with wide-spectrum solar response. Sci. Rep. 3(1286), 1–7 (2013) C.Y. Yang, M.S. Qin, Y.M. Wang, D.Y. Wan, F.Q. Huang, J.H. Lin, Observation of an intermediate band in Sn-doped chalcopyrites with wide-spectrum solar response. Sci. Rep. 3(1286), 1–7 (2013)
32.
Zurück zum Zitat I. Ramiro, E. Antolin, J. Hwang, A. Teran, A.J. Martin, P.G. Linares, J. Millunchick, J. Phillips, A. Marti, A. Luque, Three-bandgap absolute quantum efficiency in GaSb/GaAs quantum dot intermediate band solar cells. IEEE J. Photovoltaics 7(2), 508–512 (2017)CrossRef I. Ramiro, E. Antolin, J. Hwang, A. Teran, A.J. Martin, P.G. Linares, J. Millunchick, J. Phillips, A. Marti, A. Luque, Three-bandgap absolute quantum efficiency in GaSb/GaAs quantum dot intermediate band solar cells. IEEE J. Photovoltaics 7(2), 508–512 (2017)CrossRef
33.
Zurück zum Zitat A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009)CrossRef A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009)CrossRef
34.
Zurück zum Zitat B. Dongqin et al., Efficient luminescent solar cells based on tailored mixed-cation perovskites. Sci. Adv. 2, e1501170 (2016) B. Dongqin et al., Efficient luminescent solar cells based on tailored mixed-cation perovskites. Sci. Adv. 2, e1501170 (2016)
35.
Zurück zum Zitat M.A. Green, A. Ho-Baillie, H.J. Snaith, The emergence of perovskite solar cells. Nat. Photonics 8(7), 506–514 (2014)CrossRef M.A. Green, A. Ho-Baillie, H.J. Snaith, The emergence of perovskite solar cells. Nat. Photonics 8(7), 506–514 (2014)CrossRef
36.
Zurück zum Zitat H.J. Snaith, Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J. Phys. Chem. Lett. 4(21), 3623–3630 (2013)CrossRef H.J. Snaith, Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J. Phys. Chem. Lett. 4(21), 3623–3630 (2013)CrossRef
37.
Zurück zum Zitat J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, S.I. Seok, Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett. 13, 1764–1769 (2013) J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, S.I. Seok, Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett. 13, 1764–1769 (2013)
38.
Zurück zum Zitat H. Choi, C-K Mai, H-B Kim, J. Jeong, S. Song, G.C. Bazan, J.Y. Kim, A.J. Heeger, Conjugated polyelectrolyte hole transport layer for inverted-type perovskite solar cells. Nat. Commun. 6(7348), 1–6 (2015) H. Choi, C-K Mai, H-B Kim, J. Jeong, S. Song, G.C. Bazan, J.Y. Kim, A.J. Heeger, Conjugated polyelectrolyte hole transport layer for inverted-type perovskite solar cells. Nat. Commun. 6(7348), 1–6 (2015)
39.
Zurück zum Zitat J.P. Mailoa et al., A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction. Appl. Phys. Lett. 106(121105), 1–4 (2015) J.P. Mailoa et al., A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction. Appl. Phys. Lett. 106(121105), 1–4 (2015)
40.
Zurück zum Zitat T. Trupke, M.A. Green, P. Wurfel, Improving solar cell efficiencies by up-conversion of sub-band-gap light. J. Appl. Phys. 92(7), 4117–4122 (2002)CrossRef T. Trupke, M.A. Green, P. Wurfel, Improving solar cell efficiencies by up-conversion of sub-band-gap light. J. Appl. Phys. 92(7), 4117–4122 (2002)CrossRef
41.
Zurück zum Zitat T. Trupke, M.A. Green, P. Wurfel, Improving solar cell efficiencies by down-conversion of high-energy photons. J. Appl. Phys. 92(3), 1668–1674 (2002)CrossRef T. Trupke, M.A. Green, P. Wurfel, Improving solar cell efficiencies by down-conversion of high-energy photons. J. Appl. Phys. 92(3), 1668–1674 (2002)CrossRef
42.
Zurück zum Zitat J. Merigeon et al., Studies on Pr3+–Yb3+ co-doped ZBLA as rare earth down convertor glasses for solar cells encapsulation. Opt. Mater. 48, 243–246 (2015)CrossRef J. Merigeon et al., Studies on Pr3+–Yb3+ co-doped ZBLA as rare earth down convertor glasses for solar cells encapsulation. Opt. Mater. 48, 243–246 (2015)CrossRef
43.
Zurück zum Zitat O. Maalej, J. Merigeon, B. Boulard, M. Girtan, Visible to near-infrared down-shifting in Tm3+ doped fluoride glasses for solar cells efficiency enhancement. Opt. Mater. 60, 235–239 (2016)CrossRef O. Maalej, J. Merigeon, B. Boulard, M. Girtan, Visible to near-infrared down-shifting in Tm3+ doped fluoride glasses for solar cells efficiency enhancement. Opt. Mater. 60, 235–239 (2016)CrossRef
Metadaten
Titel
New Trends in Solar Cells Research
verfasst von
Mihaela Girtan
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-67337-0_3