Skip to main content
Erschienen in:

2019 | OriginalPaper | Buchkapitel

Prologue: Predictive Maintenance in Dynamic Systems

verfasst von : Edwin Lughofer, Moamar Sayed-Mouchaweh

Erschienen in: Predictive Maintenance in Dynamic Systems

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This introductory chapter intends to provide a general overview about the motivation and significance of predictive maintenance (PdM) in the current literature, its nature and characteristics, as well as the most essential requirements and challenges in PdM systems (Sect. 1). It outlines the main lines of research investigated during the last 20 years in order to cope with the requirements in industrial environments, by identifying and classifying appropriate research directions resulting in methodologies and components already established for and in predictive maintenance systems with a possible smooth transition to preventive maintenance—“what has been done so far” (Sect. 2). Then, it emphasizes on recently emerging challenges that go beyond state-of-the-art, with a specific focus on dealing with dynamic changes in the system and on establishing fully automatized processes and operations (Sect. 3). This serves as a clear motivation for our book, in which most of the chapters are dealing with data-driven modeling, optimization, and control strategies, which possess the ability to be trainable and adaptable on the fly based on changing system behavior and nonstationary environmental influences. The last part of this chapter (in Sect. 3) outlines a compact summary of the content of the book by providing a paragraph about each of the single contributions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Akerkar, R., Sajja, P.: Knowledge-Based Systems. Jones & Bartlett Learning, Sudbury (2009) Akerkar, R., Sajja, P.: Knowledge-Based Systems. Jones & Bartlett Learning, Sudbury (2009)
2.
Zurück zum Zitat Alippi, C., Roveri, M.: Just-in-time adaptive classifiers Part I: Detecting nonstationary changes. IEEE. Trans. Neural Netw. 19(7), 1145–1153 (2008)CrossRef Alippi, C., Roveri, M.: Just-in-time adaptive classifiers Part I: Detecting nonstationary changes. IEEE. Trans. Neural Netw. 19(7), 1145–1153 (2008)CrossRef
3.
Zurück zum Zitat Angelov, P., Filev, D., Kasabov, N.: Evolving Intelligent Systems—Methodology and Applications. Wiley, New York (2010)CrossRef Angelov, P., Filev, D., Kasabov, N.: Evolving Intelligent Systems—Methodology and Applications. Wiley, New York (2010)CrossRef
4.
Zurück zum Zitat Angelov, P., Kasabov, N.: Evolving computational intelligence systems. In: Proceedings of the 1st International Workshop on Genetic Fuzzy Systems, pp. 76–82. Granada (2005) Angelov, P., Kasabov, N.: Evolving computational intelligence systems. In: Proceedings of the 1st International Workshop on Genetic Fuzzy Systems, pp. 76–82. Granada (2005)
5.
Zurück zum Zitat Aumi, S., Corbett, B., Mhaskary, P.: Model predictive quality control of batch processes. In: 2012 American Control Conference, pp. 5646–5651. IEEE, Montreal (2012) Aumi, S., Corbett, B., Mhaskary, P.: Model predictive quality control of batch processes. In: 2012 American Control Conference, pp. 5646–5651. IEEE, Montreal (2012)
6.
Zurück zum Zitat Box, G., Jenkins, G., Reinsel, G.: Time Series Analysis, Forecasting and Control. Prentice Hall, Engelwood Cliffs (1994) Box, G., Jenkins, G., Reinsel, G.: Time Series Analysis, Forecasting and Control. Prentice Hall, Engelwood Cliffs (1994)
7.
Zurück zum Zitat Castillo, E., Alvarez, E.: Expert Systems: Uncertainty and Learning. Computational Mechanics Publications, Boston (2007)MATH Castillo, E., Alvarez, E.: Expert Systems: Uncertainty and Learning. Computational Mechanics Publications, Boston (2007)MATH
8.
Zurück zum Zitat Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. 41(3), 15 (2009)CrossRef Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. 41(3), 15 (2009)CrossRef
9.
Zurück zum Zitat Chandrasekaran, M., Muralidhar, M., Krishna, M., Dixit, U.: Application of soft computing techniques in machining performance prediction and optimization: a literature review. Int. J. Adv. Manuf. Technol. 46, 445–464 (2010)CrossRef Chandrasekaran, M., Muralidhar, M., Krishna, M., Dixit, U.: Application of soft computing techniques in machining performance prediction and optimization: a literature review. Int. J. Adv. Manuf. Technol. 46, 445–464 (2010)CrossRef
10.
Zurück zum Zitat Chiang, L., Russell, E., Braatz, R.: Fault Detection and Diagnosis in Industrial Systems. Springer, London (2001)MATHCrossRef Chiang, L., Russell, E., Braatz, R.: Fault Detection and Diagnosis in Industrial Systems. Springer, London (2001)MATHCrossRef
11.
Zurück zum Zitat Cline, B., Niculescu, R., Huffman, D., Deckel, B.: Predictive maintenance applications for machine learning. In: Proceedings of the 2017 Annual Reliability and Maintainability Symposium (RAMS). IEEE, Orlando (2017) Cline, B., Niculescu, R., Huffman, D., Deckel, B.: Predictive maintenance applications for machine learning. In: Proceedings of the 2017 Annual Reliability and Maintainability Symposium (RAMS). IEEE, Orlando (2017)
12.
Zurück zum Zitat Collins, J., Busby, H., Staab, G.: Mechanical Design of Machine Elements and Machines. Wiley, Danvers (2010) Collins, J., Busby, H., Staab, G.: Mechanical Design of Machine Elements and Machines. Wiley, Danvers (2010)
13.
Zurück zum Zitat Costa, B., Angelov, P., Guedes, L.: Fully unsupervised fault detection and identification based on recursive density estimation and self-evolving cloud-based classifier. Neurocomputing 150(A), 289–303 (2015)CrossRef Costa, B., Angelov, P., Guedes, L.: Fully unsupervised fault detection and identification based on recursive density estimation and self-evolving cloud-based classifier. Neurocomputing 150(A), 289–303 (2015)CrossRef
14.
Zurück zum Zitat Cunha, C., Soares, C.: On the choice of data transformation for modelling time series of significant wave height. Ocean Eng. 26(6), 489–506 (1999)CrossRef Cunha, C., Soares, C.: On the choice of data transformation for modelling time series of significant wave height. Ocean Eng. 26(6), 489–506 (1999)CrossRef
15.
Zurück zum Zitat Ding, S.: Model-based Fault Diagnosis Techniques: Design Schemes, Algorithms, and Tools. Springer, Berlin (2008) Ding, S.: Model-based Fault Diagnosis Techniques: Design Schemes, Algorithms, and Tools. Springer, Berlin (2008)
16.
Zurück zum Zitat Djeziri, M., Nguyen, V., Benmoussa, S., Msirdi, N.: Fault prognosis based on physical and stochastic models. In: Proceedings of the 2016 European Control Conference, pp. 2269–2274. IEEE, Aalborg (2016) Djeziri, M., Nguyen, V., Benmoussa, S., Msirdi, N.: Fault prognosis based on physical and stochastic models. In: Proceedings of the 2016 European Control Conference, pp. 2269–2274. IEEE, Aalborg (2016)
17.
Zurück zum Zitat Dou, D., Zhou, S.: Comparison of four direct classification methods for intelligent fault diagnosis of rotating machinery. Appl. Soft Comput. 46, 459–468 (2016)CrossRef Dou, D., Zhou, S.: Comparison of four direct classification methods for intelligent fault diagnosis of rotating machinery. Appl. Soft Comput. 46, 459–468 (2016)CrossRef
18.
Zurück zum Zitat Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing, 2nd edn. Springer, Berlin (2015)MATHCrossRef Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing, 2nd edn. Springer, Berlin (2015)MATHCrossRef
19.
Zurück zum Zitat Ekwaro-Osire, S., Gonçalves, A., Alemayehu, F.: Probabilistic Prognostics and Health Management of Energy Systems. Springer, New York (2017)CrossRef Ekwaro-Osire, S., Gonçalves, A., Alemayehu, F.: Probabilistic Prognostics and Health Management of Energy Systems. Springer, New York (2017)CrossRef
20.
Zurück zum Zitat Fonseca, D.: A knowledge-based system for preventive maintenance. Expert Syst. 17(5), 241–247 (2000)CrossRef Fonseca, D.: A knowledge-based system for preventive maintenance. Expert Syst. 17(5), 241–247 (2000)CrossRef
21.
Zurück zum Zitat Gama, J.: Knowledge Discovery from Data Streams. Chapman & Hall/CRC, Boca Raton (2010)MATHCrossRef Gama, J.: Knowledge Discovery from Data Streams. Chapman & Hall/CRC, Boca Raton (2010)MATHCrossRef
23.
Zurück zum Zitat Gilchrist, A.: Industry 4.0: The Industrial Internet of Things. Springer, New York (2016)CrossRef Gilchrist, A.: Industry 4.0: The Industrial Internet of Things. Springer, New York (2016)CrossRef
24.
Zurück zum Zitat Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference and Prediction. Springer, New York (2001)MATHCrossRef Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference and Prediction. Springer, New York (2001)MATHCrossRef
25.
Zurück zum Zitat Jamshidi, A., Hajizadeh, S., Su, Z., Naeimi, M., Nunez, A., Dollevoet, R., Schutter, B.D., Li, Z.: A decision support approach for condition-based maintenance of rails based on big data analysis. Transp. Res. C 95, 185–206 (2018)CrossRef Jamshidi, A., Hajizadeh, S., Su, Z., Naeimi, M., Nunez, A., Dollevoet, R., Schutter, B.D., Li, Z.: A decision support approach for condition-based maintenance of rails based on big data analysis. Transp. Res. C 95, 185–206 (2018)CrossRef
26.
Zurück zum Zitat Kano, M., Nakagawa, Y.: Data-based process monitoring, process control, and quality improvement: recent developments and applications in steel industry. Comput. Chem. Eng. 32, 12–24 (2008)CrossRef Kano, M., Nakagawa, Y.: Data-based process monitoring, process control, and quality improvement: recent developments and applications in steel industry. Comput. Chem. Eng. 32, 12–24 (2008)CrossRef
27.
Zurück zum Zitat Kasabov, N.: Evolving Connectionist Systems: The Knowledge Engineering Approach, 2nd edn. Springer, London (2007)MATH Kasabov, N.: Evolving Connectionist Systems: The Knowledge Engineering Approach, 2nd edn. Springer, London (2007)MATH
28.
Zurück zum Zitat Khamassi, I., Sayed-Mouchaweh, M., Hammami, M., Ghedira, K.: Discussion and review on evolving data streams and concept drift adapting. Evol. Syst. 9(1), 1–23 (2017)CrossRef Khamassi, I., Sayed-Mouchaweh, M., Hammami, M., Ghedira, K.: Discussion and review on evolving data streams and concept drift adapting. Evol. Syst. 9(1), 1–23 (2017)CrossRef
29.
Zurück zum Zitat Korbicz, J., Koscielny, J., Kowalczuk, Z., Cholewa, W.: Fault Diagnosis—Models, Artificial Intelligence and Applications. Springer, Berlin (2004) Korbicz, J., Koscielny, J., Kowalczuk, Z., Cholewa, W.: Fault Diagnosis—Models, Artificial Intelligence and Applications. Springer, Berlin (2004)
30.
Zurück zum Zitat Last, M., B., H., Kandel, A.: Data Mining in Time Series and Streaming Databases. World Scientific, Singapore (2017)MATH Last, M., B., H., Kandel, A.: Data Mining in Time Series and Streaming Databases. World Scientific, Singapore (2017)MATH
31.
Zurück zum Zitat Lei, Y., Li, N., Guo, L., Li, N., Yan, T., Lin, J.: Machinery health prognostics: a systematic review from data acquisition to RUL prediction. Mech. Syst. Signal Process. 104, 799–834 (2018)CrossRef Lei, Y., Li, N., Guo, L., Li, N., Yan, T., Lin, J.: Machinery health prognostics: a systematic review from data acquisition to RUL prediction. Mech. Syst. Signal Process. 104, 799–834 (2018)CrossRef
32.
Zurück zum Zitat Leite, D., Ballini, R., Costa, P., Gomide, F.: Evolving fuzzy granular modeling from nonstationary fuzzy data streams. Evol. Syst. 3(2), 65–79 (2012)CrossRef Leite, D., Ballini, R., Costa, P., Gomide, F.: Evolving fuzzy granular modeling from nonstationary fuzzy data streams. Evol. Syst. 3(2), 65–79 (2012)CrossRef
33.
Zurück zum Zitat Leite, D., Palhares, R., Campos, C.S., Gomide, F.: Evolving granular fuzzy model-based control of nonlinear dynamic systems. IEEE Trans. Fuzzy Syst. 23(4), 923–938 (2015)CrossRef Leite, D., Palhares, R., Campos, C.S., Gomide, F.: Evolving granular fuzzy model-based control of nonlinear dynamic systems. IEEE Trans. Fuzzy Syst. 23(4), 923–938 (2015)CrossRef
34.
Zurück zum Zitat Lemos, A., Caminhas, W., Gomide, F.: Adaptive fault detection and diagnosis using an evolving fuzzy classifier. Inform. Sci. 220, 64–85 (2013)CrossRef Lemos, A., Caminhas, W., Gomide, F.: Adaptive fault detection and diagnosis using an evolving fuzzy classifier. Inform. Sci. 220, 64–85 (2013)CrossRef
35.
Zurück zum Zitat Levitt, J.: Complete Guide to Preventive and Predictive Maintenance. Industrial Press, New York (2011) Levitt, J.: Complete Guide to Preventive and Predictive Maintenance. Industrial Press, New York (2011)
36.
Zurück zum Zitat Li, Z., Guo, Z., Zhou, R.: Maintenance scheduling optimization based on reliability and prognostics information. In: Proceedings of the 2016 Annual Reliability and Maintainability Symposium (RAMS), pp. 1–8, IEEE, Tucson (2011) Li, Z., Guo, Z., Zhou, R.: Maintenance scheduling optimization based on reliability and prognostics information. In: Proceedings of the 2016 Annual Reliability and Maintainability Symposium (RAMS), pp. 1–8, IEEE, Tucson (2011)
37.
Zurück zum Zitat Liao, L., Köttig, F.: A hybrid framework combining data-driven and model-based methods for system remaining useful life prediction. Appl. Soft Comput. 44, 191–199 (2014)CrossRef Liao, L., Köttig, F.: A hybrid framework combining data-driven and model-based methods for system remaining useful life prediction. Appl. Soft Comput. 44, 191–199 (2014)CrossRef
38.
Zurück zum Zitat Liao, W., Wang, Y.: Data-driven machinery prognostics approach using in a predictive maintenance model. J. Comput. 8(1), 225–231 (2013)MathSciNetCrossRef Liao, W., Wang, Y.: Data-driven machinery prognostics approach using in a predictive maintenance model. J. Comput. 8(1), 225–231 (2013)MathSciNetCrossRef
39.
Zurück zum Zitat Lughofer, E.: Evolving fuzzy systems—fundamentals, reliability, interpretability and useability. In: Angelov, P. (ed.) Handbook of Computational Intelligence, pp. 67–135. World Scientific, New York (2016)CrossRef Lughofer, E.: Evolving fuzzy systems—fundamentals, reliability, interpretability and useability. In: Angelov, P. (ed.) Handbook of Computational Intelligence, pp. 67–135. World Scientific, New York (2016)CrossRef
40.
Zurück zum Zitat Lughofer, E.: Robust data-driven fault detection in dynamic process environments using discrete event systems. In: Sayed-Mouchaweh, M. (ed.) Diagnosability, Security and Safety of Hybrid Dynamic and Cyber-Physical Systems, pp. 73–116. Springer, New York (2018)CrossRef Lughofer, E.: Robust data-driven fault detection in dynamic process environments using discrete event systems. In: Sayed-Mouchaweh, M. (ed.) Diagnosability, Security and Safety of Hybrid Dynamic and Cyber-Physical Systems, pp. 73–116. Springer, New York (2018)CrossRef
41.
Zurück zum Zitat Lughofer, E., Eitzinger, C., Guardiola, C.: On-Line Quality Control with Flexible Evolving Fuzzy Systems. In: Sayed-Mouchaweh, M., Lughofer, E. (eds.) Learning in Non-Stationary Environments: Methods and Applications, pp. 375–406. Springer, New York (2012)CrossRef Lughofer, E., Eitzinger, C., Guardiola, C.: On-Line Quality Control with Flexible Evolving Fuzzy Systems. In: Sayed-Mouchaweh, M., Lughofer, E. (eds.) Learning in Non-Stationary Environments: Methods and Applications, pp. 375–406. Springer, New York (2012)CrossRef
42.
Zurück zum Zitat Lughofer, E., Pratama, M., Skrjanc, I.: Incremental rule splitting in generalized evolving fuzzy systems for autonomous drift compensation. IEEE Trans. Fuzzy Syst. 26(4), 1854–1865 (2018)CrossRef Lughofer, E., Pratama, M., Skrjanc, I.: Incremental rule splitting in generalized evolving fuzzy systems for autonomous drift compensation. IEEE Trans. Fuzzy Syst. 26(4), 1854–1865 (2018)CrossRef
43.
Zurück zum Zitat Lughofer, E., Richter, R., Neissl, U., Heidl, W., Eitzinger, C., Radauer, T.: Explaining classifier decisions linguistically for stimulating and improving operators labeling behavior. Inf. Sci. 420, 16–36 (2017)CrossRef Lughofer, E., Richter, R., Neissl, U., Heidl, W., Eitzinger, C., Radauer, T.: Explaining classifier decisions linguistically for stimulating and improving operators labeling behavior. Inf. Sci. 420, 16–36 (2017)CrossRef
44.
Zurück zum Zitat Lughofer, E., Smith, J.E., Caleb-Solly, P., Tahir, M., Eitzinger, C., Sannen, D., Nuttin, M.: Human-machine interaction issues in quality control based on on-line image classification. IEEE Trans. Syst. Man Cybern. A Syst. Hum. 39(5), 960–971 (2009)CrossRef Lughofer, E., Smith, J.E., Caleb-Solly, P., Tahir, M., Eitzinger, C., Sannen, D., Nuttin, M.: Human-machine interaction issues in quality control based on on-line image classification. IEEE Trans. Syst. Man Cybern. A Syst. Hum. 39(5), 960–971 (2009)CrossRef
45.
Zurück zum Zitat Lughofer, E., Zavoianu, A.C., Pollak, R., Pratama, M., Meyer-Heye, P., Zörrer, H., Eitzinger, C., Haim, J., Radauer, T.: Self-adaptive evolving forecast models with incremental PLS space updating for on-line prediction of micro-fluidic chip quality. Eng. Appl. Artif. Intell. 68, 131–151 (2018)CrossRef Lughofer, E., Zavoianu, A.C., Pollak, R., Pratama, M., Meyer-Heye, P., Zörrer, H., Eitzinger, C., Haim, J., Radauer, T.: Self-adaptive evolving forecast models with incremental PLS space updating for on-line prediction of micro-fluidic chip quality. Eng. Appl. Artif. Intell. 68, 131–151 (2018)CrossRef
46.
Zurück zum Zitat Mobley, R.: An Introduction to Predictive Maintenance, 2nd edn. Elsevier, Woburn (2002) Mobley, R.: An Introduction to Predictive Maintenance, 2nd edn. Elsevier, Woburn (2002)
47.
Zurück zum Zitat Montgomery, D.: Introduction to Statistical Quality Control, 6th edn. Wiley, Hoboken (2008)MATH Montgomery, D.: Introduction to Statistical Quality Control, 6th edn. Wiley, Hoboken (2008)MATH
48.
Zurück zum Zitat Myklebust, O.: Zero defect manufacturing: a product and plant oriented lifecycle approach. Procedia CIRP 12, 246–251 (2013)CrossRef Myklebust, O.: Zero defect manufacturing: a product and plant oriented lifecycle approach. Procedia CIRP 12, 246–251 (2013)CrossRef
49.
Zurück zum Zitat Nikzad-Langerodi, R., Lughofer, E., Cernuda, C., Reischer, T., Kantner, W., Pawliczek, M., Brandstetter, M.: Calibration model maintenance in melamine resin production: integrating drift detection, smart sample selection and model adaptation. Anal. Chim. Acta 1013, 1–12 (2018)CrossRef Nikzad-Langerodi, R., Lughofer, E., Cernuda, C., Reischer, T., Kantner, W., Pawliczek, M., Brandstetter, M.: Calibration model maintenance in melamine resin production: integrating drift detection, smart sample selection and model adaptation. Anal. Chim. Acta 1013, 1–12 (2018)CrossRef
50.
Zurück zum Zitat Niu, G., Yang, B.: Intelligent condition monitoring and prognostics system based on data-fusion strategy. Expert Syst. Appl. 37(12), 8831–8840 (2010)CrossRef Niu, G., Yang, B.: Intelligent condition monitoring and prognostics system based on data-fusion strategy. Expert Syst. Appl. 37(12), 8831–8840 (2010)CrossRef
51.
Zurück zum Zitat Palade, V., Bocaniala, C.: Computational Intelligence in Fault Diagnosis. Springer, London (2010) Palade, V., Bocaniala, C.: Computational Intelligence in Fault Diagnosis. Springer, London (2010)
52.
Zurück zum Zitat Permin, E., Bertelsmeier, F., Blum, M., Bützler, J., Haag, S., Kuz, S., Özdemir, D., Stemmler, S., Thombansen, U., Schmitt, R., Brecher, C., Schlick, C., Abel, D., Popraw, R., Loosen, P., Schulz, W., Schuh, G.: Self-optimizing production systems. Procedia CIRP 41, 417–422 (2016)CrossRef Permin, E., Bertelsmeier, F., Blum, M., Bützler, J., Haag, S., Kuz, S., Özdemir, D., Stemmler, S., Thombansen, U., Schmitt, R., Brecher, C., Schlick, C., Abel, D., Popraw, R., Loosen, P., Schulz, W., Schuh, G.: Self-optimizing production systems. Procedia CIRP 41, 417–422 (2016)CrossRef
53.
Zurück zum Zitat Pola, D., Navarrete, H., Orchard, M., Rabie, R., Munoz, M.C., Olivares, B., Silva, J., Espinoza, P., Perez, A.: Particle-filtering-based discharge time prognosis for lithium-ion batteries with a statistical characterization of use profiles. IEEE Trans. Reliab. 64(2), 710–720 (2015)CrossRef Pola, D., Navarrete, H., Orchard, M., Rabie, R., Munoz, M.C., Olivares, B., Silva, J., Espinoza, P., Perez, A.: Particle-filtering-based discharge time prognosis for lithium-ion batteries with a statistical characterization of use profiles. IEEE Trans. Reliab. 64(2), 710–720 (2015)CrossRef
55.
Zurück zum Zitat Precup, R.E., Angelov, P., Costa, B.S.J., Sayed-Mouchaweh, M.: An overview on fault diagnosis and nature-inspired optimal control of industrial process applications. Comput. Ind. 74, 75–94 (2015)CrossRef Precup, R.E., Angelov, P., Costa, B.S.J., Sayed-Mouchaweh, M.: An overview on fault diagnosis and nature-inspired optimal control of industrial process applications. Comput. Ind. 74, 75–94 (2015)CrossRef
56.
Zurück zum Zitat Renna, P.: Influence of maintenance policies on multi-stage manufacturing systems in dynamic conditions. Int. J. Prod. Res. 50(2), 345–357 (2011)CrossRef Renna, P.: Influence of maintenance policies on multi-stage manufacturing systems in dynamic conditions. Int. J. Prod. Res. 50(2), 345–357 (2011)CrossRef
57.
Zurück zum Zitat Sannen, D., van Brussel, H.: A multilevel information fusion approach for visual quality inspection. Inf. Fusion 13(1), 48–59 (2012)CrossRef Sannen, D., van Brussel, H.: A multilevel information fusion approach for visual quality inspection. Inf. Fusion 13(1), 48–59 (2012)CrossRef
58.
Zurück zum Zitat Sayed-Mouchaweh, M.: Diagnosability, Security and Safety of Hybrid Dynamic and Cyber-Physical Systems. Springer, New York (2018) Sayed-Mouchaweh, M.: Diagnosability, Security and Safety of Hybrid Dynamic and Cyber-Physical Systems. Springer, New York (2018)
59.
Zurück zum Zitat Sayed-Mouchaweh, M.: Fault Diagnosis of Hybrid Dynamic and Complex Systems. Springer, New York (2018)CrossRef Sayed-Mouchaweh, M.: Fault Diagnosis of Hybrid Dynamic and Complex Systems. Springer, New York (2018)CrossRef
60.
Zurück zum Zitat Sayed-Mouchaweh, M., Lughofer, E.: Learning in Non-Stationary Environments: Methods and Applications. Springer, New York (2012)MATHCrossRef Sayed-Mouchaweh, M., Lughofer, E.: Learning in Non-Stationary Environments: Methods and Applications. Springer, New York (2012)MATHCrossRef
61.
Zurück zum Zitat Si, X.S., Wang, W., Hu, C.H., Zhou, D.H.: Remaining useful life estimation—a review on the statistical data driven approaches. Eur. J. Oper. Res. 213(1), 1–14 (2011)MathSciNetCrossRef Si, X.S., Wang, W., Hu, C.H., Zhou, D.H.: Remaining useful life estimation—a review on the statistical data driven approaches. Eur. J. Oper. Res. 213(1), 1–14 (2011)MathSciNetCrossRef
62.
Zurück zum Zitat Skrjanc, I.: Evolving fuzzy-model-based design of experiments with supervised hierarchical clustering. IEEE Trans. Fuzzy Syst. 23(4), 861–871 (2015)CrossRef Skrjanc, I.: Evolving fuzzy-model-based design of experiments with supervised hierarchical clustering. IEEE Trans. Fuzzy Syst. 23(4), 861–871 (2015)CrossRef
63.
Zurück zum Zitat Srivastava, A., Han, J.: Machine Learning and Knowledge Discovery for Engineering Systems Health Management. CRC Data Mining and Knowledge Discovery. Chapman & Hall, Boca Raton (2011) Srivastava, A., Han, J.: Machine Learning and Knowledge Discovery for Engineering Systems Health Management. CRC Data Mining and Knowledge Discovery. Chapman & Hall, Boca Raton (2011)
64.
Zurück zum Zitat Steinbauer, G., Wotawa, F.: Model-based reasoning for self-adaptive systems—theory and practice. In: Camara, J., de Lemos, R., Ghezzi, C., Lopes, A. (eds.) Assurances for Self-Adaptive Systems, LNCS, vol. 7740, pp. 187–213. Springer, Berlin (2013)CrossRef Steinbauer, G., Wotawa, F.: Model-based reasoning for self-adaptive systems—theory and practice. In: Camara, J., de Lemos, R., Ghezzi, C., Lopes, A. (eds.) Assurances for Self-Adaptive Systems, LNCS, vol. 7740, pp. 187–213. Springer, Berlin (2013)CrossRef
65.
Zurück zum Zitat Toubakh, H., Sayed-Mouchaweh, M.: Hybrid dynamic data-driven approach for drift-like fault detection in wind turbines. Evol. Syst. 6(2), 115–129 (2015)CrossRef Toubakh, H., Sayed-Mouchaweh, M.: Hybrid dynamic data-driven approach for drift-like fault detection in wind turbines. Evol. Syst. 6(2), 115–129 (2015)CrossRef
66.
Zurück zum Zitat Turban, E., Aronson, J., Liang, T.P.: Decision Support Systems and Intelligent Systems, 7th edn. Prentice Hall, Upper Saddle River (2004) Turban, E., Aronson, J., Liang, T.P.: Decision Support Systems and Intelligent Systems, 7th edn. Prentice Hall, Upper Saddle River (2004)
67.
Zurück zum Zitat Uluyol, O., Parthasarathy, G., Foslien, W., Kim, K.: Power curve analytic for wind turbine performance monitoring and prognostics. In: Proceedings of the Annual Conference of the Prognostics and Health Management Society, pp. 1–8 (2011) Uluyol, O., Parthasarathy, G., Foslien, W., Kim, K.: Power curve analytic for wind turbine performance monitoring and prognostics. In: Proceedings of the Annual Conference of the Prognostics and Health Management Society, pp. 1–8 (2011)
68.
Zurück zum Zitat Ustundag, A., Cevikcan, E.: Industry 4.0: Managing The Digital Transformation. Springer, Cham (2017) Ustundag, A., Cevikcan, E.: Industry 4.0: Managing The Digital Transformation. Springer, Cham (2017)
69.
Zurück zum Zitat Viharos, Z.J., Csanaki, J., Nacsa, J., Edelenyi, M., Pentek, C., Kis, K.B., Fodor, A., Csempesz, J.: Production trend identification and forecast for shop-floor business intelligence. Acta Imeko 5(4) , 49–55 (2016)CrossRef Viharos, Z.J., Csanaki, J., Nacsa, J., Edelenyi, M., Pentek, C., Kis, K.B., Fodor, A., Csempesz, J.: Production trend identification and forecast for shop-floor business intelligence. Acta Imeko 5(4) , 49–55 (2016)CrossRef
70.
Zurück zum Zitat Wang, L., Gao, R.: Condition Monitoring and Control for Intelligent Manufacturing. Springer, London (2006)CrossRef Wang, L., Gao, R.: Condition Monitoring and Control for Intelligent Manufacturing. Springer, London (2006)CrossRef
71.
Zurück zum Zitat Wang, S., Wang, K., Li, Z.: A review on data-driven predictive maintenance approach for hydro turbines/generators. In: Proceedings of the 6th International Workshop of Advanced Manufacturing and Automation (IWAMA 2016), pp. 30–35. Atlantis Press (2016) Wang, S., Wang, K., Li, Z.: A review on data-driven predictive maintenance approach for hydro turbines/generators. In: Proceedings of the 6th International Workshop of Advanced Manufacturing and Automation (IWAMA 2016), pp. 30–35. Atlantis Press (2016)
72.
Zurück zum Zitat Weigl, E., Heidl, W., Lughofer, E., Eitzinger, C., Radauer, T.: On improving performance of surface inspection systems by on-line active learning and flexible classifier updates. Mach. Vis. Appl. 27(1), 103–127 (2016)CrossRef Weigl, E., Heidl, W., Lughofer, E., Eitzinger, C., Radauer, T.: On improving performance of surface inspection systems by on-line active learning and flexible classifier updates. Mach. Vis. Appl. 27(1), 103–127 (2016)CrossRef
73.
Zurück zum Zitat Wilson, F., Larry, D., Anderson, G.: Root Cause Analysis: A Tool for Total Quality Management, pp. 8–17. ASQ Quality Press, Milwaukee (1993) Wilson, F., Larry, D., Anderson, G.: Root Cause Analysis: A Tool for Total Quality Management, pp. 8–17. ASQ Quality Press, Milwaukee (1993)
74.
Zurück zum Zitat Wu, S., Zuo, M.: Linear and nonlinear preventive maintenance. IEEE Trans. Reliab. 59(1), 242–249 (2010)CrossRef Wu, S., Zuo, M.: Linear and nonlinear preventive maintenance. IEEE Trans. Reliab. 59(1), 242–249 (2010)CrossRef
75.
Zurück zum Zitat Yam, R., Tse, P., Li, L., Tu, P.: Intelligent predictive decision support system for condition-based maintenance. The Int. J. Adv. Manuf. Technol. 17(5), 383–391 (2001)CrossRef Yam, R., Tse, P., Li, L., Tu, P.: Intelligent predictive decision support system for condition-based maintenance. The Int. J. Adv. Manuf. Technol. 17(5), 383–391 (2001)CrossRef
76.
77.
Zurück zum Zitat Yusup, N., Zain, A., Hashim, S.: Evolutionary techniques in optimizing machining parameters: review and recent applications. Expert Syst. Appl. 39, 9909–9927 (2012)CrossRef Yusup, N., Zain, A., Hashim, S.: Evolutionary techniques in optimizing machining parameters: review and recent applications. Expert Syst. Appl. 39, 9909–9927 (2012)CrossRef
78.
Zurück zum Zitat Zdsar, A., Dovzan, D., Skrjanc, I.: Self-tuning of 2 DOF control based on evolving fuzzy model. Appl. Soft Comput. 19, 403–418 (2014)CrossRef Zdsar, A., Dovzan, D., Skrjanc, I.: Self-tuning of 2 DOF control based on evolving fuzzy model. Appl. Soft Comput. 19, 403–418 (2014)CrossRef
79.
Zurück zum Zitat Zhang, Y.M., Jiang, J.: Bibliographical review on reconfigurable fault-tolerant control systems. Annu. Rev. Control 32(2), 229–252 (2008)CrossRef Zhang, Y.M., Jiang, J.: Bibliographical review on reconfigurable fault-tolerant control systems. Annu. Rev. Control 32(2), 229–252 (2008)CrossRef
80.
Zurück zum Zitat Zhu, J., Yoon, J., He, D., Qiu, B., Bechhoefer, E.: Online condition monitoring and remaining useful life prediction of particle contaminated lubrication oil. In: Proceedings of the IEEE Conference on Prognostics and Health Management (PHM), pp. 1–14. IEEE, Gaithersburg (2013) Zhu, J., Yoon, J., He, D., Qiu, B., Bechhoefer, E.: Online condition monitoring and remaining useful life prediction of particle contaminated lubrication oil. In: Proceedings of the IEEE Conference on Prognostics and Health Management (PHM), pp. 1–14. IEEE, Gaithersburg (2013)
Metadaten
Titel
Prologue: Predictive Maintenance in Dynamic Systems
verfasst von
Edwin Lughofer
Moamar Sayed-Mouchaweh
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-05645-2_1