Skip to main content
Erschienen in:

2017 | OriginalPaper | Buchkapitel

1. SPIONs as Nano-Theranostics Agents

verfasst von : Atefeh Zarepour, Ali Zarrabi, Arezoo Khosravi

Erschienen in: SPIONs as Nano-Theranostics Agents

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

With a rapid growth in different fields of science and technology, hopes for further improvement of human life were developed; among them is progress in medicine, which is directly linked with human health. A lot of researches have been conducted specifically for improving the current modalities of diagnosis and treatment of various diseases, especially cancer. Among them is the application of nanotechnology in the field of medicine, which is known as nanomedicine that can develop new therapeutic and diagnostic concepts in all areas of medicine. Nano-theranostics, which is based on the fusion of therapeutic and diagnostic technologies by using nanoparticles, is one of the newest approaches in this field and finally leads to individualized medicine. Magnetic nanoparticle with properties such as good biocompatibility and the ability of surface engineering could be considered as a candidate for theranostic application; briefly it not only could act as a carrier for drugs in drug delivery systems but also could act as therapeutic agent in hyperthermia. Moreover, it could be used as a contrast agent in magnetic resonance imaging (MRI) or could carry imaging agent on its surface. The ability of surface modification makes it possible to transmit engineered nanoparticles to the target organs and reduce side effects of drugs on the other organs; although in this situation external magnetic field could be used for targeting either. These features made us to study the ability of magnetic nanoparticle as a nanotheranostic agent in detail. In summary, in this context we try to introduce magnetic nanoparticle, different approaches that are be used for its synthesis, its applications in the field of treatment and diagnostic and finally its usage as a nanotheranostic agent.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
MNPs.
 
2
MRI.
 
3
SPIONs.
 
4
MCLs.
 
5
CTCs.
 
6
NMR.
 
7
MS.
 
8
PEG.
 
9
FITC.
 
10
EPR.
 
11
PLA.
 
12
PGA.
 
13
PVA.
 
14
PLGA.
 
15
PNIPAAM.
 
16
PVCL.
 
17
siRNA.
 
18
PTT.
 
19
NIR.
 
20
PTA.
 
21
AMF.
 
22
PDT.
 
23
ROS.
 
24
SDT.
 
25
HPG.
 
26
HSA.
 
27
GO.
 
28
PEI.
 
29
FA.
 
30
rGO.
 
31
PA.
 
32
FGF.
 
Literatur
1.
Zurück zum Zitat Z. Dai, Advances in Nanotheranostics I: Design and Fabrication of Theranosic Nanoparticles (Springer, Berlin, 2015) Z. Dai, Advances in Nanotheranostics I: Design and Fabrication of Theranosic Nanoparticles (Springer, Berlin, 2015)
2.
Zurück zum Zitat K.Y. Choi, G. Liu, S. Lee, X. Chen, Theranostic nanoplatforms for simultaneous cancer imaging and therapy: current approaches and future perspectives. Nanoscale 4, 330–342 (2012)CrossRef K.Y. Choi, G. Liu, S. Lee, X. Chen, Theranostic nanoplatforms for simultaneous cancer imaging and therapy: current approaches and future perspectives. Nanoscale 4, 330–342 (2012)CrossRef
3.
Zurück zum Zitat Y. Zhou, X. Liang, Z. Dai, Porphyrin-loaded nanoparticles for cancer theranostics. Nanoscale 8, 12394–12405 (2016)CrossRef Y. Zhou, X. Liang, Z. Dai, Porphyrin-loaded nanoparticles for cancer theranostics. Nanoscale 8, 12394–12405 (2016)CrossRef
4.
Zurück zum Zitat Q. Chen, H. Ke, Z. Dai, Z. Liu, Nanoscale theranostics for physical stimulus-responsive cancer therapies. Biomaterials 73, 214–230 (2015)CrossRef Q. Chen, H. Ke, Z. Dai, Z. Liu, Nanoscale theranostics for physical stimulus-responsive cancer therapies. Biomaterials 73, 214–230 (2015)CrossRef
5.
Zurück zum Zitat K. Greish, Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. Cancer Nanotechnol. Method. Protoc. 624, 25–37 (2010)CrossRef K. Greish, Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. Cancer Nanotechnol. Method. Protoc. 624, 25–37 (2010)CrossRef
6.
Zurück zum Zitat X. Wu, Y. Gao, C.-M. Dong, Polymer/gold hybrid nanoparticles: from synthesis to cancer theranostic applications. RSC Advances 5, 13787–13796 (2015)CrossRef X. Wu, Y. Gao, C.-M. Dong, Polymer/gold hybrid nanoparticles: from synthesis to cancer theranostic applications. RSC Advances 5, 13787–13796 (2015)CrossRef
7.
Zurück zum Zitat D. Peer, J.M. Karp, S. Hong, O.C. Farokhzad, R. Margalit, R. Langer, Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2, 751–760 (2007)CrossRef D. Peer, J.M. Karp, S. Hong, O.C. Farokhzad, R. Margalit, R. Langer, Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2, 751–760 (2007)CrossRef
8.
Zurück zum Zitat S.K. Sahoo, V. Labhasetwar, Nanotech approaches to drug delivery and imaging. Drug Discovery Today 8, 1112–1120 (2003)CrossRef S.K. Sahoo, V. Labhasetwar, Nanotech approaches to drug delivery and imaging. Drug Discovery Today 8, 1112–1120 (2003)CrossRef
9.
Zurück zum Zitat J.T. Cole, N.B. Holland, Multifunctional nanoparticles for use in theranostic applications. Drug Deliv. Trans. Res. 5, 295–309 (2015)CrossRef J.T. Cole, N.B. Holland, Multifunctional nanoparticles for use in theranostic applications. Drug Deliv. Trans. Res. 5, 295–309 (2015)CrossRef
10.
Zurück zum Zitat B. Semete, L. Booysen, Y. Lemmer, L. Kalombo, L. Katata, J. Verschoor, H.S. Swai, In vivo evaluation of the biodistribution and safety of PLGA nanoparticles as drug delivery systems. Nanomed. Nanotechnol. Biol. Med. 6, 662–671 (2010)CrossRef B. Semete, L. Booysen, Y. Lemmer, L. Kalombo, L. Katata, J. Verschoor, H.S. Swai, In vivo evaluation of the biodistribution and safety of PLGA nanoparticles as drug delivery systems. Nanomed. Nanotechnol. Biol. Med. 6, 662–671 (2010)CrossRef
11.
Zurück zum Zitat H. Markides, M. Rotherham, A. El Haj, Biocompatibility and toxicity of magnetic nanoparticles in regenerative medicine. J. Nanomater. 2012, 13 (2012)CrossRef H. Markides, M. Rotherham, A. El Haj, Biocompatibility and toxicity of magnetic nanoparticles in regenerative medicine. J. Nanomater. 2012, 13 (2012)CrossRef
12.
Zurück zum Zitat M. Mahmoudi, A. Simchi, M. Imani, M.A. Shokrgozar, A.S. Milani, U.O. Häfeli, P. Stroeve, A new approach for the in vitro identification of the cytotoxicity of superparamagnetic iron oxide nanoparticles. Colloids Surf. B 75, 300–309 (2010)CrossRef M. Mahmoudi, A. Simchi, M. Imani, M.A. Shokrgozar, A.S. Milani, U.O. Häfeli, P. Stroeve, A new approach for the in vitro identification of the cytotoxicity of superparamagnetic iron oxide nanoparticles. Colloids Surf. B 75, 300–309 (2010)CrossRef
13.
Zurück zum Zitat S. Parveen, R. Misra, S.K. Sahoo, Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomed. Nanotechnol. Biol. Med. 8, 147–166 (2012)CrossRef S. Parveen, R. Misra, S.K. Sahoo, Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomed. Nanotechnol. Biol. Med. 8, 147–166 (2012)CrossRef
14.
Zurück zum Zitat A. Kroll, M.H. Pillukat, D. Hahn, J. Schnekenburger, Current in vitro methods in nanoparticle risk assessment: limitations and challenges. Eur. J. Pharm. Biopharm. 72, 370–377 (2009)CrossRef A. Kroll, M.H. Pillukat, D. Hahn, J. Schnekenburger, Current in vitro methods in nanoparticle risk assessment: limitations and challenges. Eur. J. Pharm. Biopharm. 72, 370–377 (2009)CrossRef
15.
Zurück zum Zitat S.S. Kelkar, T.M. Reineke, Theranostics: combining imaging and therapy. Biocon. Chem. 22, 1879–1903 (2011)CrossRef S.S. Kelkar, T.M. Reineke, Theranostics: combining imaging and therapy. Biocon. Chem. 22, 1879–1903 (2011)CrossRef
16.
Zurück zum Zitat J. Wang, Y. Gao, Y. Hou, F. Zhao, F. Pu, X. Liu, Z. Wu, Y. Fan, Evaluation on cartilage morphology after intra-articular injection of titanium dioxide nanoparticles in rats. J. Nanomater. 2012, 1–11 (2012) J. Wang, Y. Gao, Y. Hou, F. Zhao, F. Pu, X. Liu, Z. Wu, Y. Fan, Evaluation on cartilage morphology after intra-articular injection of titanium dioxide nanoparticles in rats. J. Nanomater. 2012, 1–11 (2012)
17.
Zurück zum Zitat S. Neethirajan, D.S. Jayas, Nanotechnology for the food and bioprocessing industries. Food Bioprocess Technol. 4, 39–47 (2011)CrossRef S. Neethirajan, D.S. Jayas, Nanotechnology for the food and bioprocessing industries. Food Bioprocess Technol. 4, 39–47 (2011)CrossRef
18.
Zurück zum Zitat Q. Huang, H. Yu, Q. Ru, Bioavailability and delivery of nutraceuticals using nanotechnology. J. Food Sci. 75, R50–R57 (2010)CrossRef Q. Huang, H. Yu, Q. Ru, Bioavailability and delivery of nutraceuticals using nanotechnology. J. Food Sci. 75, R50–R57 (2010)CrossRef
19.
Zurück zum Zitat V. Sanna, N. Pala, M. Sechi, Targeted therapy using nanotechnology: focus on cancer. Int. J. Nanomed. 9, 467–483 (2014) V. Sanna, N. Pala, M. Sechi, Targeted therapy using nanotechnology: focus on cancer. Int. J. Nanomed. 9, 467–483 (2014)
20.
Zurück zum Zitat T.L. Doane, C. Burda, The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy. Chem. Soc. Rev. 41, 2885–2911 (2012)CrossRef T.L. Doane, C. Burda, The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy. Chem. Soc. Rev. 41, 2885–2911 (2012)CrossRef
21.
Zurück zum Zitat B.Y. Kim, J.T. Rutka, W.C. Chan, Nanomedicine. N. Engl. J. Med. 363, 2434–2443 (2010)CrossRef B.Y. Kim, J.T. Rutka, W.C. Chan, Nanomedicine. N. Engl. J. Med. 363, 2434–2443 (2010)CrossRef
22.
Zurück zum Zitat Y. Gao, J. Xie, H. Chen, S. Gu, R. Zhao, J. Shao, L. Jia, Nanotechnology-based intelligent drug design for cancer metastasis treatment. Biotechnol. Adv. 32, 761–777 (2014)CrossRef Y. Gao, J. Xie, H. Chen, S. Gu, R. Zhao, J. Shao, L. Jia, Nanotechnology-based intelligent drug design for cancer metastasis treatment. Biotechnol. Adv. 32, 761–777 (2014)CrossRef
23.
Zurück zum Zitat M.J. Sailor, J.H. Park, Hybrid nanoparticles for detection and treatment of cancer. Adv. Mater. 24, 3779–3802 (2012)CrossRef M.J. Sailor, J.H. Park, Hybrid nanoparticles for detection and treatment of cancer. Adv. Mater. 24, 3779–3802 (2012)CrossRef
24.
Zurück zum Zitat J.V. Jokerst, S.S. Gambhir, Molecular imaging with theranostic nanoparticles. Acc. Chem. Res. 44, 1050–1060 (2011)CrossRef J.V. Jokerst, S.S. Gambhir, Molecular imaging with theranostic nanoparticles. Acc. Chem. Res. 44, 1050–1060 (2011)CrossRef
25.
Zurück zum Zitat B. Fadeel, A.E. Garcia-Bennett, Better safe than sorry: understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications. Adv. Drug Deliv. Rev. 62, 362–374 (2010)CrossRef B. Fadeel, A.E. Garcia-Bennett, Better safe than sorry: understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications. Adv. Drug Deliv. Rev. 62, 362–374 (2010)CrossRef
26.
Zurück zum Zitat R. Singh, J.W. Lillard, Nanoparticle-based targeted drug delivery. Exp. Mol. Pathol. 86, 215–223 (2009)CrossRef R. Singh, J.W. Lillard, Nanoparticle-based targeted drug delivery. Exp. Mol. Pathol. 86, 215–223 (2009)CrossRef
27.
Zurück zum Zitat C.P. McCoy, C. Brady, J.F. Cowley, S.M. McGlinchey, N. McGoldrick, D.J. Kinnear, G.P. Andrews, D.S. Jones, Triggered drug delivery from biomaterials. Expert Opin. Drug Deliv. 7, 605–616 (2010)CrossRef C.P. McCoy, C. Brady, J.F. Cowley, S.M. McGlinchey, N. McGoldrick, D.J. Kinnear, G.P. Andrews, D.S. Jones, Triggered drug delivery from biomaterials. Expert Opin. Drug Deliv. 7, 605–616 (2010)CrossRef
28.
Zurück zum Zitat P. Rai, S. Mallidi, X. Zheng, R. Rahmanzadeh, Y. Mir, S. Elrington, A. Khurshid, T. Hasan, Development and applications of photo-triggered theranostic agents. Adv. Drug Deliv. Rev. 62, 1094–1124 (2010)CrossRef P. Rai, S. Mallidi, X. Zheng, R. Rahmanzadeh, Y. Mir, S. Elrington, A. Khurshid, T. Hasan, Development and applications of photo-triggered theranostic agents. Adv. Drug Deliv. Rev. 62, 1094–1124 (2010)CrossRef
29.
Zurück zum Zitat K.H. Martin, P.A. Dayton, Current status and prospects for microbubbles in ultrasound theranostics. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 5, 329–345 (2013)CrossRef K.H. Martin, P.A. Dayton, Current status and prospects for microbubbles in ultrasound theranostics. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 5, 329–345 (2013)CrossRef
30.
Zurück zum Zitat R.R. Ragheb, D. Kim, A. Bandyopadhyay, H. Chahboune, B. Bulutoglu, H. Ezaldein, J.M. Criscione, T.M. Fahmy, Induced clustered nanoconfinement of superparamagnetic iron oxide in biodegradable nanoparticles enhances transverse relaxivity for targeted theranostics. Magn. Reson. Med. 70, 1748–1760 (2013)CrossRef R.R. Ragheb, D. Kim, A. Bandyopadhyay, H. Chahboune, B. Bulutoglu, H. Ezaldein, J.M. Criscione, T.M. Fahmy, Induced clustered nanoconfinement of superparamagnetic iron oxide in biodegradable nanoparticles enhances transverse relaxivity for targeted theranostics. Magn. Reson. Med. 70, 1748–1760 (2013)CrossRef
31.
Zurück zum Zitat D. Maity, S.-G. Choo, J. Yi, J. Ding, J.M. Xue, Synthesis of magnetite nanoparticles via a solvent-free thermal decomposition route. J. Magn. Magn. Mater. 321, 1256–1259 (2009)CrossRef D. Maity, S.-G. Choo, J. Yi, J. Ding, J.M. Xue, Synthesis of magnetite nanoparticles via a solvent-free thermal decomposition route. J. Magn. Magn. Mater. 321, 1256–1259 (2009)CrossRef
32.
Zurück zum Zitat S. Shen, S. Wang, R. Zheng, X. Zhu, X. Jiang, D. Fu, W. Yang, Magnetic nanoparticle clusters for photothermal therapy with near-infrared irradiation. Biomaterials 39, 67–74 (2015)CrossRef S. Shen, S. Wang, R. Zheng, X. Zhu, X. Jiang, D. Fu, W. Yang, Magnetic nanoparticle clusters for photothermal therapy with near-infrared irradiation. Biomaterials 39, 67–74 (2015)CrossRef
33.
Zurück zum Zitat J. Wan, W. Cai, X. Meng, E. Liu, Monodisperse water-soluble magnetite nanoparticles prepared by polyol process for high-performance magnetic resonance imaging. Chem. Commun. 47, 5004–5006 (2007)CrossRef J. Wan, W. Cai, X. Meng, E. Liu, Monodisperse water-soluble magnetite nanoparticles prepared by polyol process for high-performance magnetic resonance imaging. Chem. Commun. 47, 5004–5006 (2007)CrossRef
34.
Zurück zum Zitat D. Ho, X. Sun, S. Sun, Monodisperse magnetic nanoparticles for theranostic applications. Acc. Chem. Res. 44, 875–882 (2011)CrossRef D. Ho, X. Sun, S. Sun, Monodisperse magnetic nanoparticles for theranostic applications. Acc. Chem. Res. 44, 875–882 (2011)CrossRef
35.
Zurück zum Zitat A.J. Cole, V.C. Yang, A.E. David, Cancer theranostics: the rise of targeted magnetic nanoparticles. Trends Biotechnol. 29, 323–332 (2011)CrossRef A.J. Cole, V.C. Yang, A.E. David, Cancer theranostics: the rise of targeted magnetic nanoparticles. Trends Biotechnol. 29, 323–332 (2011)CrossRef
36.
Zurück zum Zitat A.H. Lu, E.E.L. Salabas, F. Schüth, Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. 46, 1222–1244 (2007)CrossRef A.H. Lu, E.E.L. Salabas, F. Schüth, Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. 46, 1222–1244 (2007)CrossRef
37.
Zurück zum Zitat M. Faraji, Y. Yamini, M. Rezaee, Magnetic nanoparticles: synthesis, stabilization, functionalization, characterization, and applications. J. Iran. Chem. Soc. 7, 1–37 (2010)CrossRef M. Faraji, Y. Yamini, M. Rezaee, Magnetic nanoparticles: synthesis, stabilization, functionalization, characterization, and applications. J. Iran. Chem. Soc. 7, 1–37 (2010)CrossRef
38.
Zurück zum Zitat C. Okoli, Development of protein-functionalized magnetic iron oxide nanoparticles: potential application in water treatment, Doctoral thesis, 2012 C. Okoli, Development of protein-functionalized magnetic iron oxide nanoparticles: potential application in water treatment, Doctoral thesis, 2012
39.
Zurück zum Zitat D. Caruntu, G. Caruntu, C.J. O’Connor, Magnetic properties of variable-sized Fe3O4 nanoparticles synthesized from non-aqueous homogeneous solutions of polyols. J. Phys. D Appl. Phys. 40, 5801–5810 (2007)CrossRef D. Caruntu, G. Caruntu, C.J. O’Connor, Magnetic properties of variable-sized Fe3O4 nanoparticles synthesized from non-aqueous homogeneous solutions of polyols. J. Phys. D Appl. Phys. 40, 5801–5810 (2007)CrossRef
40.
Zurück zum Zitat A.K. Gupta, M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26, 3995–4021 (2005)CrossRef A.K. Gupta, M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26, 3995–4021 (2005)CrossRef
41.
Zurück zum Zitat S. Sun, H. Zeng, Size-controlled synthesis of magnetite nanoparticles. J. Am. Chem. Soc. 124, 8204–8205 (2002)CrossRef S. Sun, H. Zeng, Size-controlled synthesis of magnetite nanoparticles. J. Am. Chem. Soc. 124, 8204–8205 (2002)CrossRef
42.
Zurück zum Zitat R. Hao, R. Xing, Z. Xu, Y. Hou, S. Gao, S. Sun, Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv. Mater. 22, 2729–2742 (2010)CrossRef R. Hao, R. Xing, Z. Xu, Y. Hou, S. Gao, S. Sun, Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv. Mater. 22, 2729–2742 (2010)CrossRef
43.
Zurück zum Zitat P. Tartaj, M. del Puerto Morales, S. Veintemillas-Verdaguer, T. González-Carreño, C.J. Serna, The preparation of magnetic nanoparticles for applications in biomedicine. J. Phys. D Appl. Phys. 36, R182–R198 (2003)CrossRef P. Tartaj, M. del Puerto Morales, S. Veintemillas-Verdaguer, T. González-Carreño, C.J. Serna, The preparation of magnetic nanoparticles for applications in biomedicine. J. Phys. D Appl. Phys. 36, R182–R198 (2003)CrossRef
44.
Zurück zum Zitat J. Sun, S. Zhou, P. Hou, Y. Yang, J. Weng, X. Li, M. Li, Synthesis and characterization of biocompatible Fe3O4 nanoparticles. J. Biomed. Mater. Res., Part A 80, 333–341 (2007)CrossRef J. Sun, S. Zhou, P. Hou, Y. Yang, J. Weng, X. Li, M. Li, Synthesis and characterization of biocompatible Fe3O4 nanoparticles. J. Biomed. Mater. Res., Part A 80, 333–341 (2007)CrossRef
45.
Zurück zum Zitat Z. Liu, Y. Liu, K. Yao, Z. Ding, J. Tao, X. Wang, Synthesis and magnetic properties of Fe3O4 nanoparticles. J. Mater. Synth. Process. 10, 83–87 (2002)CrossRef Z. Liu, Y. Liu, K. Yao, Z. Ding, J. Tao, X. Wang, Synthesis and magnetic properties of Fe3O4 nanoparticles. J. Mater. Synth. Process. 10, 83–87 (2002)CrossRef
46.
Zurück zum Zitat E. Bertolucci, A.M.R. Galletti, C. Antonetti, F. Piccinelli, M. Marracci, B. Tellini, C. Visone, Chemical and magnetic properties characterization of magnetic nanoparticles, in Instrumentation and Measurement Technology Conference (I2MTC), IEEE International (2015), pp. 1492–1496 E. Bertolucci, A.M.R. Galletti, C. Antonetti, F. Piccinelli, M. Marracci, B. Tellini, C. Visone, Chemical and magnetic properties characterization of magnetic nanoparticles, in Instrumentation and Measurement Technology Conference (I2MTC), IEEE International (2015), pp. 1492–1496
47.
Zurück zum Zitat V. Dolgovskiy, V. Lebedev, S. Colombo, A. Weis, B. Michen, L. Ackermann-Hirschi, A. Petri-Fink, A quantitative study of particle size effects in the magnetorelaxometry of magnetic nanoparticles using atomic magnetometry. J. Magn. Magn. Mater. 379, 137–150 (2015)CrossRef V. Dolgovskiy, V. Lebedev, S. Colombo, A. Weis, B. Michen, L. Ackermann-Hirschi, A. Petri-Fink, A quantitative study of particle size effects in the magnetorelaxometry of magnetic nanoparticles using atomic magnetometry. J. Magn. Magn. Mater. 379, 137–150 (2015)CrossRef
48.
Zurück zum Zitat K.C.-F. Leung, S. Xuan, Y.J. Wang, From micro to nano magnetic spheres: size-controllable synthesis. Multilayer Coat. Biomed. Appl. 13, 15 (2016) K.C.-F. Leung, S. Xuan, Y.J. Wang, From micro to nano magnetic spheres: size-controllable synthesis. Multilayer Coat. Biomed. Appl. 13, 15 (2016)
49.
Zurück zum Zitat P.I. Soares, F. Lochte, C. Echeverria, L.C. Pereira, J.T. Coutinho, I.M. Ferreira, C.M. Novo, Thermal and magnetic properties of iron oxide colloids: influence of surfactants. Nanotechnology 26, 425704 (2015)CrossRef P.I. Soares, F. Lochte, C. Echeverria, L.C. Pereira, J.T. Coutinho, I.M. Ferreira, C.M. Novo, Thermal and magnetic properties of iron oxide colloids: influence of surfactants. Nanotechnology 26, 425704 (2015)CrossRef
50.
Zurück zum Zitat K.L. Aillon, Y. Xie, N. El-Gendy, C.J. Berkland, M.L. Forrest, Effects of nanomaterial physicochemical properties on in vivo toxicity. Adv. Drug Deliv. Rev. 61, 457–466 (2009)CrossRef K.L. Aillon, Y. Xie, N. El-Gendy, C.J. Berkland, M.L. Forrest, Effects of nanomaterial physicochemical properties on in vivo toxicity. Adv. Drug Deliv. Rev. 61, 457–466 (2009)CrossRef
51.
Zurück zum Zitat C.C. Berry, S. Wells, S. Charles, A.S. Curtis, Dextran and albumin derivatised iron oxide nanoparticles: influence on fibroblasts in vitro. Biomaterials 24, 4551–4557 (2003)CrossRef C.C. Berry, S. Wells, S. Charles, A.S. Curtis, Dextran and albumin derivatised iron oxide nanoparticles: influence on fibroblasts in vitro. Biomaterials 24, 4551–4557 (2003)CrossRef
52.
Zurück zum Zitat A. Verma, F. Stellacci, Effect of surface properties on nanoparticle–cell interactions. Small 6, 12–21 (2010)CrossRef A. Verma, F. Stellacci, Effect of surface properties on nanoparticle–cell interactions. Small 6, 12–21 (2010)CrossRef
53.
Zurück zum Zitat J. Huang, L. Bu, J. Xie, K. Chen, Z. Cheng, X. Li, X. Chen, Effects of nanoparticle size on cellular uptake and liver MRI with polyvinylpyrrolidone-coated iron oxide nanoparticles. ACS Nano 4, 7151–7160 (2010)CrossRef J. Huang, L. Bu, J. Xie, K. Chen, Z. Cheng, X. Li, X. Chen, Effects of nanoparticle size on cellular uptake and liver MRI with polyvinylpyrrolidone-coated iron oxide nanoparticles. ACS Nano 4, 7151–7160 (2010)CrossRef
54.
Zurück zum Zitat D. Stanicki, L. Vander Elst, R.N. Muller, S. Laurent, Synthesis and processing of magnetic nanoparticles. Curr. Opin. Chem. Eng. 8, 7–14 (2015) D. Stanicki, L. Vander Elst, R.N. Muller, S. Laurent, Synthesis and processing of magnetic nanoparticles. Curr. Opin. Chem. Eng. 8, 7–14 (2015)
55.
Zurück zum Zitat C. Corot, P. Robert, J.-M. Idée, M. Port, Recent advances in iron oxide nanocrystal technology for medical imaging. Adv. Drug Deliv. Rev. 58, 1471–1504 (2006)CrossRef C. Corot, P. Robert, J.-M. Idée, M. Port, Recent advances in iron oxide nanocrystal technology for medical imaging. Adv. Drug Deliv. Rev. 58, 1471–1504 (2006)CrossRef
56.
Zurück zum Zitat L.H. Reddy, J.L. Arias, J. Nicolas, P. Couvreur, Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem. Rev. 112, 5818–5878 (2012)CrossRef L.H. Reddy, J.L. Arias, J. Nicolas, P. Couvreur, Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem. Rev. 112, 5818–5878 (2012)CrossRef
57.
Zurück zum Zitat X. Li, W. Liu, L. Sun, K.E. Aifantis, B. Yu, Y. Fan, Q. Feng, F. Cui, F. Watari, Effects of physicochemical properties of nanomaterials on their toxicity. J. Biomed. Mater. Res., Part A 103, 2499–2507 (2015)CrossRef X. Li, W. Liu, L. Sun, K.E. Aifantis, B. Yu, Y. Fan, Q. Feng, F. Cui, F. Watari, Effects of physicochemical properties of nanomaterials on their toxicity. J. Biomed. Mater. Res., Part A 103, 2499–2507 (2015)CrossRef
58.
Zurück zum Zitat K. Xiao, Y. Li, J. Luo, J.S. Lee, W. Xiao, A.M. Gonik, R.G. Agarwal, K.S. Lam, The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles. Biomaterials 32, 3435–3446 (2011)CrossRef K. Xiao, Y. Li, J. Luo, J.S. Lee, W. Xiao, A.M. Gonik, R.G. Agarwal, K.S. Lam, The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles. Biomaterials 32, 3435–3446 (2011)CrossRef
59.
Zurück zum Zitat M. Kim, J. Jung, J. Lee, K. Na, S. Park, J. Hyun, Amphiphilic comblike polymers enhance the colloidal stability of Fe3O4 nanoparticles. Colloids Surf., B 76, 236–240 (2010)CrossRef M. Kim, J. Jung, J. Lee, K. Na, S. Park, J. Hyun, Amphiphilic comblike polymers enhance the colloidal stability of Fe3O4 nanoparticles. Colloids Surf., B 76, 236–240 (2010)CrossRef
60.
Zurück zum Zitat M. Szekeres, I.Y. Tóth, E. Illés, A. Hajdú, I. Zupkó, K. Farkas, G. Oszlánczi, L. Tiszlavicz, E. Tombácz, Chemical and colloidal stability of carboxylated core-shell magnetite nanoparticles designed for biomedical applications. Int. J. Mol. Sci. 14, 14550–14574 (2013)CrossRef M. Szekeres, I.Y. Tóth, E. Illés, A. Hajdú, I. Zupkó, K. Farkas, G. Oszlánczi, L. Tiszlavicz, E. Tombácz, Chemical and colloidal stability of carboxylated core-shell magnetite nanoparticles designed for biomedical applications. Int. J. Mol. Sci. 14, 14550–14574 (2013)CrossRef
61.
Zurück zum Zitat S. Ghosh, W. Jiang, J.D. McClements, B. Xing, Colloidal stability of magnetic iron oxide nanoparticles: influence of natural organic matter and synthetic polyelectrolytes. Langmuir 27, 8036–8043 (2011)CrossRef S. Ghosh, W. Jiang, J.D. McClements, B. Xing, Colloidal stability of magnetic iron oxide nanoparticles: influence of natural organic matter and synthetic polyelectrolytes. Langmuir 27, 8036–8043 (2011)CrossRef
62.
Zurück zum Zitat D. Singh, J.M. McMillan, X.-M. Liu, H.M. Vishwasrao, A.V. Kabanov, M. Sokolsky-Papkov, H.E. Gendelman, Formulation design facilitates magnetic nanoparticle delivery to diseased cells and tissues. Nanomedicine 9, 469–485 (2014)CrossRef D. Singh, J.M. McMillan, X.-M. Liu, H.M. Vishwasrao, A.V. Kabanov, M. Sokolsky-Papkov, H.E. Gendelman, Formulation design facilitates magnetic nanoparticle delivery to diseased cells and tissues. Nanomedicine 9, 469–485 (2014)CrossRef
63.
Zurück zum Zitat S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Van der Elst, R.N. Muller, Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 108, 2064–2110 (2008)CrossRef S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Van der Elst, R.N. Muller, Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 108, 2064–2110 (2008)CrossRef
64.
Zurück zum Zitat S. Mornet, J. Portier, E. Duguet, A method for synthesis and functionalization of ultrasmall superparamagnetic covalent carriers based on maghemite and dextran. J. Magn. Magn. Mater. 293, 127–134 (2005)CrossRef S. Mornet, J. Portier, E. Duguet, A method for synthesis and functionalization of ultrasmall superparamagnetic covalent carriers based on maghemite and dextran. J. Magn. Magn. Mater. 293, 127–134 (2005)CrossRef
65.
Zurück zum Zitat L. LaConte, N. Nitin, G. Bao, Magnetic nanoparticle probes. Mater. Today 8, 32–38 (2005)CrossRef L. LaConte, N. Nitin, G. Bao, Magnetic nanoparticle probes. Mater. Today 8, 32–38 (2005)CrossRef
66.
Zurück zum Zitat A.A. Ismail, Synthesis and characterization of Y2O3/Fe2O3/TiO2 nanoparticles by sol–gel method. Appl. Catal. B 58, 115–121 (2005)CrossRef A.A. Ismail, Synthesis and characterization of Y2O3/Fe2O3/TiO2 nanoparticles by sol–gel method. Appl. Catal. B 58, 115–121 (2005)CrossRef
67.
Zurück zum Zitat Z. Dai, F. Meiser, H. Möhwald, Nanoengineering of iron oxide and iron oxide/silica hollow spheres by sequential layering combined with a sol–gel process. J. Colloid Interface Sci. 288, 298–300 (2005)CrossRef Z. Dai, F. Meiser, H. Möhwald, Nanoengineering of iron oxide and iron oxide/silica hollow spheres by sequential layering combined with a sol–gel process. J. Colloid Interface Sci. 288, 298–300 (2005)CrossRef
68.
Zurück zum Zitat A.S. Teja, P.-Y. Koh, Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Prog. Cryst. Growth Charact. Mater. 55, 22–45 (2009)CrossRef A.S. Teja, P.-Y. Koh, Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Prog. Cryst. Growth Charact. Mater. 55, 22–45 (2009)CrossRef
69.
Zurück zum Zitat A. Roca, M. Morales, K. O’Grady, C. Serna, Structural and magnetic properties of uniform magnetite nanoparticles prepared by high temperature decomposition of organic precursors. Nanotechnology 17, 2783 (2006)CrossRef A. Roca, M. Morales, K. O’Grady, C. Serna, Structural and magnetic properties of uniform magnetite nanoparticles prepared by high temperature decomposition of organic precursors. Nanotechnology 17, 2783 (2006)CrossRef
70.
Zurück zum Zitat Z. Xu, C. Shen, Y. Hou, H. Gao, S. Sun, Oleylamine as both reducing agent and stabilizer in a facile synthesis of magnetite nanoparticles. Chem. Mater. 21, 1778–1780 (2009)CrossRef Z. Xu, C. Shen, Y. Hou, H. Gao, S. Sun, Oleylamine as both reducing agent and stabilizer in a facile synthesis of magnetite nanoparticles. Chem. Mater. 21, 1778–1780 (2009)CrossRef
71.
Zurück zum Zitat P. Tartaj, M.P. Morales, S. Veintemillas-Verdaguer, T. Gonzalez-Carreño, C.J. Serna, Synthesis, properties and biomedical applications of magnetic nanoparticles. Handbook Magn. Mater. 16, 403–482 (2006)CrossRef P. Tartaj, M.P. Morales, S. Veintemillas-Verdaguer, T. Gonzalez-Carreño, C.J. Serna, Synthesis, properties and biomedical applications of magnetic nanoparticles. Handbook Magn. Mater. 16, 403–482 (2006)CrossRef
72.
Zurück zum Zitat W. Cai, J. Wan, Facile synthesis of superparamagnetic magnetite nanoparticles in liquid polyols. J. Colloid Interface Sci. 305, 366–370 (2007)CrossRef W. Cai, J. Wan, Facile synthesis of superparamagnetic magnetite nanoparticles in liquid polyols. J. Colloid Interface Sci. 305, 366–370 (2007)CrossRef
73.
Zurück zum Zitat J. Merikhi, H.-O. Jungk, C. Feldmann, Sub-micrometer CoAl2O4 pigment particles—synthesis and preparation of coatings. J. Mater. Chem. 10, 1311–1314 (2000)CrossRef J. Merikhi, H.-O. Jungk, C. Feldmann, Sub-micrometer CoAl2O4 pigment particles—synthesis and preparation of coatings. J. Mater. Chem. 10, 1311–1314 (2000)CrossRef
74.
Zurück zum Zitat S.-J. Park, S. Kim, S. Lee, Z.G. Khim, K. Char, T. Hyeon, Synthesis and magnetic studies of uniform iron nanorods and nanospheres. J. Am. Chem. Soc. 122, 8581–8582 (2000)CrossRef S.-J. Park, S. Kim, S. Lee, Z.G. Khim, K. Char, T. Hyeon, Synthesis and magnetic studies of uniform iron nanorods and nanospheres. J. Am. Chem. Soc. 122, 8581–8582 (2000)CrossRef
75.
Zurück zum Zitat R.A. Mukh-Qasem, A. Gedanken, Sonochemical synthesis of stable hydrosol of Fe3O4 nanoparticles. J. Colloid Interface Sci. 284, 489–494 (2005)CrossRef R.A. Mukh-Qasem, A. Gedanken, Sonochemical synthesis of stable hydrosol of Fe3O4 nanoparticles. J. Colloid Interface Sci. 284, 489–494 (2005)CrossRef
76.
Zurück zum Zitat E.H. Kim, H.S. Lee, B.K. Kwak, B.-K. Kim, Synthesis of ferrofluid with magnetic nanoparticles by sonochemical method for MRI contrast agent. J. Magn. Magn. Mater. 289, 328–330 (2005)CrossRef E.H. Kim, H.S. Lee, B.K. Kwak, B.-K. Kim, Synthesis of ferrofluid with magnetic nanoparticles by sonochemical method for MRI contrast agent. J. Magn. Magn. Mater. 289, 328–330 (2005)CrossRef
77.
Zurück zum Zitat W. Wu, Q. He, C. Jiang, Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res. Lett. 3, 397–415 (2008)CrossRef W. Wu, Q. He, C. Jiang, Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res. Lett. 3, 397–415 (2008)CrossRef
78.
Zurück zum Zitat Y.-H. Zheng, Y. Cheng, F. Bao, Y.-S. Wang, Synthesis and magnetic properties of Fe3O4 nanoparticles. Mater. Res. Bull. 41, 525–529 (2006)CrossRef Y.-H. Zheng, Y. Cheng, F. Bao, Y.-S. Wang, Synthesis and magnetic properties of Fe3O4 nanoparticles. Mater. Res. Bull. 41, 525–529 (2006)CrossRef
79.
Zurück zum Zitat X. Wang, J. Zhuang, Q. Peng, Y. Li, A general strategy for nanocrystal synthesis. Nature 437, 121–124 (2005)CrossRef X. Wang, J. Zhuang, Q. Peng, Y. Li, A general strategy for nanocrystal synthesis. Nature 437, 121–124 (2005)CrossRef
80.
Zurück zum Zitat H. Cai, X. An, J. Cui, J. Li, S. Wen, K. Li, M. Shen, L. Zheng, G. Zhang, X. Shi, Facile hydrothermal synthesis and surface functionalization of polyethyleneimine-coated iron oxide nanoparticles for biomedical applications. ACS Appl. Mater. Interfaces 5, 1722–1731 (2013)CrossRef H. Cai, X. An, J. Cui, J. Li, S. Wen, K. Li, M. Shen, L. Zheng, G. Zhang, X. Shi, Facile hydrothermal synthesis and surface functionalization of polyethyleneimine-coated iron oxide nanoparticles for biomedical applications. ACS Appl. Mater. Interfaces 5, 1722–1731 (2013)CrossRef
81.
Zurück zum Zitat B.K. Paul, S.P. Moulik, Uses and applications of microemulsions. Curr. Sci. Bangalore 80, 990–1001 (2001) B.K. Paul, S.P. Moulik, Uses and applications of microemulsions. Curr. Sci. Bangalore 80, 990–1001 (2001)
82.
Zurück zum Zitat M. Darbandi, F. Stromberg, J. Landers, N. Reckers, B. Sanyal, W. Keune, H. Wende, Nanoscale size effect on surface spin canting in iron oxide nanoparticles synthesized by the microemulsion method. J. Phys. D Appl. Phys. 45, 195001 (2012)CrossRef M. Darbandi, F. Stromberg, J. Landers, N. Reckers, B. Sanyal, W. Keune, H. Wende, Nanoscale size effect on surface spin canting in iron oxide nanoparticles synthesized by the microemulsion method. J. Phys. D Appl. Phys. 45, 195001 (2012)CrossRef
83.
Zurück zum Zitat S. Ghorbanzadeh-Mashkani, P. Tajer-Mohammad-Ghazvini, A. Nozad-Golikand, R. Kasra-Kermanshahi, M.-R. Davarpanah, Synthesis of sterile and pyrogen free biogenic magnetic nanoparticles: biotechnological potential of magnetotactic bacteria for production of nanomaterials, in Proceedings of World Academy of Science, Engineering and Technology, World Academy of Science, Engineering and Technology (WASET), vol. 74 (2013), pp. 194–198 S. Ghorbanzadeh-Mashkani, P. Tajer-Mohammad-Ghazvini, A. Nozad-Golikand, R. Kasra-Kermanshahi, M.-R. Davarpanah, Synthesis of sterile and pyrogen free biogenic magnetic nanoparticles: biotechnological potential of magnetotactic bacteria for production of nanomaterials, in Proceedings of World Academy of Science, Engineering and Technology, World Academy of Science, Engineering and Technology (WASET), vol. 74 (2013), pp. 194–198
84.
Zurück zum Zitat C. Prasad, K. Sreenivasulu, S. Gangadhara, P. Venkateswarlu, A facile green synthesis of spherical Fe3O4 magnetic nanoparticles and their effect on degradation of methylene blue in aqueous solution. J. Mol. Liq. 221, 993–998 (2016)CrossRef C. Prasad, K. Sreenivasulu, S. Gangadhara, P. Venkateswarlu, A facile green synthesis of spherical Fe3O4 magnetic nanoparticles and their effect on degradation of methylene blue in aqueous solution. J. Mol. Liq. 221, 993–998 (2016)CrossRef
85.
Zurück zum Zitat M. Mahdavi, F. Namvar, M.B. Ahmad, R. Mohamad, Green biosynthesis and characterization of magnetic iron oxide (Fe3O4) nanoparticles using seaweed (Sargassum muticum) aqueous extract. Molecules 18, 5954–5964 (2013)CrossRef M. Mahdavi, F. Namvar, M.B. Ahmad, R. Mohamad, Green biosynthesis and characterization of magnetic iron oxide (Fe3O4) nanoparticles using seaweed (Sargassum muticum) aqueous extract. Molecules 18, 5954–5964 (2013)CrossRef
86.
Zurück zum Zitat J. Dobson, Magnetic nanoparticles for drug delivery. Drug Dev. Res. 67, 55–60 (2006)CrossRef J. Dobson, Magnetic nanoparticles for drug delivery. Drug Dev. Res. 67, 55–60 (2006)CrossRef
87.
Zurück zum Zitat A. Ito, M. Kamihira, Tissue engineering using magnetite nanoparticles. Progr. Mol. Biol. Trans. Sci. 104, 355–395 (2010)CrossRef A. Ito, M. Kamihira, Tissue engineering using magnetite nanoparticles. Progr. Mol. Biol. Trans. Sci. 104, 355–395 (2010)CrossRef
88.
Zurück zum Zitat Š. Kubinová, E. Syková, Nanotechnologies in regenerative medicine. Minim. Invasive Ther. Allied Technol. 19, 144–156 (2010)CrossRef Š. Kubinová, E. Syková, Nanotechnologies in regenerative medicine. Minim. Invasive Ther. Allied Technol. 19, 144–156 (2010)CrossRef
89.
Zurück zum Zitat N. Bock, A. Riminucci, C. Dionigi, A. Russo, A. Tampieri, E. Landi, V.A. Goranov, M. Marcacci, V. Dediu, A novel route in bone tissue engineering: magnetic biomimetic scaffolds. Acta Biomater. 6, 786–796 (2010)CrossRef N. Bock, A. Riminucci, C. Dionigi, A. Russo, A. Tampieri, E. Landi, V.A. Goranov, M. Marcacci, V. Dediu, A novel route in bone tissue engineering: magnetic biomimetic scaffolds. Acta Biomater. 6, 786–796 (2010)CrossRef
90.
Zurück zum Zitat M. Ishii, R. Shibata, Y. Numaguchi, T. Kito, H. Suzuki, K. Shimizu, A. Ito, H. Honda, T. Murohara, Enhanced angiogenesis by transplantation of mesenchymal stem cell sheet created by a novel magnetic tissue engineering method. Arterioscler. Thromb. Vasc. Biol. 31, 2210–2215 (2011)CrossRef M. Ishii, R. Shibata, Y. Numaguchi, T. Kito, H. Suzuki, K. Shimizu, A. Ito, H. Honda, T. Murohara, Enhanced angiogenesis by transplantation of mesenchymal stem cell sheet created by a novel magnetic tissue engineering method. Arterioscler. Thromb. Vasc. Biol. 31, 2210–2215 (2011)CrossRef
91.
Zurück zum Zitat M. Mahmoudi, M. Zhao, Y. Matsuura, S. Laurent, P.C. Yang, D. Bernstein, P. Ruiz-Lozano, V. Serpooshan, Infection-resistant MRI-visible scaffolds for tissue engineering applications. BioImpacts: BI 6, 111–115 (2016) M. Mahmoudi, M. Zhao, Y. Matsuura, S. Laurent, P.C. Yang, D. Bernstein, P. Ruiz-Lozano, V. Serpooshan, Infection-resistant MRI-visible scaffolds for tissue engineering applications. BioImpacts: BI 6, 111–115 (2016)
92.
Zurück zum Zitat V. Kandi, S. Kandi, Antimicrobial properties of nanomolecules: potential candidates as antibiotics in the era of multi-drug resistance. Epidemiol. Health 37, e2015020 (2015)CrossRef V. Kandi, S. Kandi, Antimicrobial properties of nanomolecules: potential candidates as antibiotics in the era of multi-drug resistance. Epidemiol. Health 37, e2015020 (2015)CrossRef
93.
Zurück zum Zitat E.N. Taylor, K.M. Kummer, N.G. Durmus, K. Leuba, K.M. Tarquinio, T.J. Webster, Superparamagnetic Iron Oxide Nanoparticles (SPION) for the treatment of antibiotic-resistant biofilms. Small 8, 3016–3027 (2012)CrossRef E.N. Taylor, K.M. Kummer, N.G. Durmus, K. Leuba, K.M. Tarquinio, T.J. Webster, Superparamagnetic Iron Oxide Nanoparticles (SPION) for the treatment of antibiotic-resistant biofilms. Small 8, 3016–3027 (2012)CrossRef
94.
Zurück zum Zitat T. Sasaki, N. Iwasaki, K. Kohno, M. Kishimoto, T. Majima, S.I. Nishimura, A. Minami, Magnetic nanoparticles for improving cell invasion in tissue engineering. J. Biomed. Mater. Res., Part A 86, 969–978 (2008)CrossRef T. Sasaki, N. Iwasaki, K. Kohno, M. Kishimoto, T. Majima, S.I. Nishimura, A. Minami, Magnetic nanoparticles for improving cell invasion in tissue engineering. J. Biomed. Mater. Res., Part A 86, 969–978 (2008)CrossRef
95.
Zurück zum Zitat A. Ito, H. Akiyama, Y. Kawabe, M. Kamihira, Magnetic force-based cell patterning using Arg-Gly-Asp (RGD) peptide-conjugated magnetite cationic liposomes. J. Biosci. Bioeng. 104, 288–293 (2007)CrossRef A. Ito, H. Akiyama, Y. Kawabe, M. Kamihira, Magnetic force-based cell patterning using Arg-Gly-Asp (RGD) peptide-conjugated magnetite cationic liposomes. J. Biosci. Bioeng. 104, 288–293 (2007)CrossRef
96.
Zurück zum Zitat A. Ito, Y. Takizawa, H. Honda, K.-I. Hata, H. Kagami, M. Ueda, T. Kobayashi, Tissue engineering using magnetite nanoparticles and magnetic force: heterotypic layers of cocultured hepatocytes and endothelial cells. Tissue Eng. 10, 833–840 (2004)CrossRef A. Ito, Y. Takizawa, H. Honda, K.-I. Hata, H. Kagami, M. Ueda, T. Kobayashi, Tissue engineering using magnetite nanoparticles and magnetic force: heterotypic layers of cocultured hepatocytes and endothelial cells. Tissue Eng. 10, 833–840 (2004)CrossRef
97.
Zurück zum Zitat E.A. Lee, H. Yim, J. Heo, H. Kim, G. Jung, N.S. Hwang, Application of magnetic nanoparticle for controlled tissue assembly and tissue engineering. Arch. Pharmacal Res. 37, 120–128 (2014)CrossRef E.A. Lee, H. Yim, J. Heo, H. Kim, G. Jung, N.S. Hwang, Application of magnetic nanoparticle for controlled tissue assembly and tissue engineering. Arch. Pharmacal Res. 37, 120–128 (2014)CrossRef
98.
Zurück zum Zitat Y. Gao, J. Lim, S.-H. Teoh, C. Xu, Emerging translational research on magnetic nanoparticles for regenerative medicine. Chem. Soc. Rev. 44, 6306–6329 (2015)CrossRef Y. Gao, J. Lim, S.-H. Teoh, C. Xu, Emerging translational research on magnetic nanoparticles for regenerative medicine. Chem. Soc. Rev. 44, 6306–6329 (2015)CrossRef
99.
Zurück zum Zitat G.R. Souza, J.R. Molina, R.M. Raphael, M.G. Ozawa, D.J. Stark, C.S. Levin, L.F. Bronk, J.S. Ananta, J. Mandelin, M.-M. Georgescu, Three-dimensional tissue culture based on magnetic cell levitation. Nat. Nanotechnol. 5, 291–296 (2010)CrossRef G.R. Souza, J.R. Molina, R.M. Raphael, M.G. Ozawa, D.J. Stark, C.S. Levin, L.F. Bronk, J.S. Ananta, J. Mandelin, M.-M. Georgescu, Three-dimensional tissue culture based on magnetic cell levitation. Nat. Nanotechnol. 5, 291–296 (2010)CrossRef
100.
Zurück zum Zitat L.J. Santos, R.L. Reis, M.E. Gomes, Harnessing magnetic-mechano actuation in regenerative medicine and tissue engineering. Trends Biotechnol. 33, 471–479 (2015)CrossRef L.J. Santos, R.L. Reis, M.E. Gomes, Harnessing magnetic-mechano actuation in regenerative medicine and tissue engineering. Trends Biotechnol. 33, 471–479 (2015)CrossRef
101.
Zurück zum Zitat L. Borlido, A. Azevedo, A. Roque, M. Aires-Barros, Magnetic separations in biotechnology. Biotechnol. Adv. 31, 1374–1385 (2013)CrossRef L. Borlido, A. Azevedo, A. Roque, M. Aires-Barros, Magnetic separations in biotechnology. Biotechnol. Adv. 31, 1374–1385 (2013)CrossRef
102.
Zurück zum Zitat I. Safarik, M. Safarikova, Magnetic techniques for the isolation and purification of proteins and peptides. BioMagn. Res. Technol. 2, 1–17 (2004)CrossRef I. Safarik, M. Safarikova, Magnetic techniques for the isolation and purification of proteins and peptides. BioMagn. Res. Technol. 2, 1–17 (2004)CrossRef
103.
Zurück zum Zitat P.A. Liberti, C.G. Rao, L.W. Terstappen, Optimization of ferrofluids and protocols for the enrichment of breast tumor cells in blood. J. Magn. Magn. Mater. 225, 301–307 (2001)CrossRef P.A. Liberti, C.G. Rao, L.W. Terstappen, Optimization of ferrofluids and protocols for the enrichment of breast tumor cells in blood. J. Magn. Magn. Mater. 225, 301–307 (2001)CrossRef
104.
Zurück zum Zitat Q.A. Pankhurst, J. Connolly, S.K. Jones, J. Dobson, Applications of magnetic nanoparticles in biomedicine. J. Phys. D Appl. Phys. 36, R167 (2003)CrossRef Q.A. Pankhurst, J. Connolly, S.K. Jones, J. Dobson, Applications of magnetic nanoparticles in biomedicine. J. Phys. D Appl. Phys. 36, R167 (2003)CrossRef
105.
Zurück zum Zitat A.H. Latham, M.E. Williams, Controlling transport and chemical functionality of magnetic nanoparticles. Acc. Chem. Res. 41, 411–420 (2008)CrossRef A.H. Latham, M.E. Williams, Controlling transport and chemical functionality of magnetic nanoparticles. Acc. Chem. Res. 41, 411–420 (2008)CrossRef
106.
Zurück zum Zitat K. Hola, Z. Markova, G. Zoppellaro, J. Tucek, R. Zboril, Tailored functionalization of iron oxide nanoparticles for MRI, drug delivery, magnetic separation and immobilization of biosubstances. Biotechnol. Adv. 33, 1162–1176 (2015)CrossRef K. Hola, Z. Markova, G. Zoppellaro, J. Tucek, R. Zboril, Tailored functionalization of iron oxide nanoparticles for MRI, drug delivery, magnetic separation and immobilization of biosubstances. Biotechnol. Adv. 33, 1162–1176 (2015)CrossRef
107.
Zurück zum Zitat J. He, M. Huang, D. Wang, Z. Zhang, G. Li, Magnetic separation techniques in sample preparation for biological analysis: a review. J. Pharm. Biomed. Anal. 101, 84–101 (2014)CrossRef J. He, M. Huang, D. Wang, Z. Zhang, G. Li, Magnetic separation techniques in sample preparation for biological analysis: a review. J. Pharm. Biomed. Anal. 101, 84–101 (2014)CrossRef
108.
Zurück zum Zitat F. Wang, Y. Hu, C. Guo, W. Huang, C.-Z. Liu, Enhanced phenol degradation in coking wastewater by immobilized laccase on magnetic mesoporous silica nanoparticles in a magnetically stabilized fluidized bed. Bioresour. Technol. 110, 120–124 (2012)CrossRef F. Wang, Y. Hu, C. Guo, W. Huang, C.-Z. Liu, Enhanced phenol degradation in coking wastewater by immobilized laccase on magnetic mesoporous silica nanoparticles in a magnetically stabilized fluidized bed. Bioresour. Technol. 110, 120–124 (2012)CrossRef
109.
Zurück zum Zitat M. Uyttendaele, I. Van Hoorde, J. Debevere, The use of immuno-magnetic separation (IMS) as a tool in a sample preparation method for direct detection of L. monocytogenes in cheese. Int. J. Food Microbiol. 54, 205–212 (2000)CrossRef M. Uyttendaele, I. Van Hoorde, J. Debevere, The use of immuno-magnetic separation (IMS) as a tool in a sample preparation method for direct detection of L. monocytogenes in cheese. Int. J. Food Microbiol. 54, 205–212 (2000)CrossRef
110.
Zurück zum Zitat J.R. Wisniewski, A. Zougman, N. Nagaraj, M. Mann, Universal sample preparation method for proteome analysis. Nat. Methods 6, 359–362 (2009)CrossRef J.R. Wisniewski, A. Zougman, N. Nagaraj, M. Mann, Universal sample preparation method for proteome analysis. Nat. Methods 6, 359–362 (2009)CrossRef
111.
Zurück zum Zitat M. Colombo, S. Carregal-Romero, M.F. Casula, L. Gutierrez, M.P. Morales, I.B. Boehm, J.T. Heverhagen, D. Prosperi, W.J. Parak, Biological applications of magnetic nanoparticles. Chem. Soc. Rev. 41, 4306–4334 (2012)CrossRef M. Colombo, S. Carregal-Romero, M.F. Casula, L. Gutierrez, M.P. Morales, I.B. Boehm, J.T. Heverhagen, D. Prosperi, W.J. Parak, Biological applications of magnetic nanoparticles. Chem. Soc. Rev. 41, 4306–4334 (2012)CrossRef
112.
Zurück zum Zitat J.-C. Leroux, Injectable nanocarriers for biodetoxification. Nat. Nanotechnol. 2, 679–684 (2007)CrossRef J.-C. Leroux, Injectable nanocarriers for biodetoxification. Nat. Nanotechnol. 2, 679–684 (2007)CrossRef
113.
Zurück zum Zitat M.D. Kaminski, A.J. Rosengart, Detoxification of blood using injectable magnetic nanospheres: a conceptual technology description. J. Magn. Magn. Mater. 293, 398–403 (2005)CrossRef M.D. Kaminski, A.J. Rosengart, Detoxification of blood using injectable magnetic nanospheres: a conceptual technology description. J. Magn. Magn. Mater. 293, 398–403 (2005)CrossRef
114.
Zurück zum Zitat M. Rahman, A.A. Saei, H. Amiri, M. Mahmoudi, Biomedical applications of superparamagnetic nanoparticles in molecular scale. Curr. Org. Chem. 19, 982–990 (2015)CrossRef M. Rahman, A.A. Saei, H. Amiri, M. Mahmoudi, Biomedical applications of superparamagnetic nanoparticles in molecular scale. Curr. Org. Chem. 19, 982–990 (2015)CrossRef
115.
Zurück zum Zitat L. Wang, Z. Yang, J. Gao, K. Xu, H. Gu, B. Zhang, X. Zhang, B. Xu, A biocompatible method of decorporation: bisphosphonate-modified magnetite nanoparticles to remove uranyl ions from blood. J. Am. Chem. Soc. 128, 13358–13359 (2006)CrossRef L. Wang, Z. Yang, J. Gao, K. Xu, H. Gu, B. Zhang, X. Zhang, B. Xu, A biocompatible method of decorporation: bisphosphonate-modified magnetite nanoparticles to remove uranyl ions from blood. J. Am. Chem. Soc. 128, 13358–13359 (2006)CrossRef
116.
Zurück zum Zitat J.-J. Lee, K.J. Jeong, M. Hashimoto, A.H. Kwon, A. Rwei, S.A. Shankarappa, J.H. Tsui, D.S. Kohane, Synthetic ligand-coated magnetic nanoparticles for microfluidic bacterial separation from blood. Nano Lett. 14, 1–5 (2013)CrossRef J.-J. Lee, K.J. Jeong, M. Hashimoto, A.H. Kwon, A. Rwei, S.A. Shankarappa, J.H. Tsui, D.S. Kohane, Synthetic ligand-coated magnetic nanoparticles for microfluidic bacterial separation from blood. Nano Lett. 14, 1–5 (2013)CrossRef
117.
Zurück zum Zitat H. Lee, T.J. Yoon, R. Weissleder, Ultrasensitive detection of bacteria using core-shell nanoparticles and an NMR-filter system. Angew. Chem. Int. Ed. 48, 5657–5660 (2009)CrossRef H. Lee, T.J. Yoon, R. Weissleder, Ultrasensitive detection of bacteria using core-shell nanoparticles and an NMR-filter system. Angew. Chem. Int. Ed. 48, 5657–5660 (2009)CrossRef
118.
Zurück zum Zitat K. El-Boubbou, C. Gruden, X. Huang, Magnetic glyco-nanoparticles: a unique tool for rapid pathogen detection, decontamination, and strain differentiation. J. Am. Chem. Soc. 129, 13392–13393 (2007)CrossRef K. El-Boubbou, C. Gruden, X. Huang, Magnetic glyco-nanoparticles: a unique tool for rapid pathogen detection, decontamination, and strain differentiation. J. Am. Chem. Soc. 129, 13392–13393 (2007)CrossRef
119.
Zurück zum Zitat S. Ryan, A.J. Kell, H. van Faassen, L.-L. Tay, B. Simard, R. MacKenzie, M. Gilbert, J. Tanha, Single-domain antibody-nanoparticles: promising architectures for increased Staphylococcus aureus detection specificity and sensitivity. Biocon. Chem. 20, 1966–1974 (2009)CrossRef S. Ryan, A.J. Kell, H. van Faassen, L.-L. Tay, B. Simard, R. MacKenzie, M. Gilbert, J. Tanha, Single-domain antibody-nanoparticles: promising architectures for increased Staphylococcus aureus detection specificity and sensitivity. Biocon. Chem. 20, 1966–1974 (2009)CrossRef
120.
Zurück zum Zitat C. Kaittanis, S.A. Naser, J.M. Perez, One-step, nanoparticle-mediated bacterial detection with magnetic relaxation. Nano Lett. 7, 380–383 (2007)CrossRef C. Kaittanis, S.A. Naser, J.M. Perez, One-step, nanoparticle-mediated bacterial detection with magnetic relaxation. Nano Lett. 7, 380–383 (2007)CrossRef
121.
Zurück zum Zitat S. Pal, E.C. Alocilja, Electrically active polyaniline coated magnetic (EAPM) nanoparticle as novel transducer in biosensor for detection of Bacillus anthracis spores in food samples. Biosens. Bioelectron. 24, 1437–1444 (2009)CrossRef S. Pal, E.C. Alocilja, Electrically active polyaniline coated magnetic (EAPM) nanoparticle as novel transducer in biosensor for detection of Bacillus anthracis spores in food samples. Biosens. Bioelectron. 24, 1437–1444 (2009)CrossRef
122.
Zurück zum Zitat J. Gao, H. Gu, B. Xu, Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications. Acc. Chem. Res. 42, 1097–1107 (2009)CrossRef J. Gao, H. Gu, B. Xu, Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications. Acc. Chem. Res. 42, 1097–1107 (2009)CrossRef
123.
Zurück zum Zitat H. Gu, K. Xu, C. Xu, B. Xu, Biofunctional magnetic nanoparticles for protein separation and pathogen detection. Chem. Commun. 9, 941–949 (2006) H. Gu, K. Xu, C. Xu, B. Xu, Biofunctional magnetic nanoparticles for protein separation and pathogen detection. Chem. Commun. 9, 941–949 (2006)
124.
Zurück zum Zitat Q. Liu, J. Shi, M. Cheng, G. Li, D. Cao, G. Jiang, Preparation of graphene-encapsulated magnetic microspheres for protein/peptide enrichment and MALDI-TOF MS analysis. Chem. Commun. 48, 1874–1876 (2012)CrossRef Q. Liu, J. Shi, M. Cheng, G. Li, D. Cao, G. Jiang, Preparation of graphene-encapsulated magnetic microspheres for protein/peptide enrichment and MALDI-TOF MS analysis. Chem. Commun. 48, 1874–1876 (2012)CrossRef
125.
Zurück zum Zitat H. Chen, D. Qi, C. Deng, P. Yang, X. Zhang, Preparation of C60-functionalized magnetic silica microspheres for the enrichment of low-concentration peptides and proteins for MALDI-TOF MS analysis. Proteomics 9, 380–387 (2009)CrossRef H. Chen, D. Qi, C. Deng, P. Yang, X. Zhang, Preparation of C60-functionalized magnetic silica microspheres for the enrichment of low-concentration peptides and proteins for MALDI-TOF MS analysis. Proteomics 9, 380–387 (2009)CrossRef
126.
Zurück zum Zitat J.S. Kim, C.A. Valencia, R. Liu, W. Lin, Highly-efficient purification of native polyhistidine-tagged proteins by multivalent NTA-modified magnetic nanoparticles. Biocon. Chem. 18, 333–341 (2007)CrossRef J.S. Kim, C.A. Valencia, R. Liu, W. Lin, Highly-efficient purification of native polyhistidine-tagged proteins by multivalent NTA-modified magnetic nanoparticles. Biocon. Chem. 18, 333–341 (2007)CrossRef
127.
Zurück zum Zitat S. Mazzucchelli, M. Colombo, C. De Palma, A. Salvade, P. Verderio, M.D. Coghi, E. Clementi, P. Tortora, F. Corsi, D. Prosperi, Single-domain protein A-engineered magnetic nanoparticles: toward a universal strategy to site-specific labeling of antibodies for targeted detection of tumor cells. ACS Nano 4, 5693–5702 (2010)CrossRef S. Mazzucchelli, M. Colombo, C. De Palma, A. Salvade, P. Verderio, M.D. Coghi, E. Clementi, P. Tortora, F. Corsi, D. Prosperi, Single-domain protein A-engineered magnetic nanoparticles: toward a universal strategy to site-specific labeling of antibodies for targeted detection of tumor cells. ACS Nano 4, 5693–5702 (2010)CrossRef
128.
Zurück zum Zitat H. Cai, X. Gu, M.S. Scanlan, C.R. Lively, Development of a quantitative PCR assay for residual mouse DNA and comparison of four sample purification methods for DNA isolation. J. Pharm. Biomed. Anal. 55, 71–77 (2011)CrossRef H. Cai, X. Gu, M.S. Scanlan, C.R. Lively, Development of a quantitative PCR assay for residual mouse DNA and comparison of four sample purification methods for DNA isolation. J. Pharm. Biomed. Anal. 55, 71–77 (2011)CrossRef
129.
Zurück zum Zitat D. Leung, S.O. Kang, E.V. Anslyn, Rapid determination of enantiomeric excess: a focus on optical approaches. Chem. Soc. Rev. 41, 448–479 (2012)CrossRef D. Leung, S.O. Kang, E.V. Anslyn, Rapid determination of enantiomeric excess: a focus on optical approaches. Chem. Soc. Rev. 41, 448–479 (2012)CrossRef
130.
Zurück zum Zitat J.W. Hong, V. Studer, G. Hang, W.F. Anderson, S.R. Quake, A nanoliter-scale nucleic acid processor with parallel architecture. Nat. Biotechnol. 22, 435–439 (2004)CrossRef J.W. Hong, V. Studer, G. Hang, W.F. Anderson, S.R. Quake, A nanoliter-scale nucleic acid processor with parallel architecture. Nat. Biotechnol. 22, 435–439 (2004)CrossRef
131.
Zurück zum Zitat A. Soozanipour, A. Taheri-Kafrani, A.L. Isfahani, Covalent attachment of xylanase on functionalized magnetic nanoparticles and determination of its activity and stability. Chem. Eng. J. 270, 235–243 (2015)CrossRef A. Soozanipour, A. Taheri-Kafrani, A.L. Isfahani, Covalent attachment of xylanase on functionalized magnetic nanoparticles and determination of its activity and stability. Chem. Eng. J. 270, 235–243 (2015)CrossRef
132.
Zurück zum Zitat K. Khoshnevisan, A.-K. Bordbar, D. Zare, D. Davoodi, M. Noruzi, M. Barkhi, M. Tabatabaei, Immobilization of cellulase enzyme on superparamagnetic nanoparticles and determination of its activity and stability. Chem. Eng. J. 171, 669–673 (2011)CrossRef K. Khoshnevisan, A.-K. Bordbar, D. Zare, D. Davoodi, M. Noruzi, M. Barkhi, M. Tabatabaei, Immobilization of cellulase enzyme on superparamagnetic nanoparticles and determination of its activity and stability. Chem. Eng. J. 171, 669–673 (2011)CrossRef
133.
Zurück zum Zitat M. Pečová, M. Šebela, Z. Markova, K. Polakova, J. Čuda, K. Šafářová, R. Zbořil, Thermostable trypsin conjugates immobilized to biogenic magnetite show a high operational stability and remarkable reusability for protein digestion. Nanotechnology 24, 125102 (2013)CrossRef M. Pečová, M. Šebela, Z. Markova, K. Polakova, J. Čuda, K. Šafářová, R. Zbořil, Thermostable trypsin conjugates immobilized to biogenic magnetite show a high operational stability and remarkable reusability for protein digestion. Nanotechnology 24, 125102 (2013)CrossRef
134.
Zurück zum Zitat C.-C. Yu, Y.-Y. Kuo, C.-F. Liang, W.-T. Chien, H.-T. Wu, T.-C. Chang, F.-D. Jan, C.-C. Lin, Site-specific immobilization of enzymes on magnetic nanoparticles and their use in organic synthesis. Biocon. Chem. 23, 714–724 (2012)CrossRef C.-C. Yu, Y.-Y. Kuo, C.-F. Liang, W.-T. Chien, H.-T. Wu, T.-C. Chang, F.-D. Jan, C.-C. Lin, Site-specific immobilization of enzymes on magnetic nanoparticles and their use in organic synthesis. Biocon. Chem. 23, 714–724 (2012)CrossRef
135.
Zurück zum Zitat S. Metz, G. Bonaterra, M. Rudelius, M. Settles, E.J. Rummeny, H.E. Daldrup-Link, Capacity of human monocytes to phagocytose approved iron oxide MR contrast agents in vitro. Eur. Radiol. 14, 1851–1858 (2004)CrossRef S. Metz, G. Bonaterra, M. Rudelius, M. Settles, E.J. Rummeny, H.E. Daldrup-Link, Capacity of human monocytes to phagocytose approved iron oxide MR contrast agents in vitro. Eur. Radiol. 14, 1851–1858 (2004)CrossRef
136.
Zurück zum Zitat J.W. Bulte, Magnetic nanoparticles as markers for cellular MR imaging. J. Magn. Magn. Mater. 289, 423–427 (2005)CrossRef J.W. Bulte, Magnetic nanoparticles as markers for cellular MR imaging. J. Magn. Magn. Mater. 289, 423–427 (2005)CrossRef
137.
Zurück zum Zitat C. Zhang, T. Liu, J. Gao, Y. Su, C. Shi, Recent development and application of magnetic nanoparticles for cell labeling and imaging. Mini Rev. Med. Chem. 10, 194–203 (2010)CrossRef C. Zhang, T. Liu, J. Gao, Y. Su, C. Shi, Recent development and application of magnetic nanoparticles for cell labeling and imaging. Mini Rev. Med. Chem. 10, 194–203 (2010)CrossRef
138.
Zurück zum Zitat A.S. Arbab, G.T. Yocum, H. Kalish, E.K. Jordan, S.A. Anderson, A.Y. Khakoo, E.J. Read, J.A. Frank, Efficient magnetic cell labeling with protamine sulfate complexed to ferumoxides for cellular MRI. Blood 104, 1217–1223 (2004)CrossRef A.S. Arbab, G.T. Yocum, H. Kalish, E.K. Jordan, S.A. Anderson, A.Y. Khakoo, E.J. Read, J.A. Frank, Efficient magnetic cell labeling with protamine sulfate complexed to ferumoxides for cellular MRI. Blood 104, 1217–1223 (2004)CrossRef
139.
Zurück zum Zitat J.W. Bulte, T. Douglas, B. Witwer, S.-C. Zhang, E. Strable, B.K. Lewis, H. Zywicke, B. Miller, P. van Gelderen, B.M. Moskowitz, Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat. Biotechnol. 19, 1141–1147 (2001)CrossRef J.W. Bulte, T. Douglas, B. Witwer, S.-C. Zhang, E. Strable, B.K. Lewis, H. Zywicke, B. Miller, P. van Gelderen, B.M. Moskowitz, Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat. Biotechnol. 19, 1141–1147 (2001)CrossRef
140.
Zurück zum Zitat C.C. Berry, Progress in functionalization of magnetic nanoparticles for applications in biomedicine. J. Phys. D Appl. Phys. 42, 224003 (2009)CrossRef C.C. Berry, Progress in functionalization of magnetic nanoparticles for applications in biomedicine. J. Phys. D Appl. Phys. 42, 224003 (2009)CrossRef
141.
Zurück zum Zitat J.K. Herr, J.E. Smith, C.D. Medley, D. Shangguan, W. Tan, Aptamer-conjugated nanoparticles for selective collection and detection of cancer cells. Anal. Chem. 78, 2918–2924 (2006)CrossRef J.K. Herr, J.E. Smith, C.D. Medley, D. Shangguan, W. Tan, Aptamer-conjugated nanoparticles for selective collection and detection of cancer cells. Anal. Chem. 78, 2918–2924 (2006)CrossRef
142.
Zurück zum Zitat J.E. Jaetao, K.S. Butler, N.L. Adolphi, D.M. Lovato, H.C. Bryant, I. Rabinowitz, S.S. Winter, T.E. Tessier, H.J. Hathaway, C. Bergemann, Enhanced leukemia cell detection using a novel magnetic needle and nanoparticles. Cancer Res. 69, 8310–8316 (2009)CrossRef J.E. Jaetao, K.S. Butler, N.L. Adolphi, D.M. Lovato, H.C. Bryant, I. Rabinowitz, S.S. Winter, T.E. Tessier, H.J. Hathaway, C. Bergemann, Enhanced leukemia cell detection using a novel magnetic needle and nanoparticles. Cancer Res. 69, 8310–8316 (2009)CrossRef
143.
Zurück zum Zitat T. Kekarainen, S. Mannelin, J. Laine, T. Jaatinen, Optimization of immunomagnetic separation for cord blood-derived hematopoietic stem cells. BMC Cell Biol. 7, 1–10 (2006)CrossRef T. Kekarainen, S. Mannelin, J. Laine, T. Jaatinen, Optimization of immunomagnetic separation for cord blood-derived hematopoietic stem cells. BMC Cell Biol. 7, 1–10 (2006)CrossRef
144.
Zurück zum Zitat K. Pantel, C. Alix-Panabières, S. Riethdorf, Cancer micrometastases. Nat. Rev. Clin. Oncol. 6, 339–351 (2009)CrossRef K. Pantel, C. Alix-Panabières, S. Riethdorf, Cancer micrometastases. Nat. Rev. Clin. Oncol. 6, 339–351 (2009)CrossRef
145.
Zurück zum Zitat V.I. Shubayev, T.R. Pisanic, S. Jin, Magnetic nanoparticles for theragnostics. Adv. Drug Deliv. Rev. 61, 467–477 (2009)CrossRef V.I. Shubayev, T.R. Pisanic, S. Jin, Magnetic nanoparticles for theragnostics. Adv. Drug Deliv. Rev. 61, 467–477 (2009)CrossRef
146.
Zurück zum Zitat X. Chen, S.T. Wong, Cancer theranostics: An introduction. Cancer Theranostics, Chap. 1, 3–8 (2014)CrossRef X. Chen, S.T. Wong, Cancer theranostics: An introduction. Cancer Theranostics, Chap. 1, 3–8 (2014)CrossRef
147.
Zurück zum Zitat B.T. Luk, L. Zhang, Current advances in polymer-based nanotheranostics for cancer treatment and diagnosis. ACS Appl. Mater. Interfaces 6, 21859–21873 (2014)CrossRef B.T. Luk, L. Zhang, Current advances in polymer-based nanotheranostics for cancer treatment and diagnosis. ACS Appl. Mater. Interfaces 6, 21859–21873 (2014)CrossRef
148.
Zurück zum Zitat M. Zheng, S. Liu, J. Li, D. Qu, H. Zhao, X. Guan, X. Hu, Z. Xie, X. Jing, Z. Sun, Integrating oxaliplatin with highly luminescent carbon dots: an unprecedented theranostic agent for personalized medicine. Adv. Mater. 26, 3554–3560 (2014)CrossRef M. Zheng, S. Liu, J. Li, D. Qu, H. Zhao, X. Guan, X. Hu, Z. Xie, X. Jing, Z. Sun, Integrating oxaliplatin with highly luminescent carbon dots: an unprecedented theranostic agent for personalized medicine. Adv. Mater. 26, 3554–3560 (2014)CrossRef
149.
Zurück zum Zitat S.D. Jo, S.H. Ku, Y.-Y. Won, S.H. Kim, I.C. Kwon, Targeted nanotheranostics for future personalized medicine: recent progress in cancer therapy. Theranostics 6, 1362–1377 (2016)CrossRef S.D. Jo, S.H. Ku, Y.-Y. Won, S.H. Kim, I.C. Kwon, Targeted nanotheranostics for future personalized medicine: recent progress in cancer therapy. Theranostics 6, 1362–1377 (2016)CrossRef
150.
Zurück zum Zitat J. Xie, S. Lee, X. Chen, Nanoparticle-based theranostic agents. Adv. Drug Deliv. Rev. 62, 1064–1079 (2010)CrossRef J. Xie, S. Lee, X. Chen, Nanoparticle-based theranostic agents. Adv. Drug Deliv. Rev. 62, 1064–1079 (2010)CrossRef
151.
Zurück zum Zitat L.Y. Rizzo, B. Theek, G. Storm, F. Kiessling, T. Lammers, Recent progress in nanomedicine: therapeutic, diagnostic and theranostic applications. Curr. Opin. Biotechnol. 24, 1159–1166 (2013)CrossRef L.Y. Rizzo, B. Theek, G. Storm, F. Kiessling, T. Lammers, Recent progress in nanomedicine: therapeutic, diagnostic and theranostic applications. Curr. Opin. Biotechnol. 24, 1159–1166 (2013)CrossRef
152.
Zurück zum Zitat T. Lammers, F. Kiessling, W.E. Hennink, G. Storm, Nanotheranostics and image-guided drug delivery: current concepts and future directions. Mol. Pharm. 7, 1899–1912 (2010)CrossRef T. Lammers, F. Kiessling, W.E. Hennink, G. Storm, Nanotheranostics and image-guided drug delivery: current concepts and future directions. Mol. Pharm. 7, 1899–1912 (2010)CrossRef
153.
Zurück zum Zitat A. Radomska, J. Leszczyszyn, M.W. Radomski, The nanopharmacology and nanotoxicology of nanomaterials: new opportunities and challenges. Adv. Clin. Exp. Med. Off. Organ Wroclaw Med. Univ. 25, 151 (2016)CrossRef A. Radomska, J. Leszczyszyn, M.W. Radomski, The nanopharmacology and nanotoxicology of nanomaterials: new opportunities and challenges. Adv. Clin. Exp. Med. Off. Organ Wroclaw Med. Univ. 25, 151 (2016)CrossRef
154.
Zurück zum Zitat S.M. Janib, A.S. Moses, J.A. MacKay, Imaging and drug delivery using theranostic nanoparticles. Adv. Drug Deliv. Rev. 62, 1052–1063 (2010)CrossRef S.M. Janib, A.S. Moses, J.A. MacKay, Imaging and drug delivery using theranostic nanoparticles. Adv. Drug Deliv. Rev. 62, 1052–1063 (2010)CrossRef
155.
Zurück zum Zitat B.T. Luk, R.H. Fang, L. Zhang, Lipid-and polymer-based nanostructures for cancer theranostics. Theranostics 2, 1117–1126 (2012)CrossRef B.T. Luk, R.H. Fang, L. Zhang, Lipid-and polymer-based nanostructures for cancer theranostics. Theranostics 2, 1117–1126 (2012)CrossRef
156.
Zurück zum Zitat M.S. Muthu, D.T. Leong, L. Mei, S.-S. Feng, Nanotheranostics-application and further development of nanomedicine strategies for advanced theranostics. Theranostics 4, 660–677 (2014)CrossRef M.S. Muthu, D.T. Leong, L. Mei, S.-S. Feng, Nanotheranostics-application and further development of nanomedicine strategies for advanced theranostics. Theranostics 4, 660–677 (2014)CrossRef
157.
Zurück zum Zitat T.H. Kim, S. Lee, X. Chen, Nanotheranostics for personalized medicine. Expert Rev. Mol. Diagn. 13, 257–269 (2013)CrossRef T.H. Kim, S. Lee, X. Chen, Nanotheranostics for personalized medicine. Expert Rev. Mol. Diagn. 13, 257–269 (2013)CrossRef
158.
Zurück zum Zitat Z.-P. Liang, P.C. Lauterbur, Principles of Magnetic Resonance Imaging: A Signal Processing Perspective (The Institute of Electrical and Electronics Engineers Press, 2000) Z.-P. Liang, P.C. Lauterbur, Principles of Magnetic Resonance Imaging: A Signal Processing Perspective (The Institute of Electrical and Electronics Engineers Press, 2000)
159.
Zurück zum Zitat J. Hsieh, Computed Tomography: Principles, Design, Artifacts, and Recent Advances (SPIE Bellingham, WA, 2009) J. Hsieh, Computed Tomography: Principles, Design, Artifacts, and Recent Advances (SPIE Bellingham, WA, 2009)
160.
Zurück zum Zitat M.E. Phelps, Positron emission tomography provides molecular imaging of biological processes. Proc. Natl. Acad. Sci. 97, 9226–9233 (2000)CrossRef M.E. Phelps, Positron emission tomography provides molecular imaging of biological processes. Proc. Natl. Acad. Sci. 97, 9226–9233 (2000)CrossRef
161.
Zurück zum Zitat T.A. Holly, B.G. Abbott, M. Al-Mallah, D.A. Calnon, M.C. Cohen, F.P. DiFilippo, E.P. Ficaro, M.R. Freeman, R.C. Hendel, D. Jain, Single photon-emission computed tomography. J. Nucl. Cardiol. 17, 941–973 (2010)CrossRef T.A. Holly, B.G. Abbott, M. Al-Mallah, D.A. Calnon, M.C. Cohen, F.P. DiFilippo, E.P. Ficaro, M.R. Freeman, R.C. Hendel, D. Jain, Single photon-emission computed tomography. J. Nucl. Cardiol. 17, 941–973 (2010)CrossRef
162.
Zurück zum Zitat C.R. Hill, J.C. Bamber, G. ter Haar, Physical Principles of Medical Ultrasonics (Wiley Online Library, 2004) C.R. Hill, J.C. Bamber, G. ter Haar, Physical Principles of Medical Ultrasonics (Wiley Online Library, 2004)
163.
Zurück zum Zitat M. Gu, Advanced Optical Imaging Theory (Springer Science & Business Media, 2000) M. Gu, Advanced Optical Imaging Theory (Springer Science & Business Media, 2000)
164.
Zurück zum Zitat G. Bao, S. Mitragotri, S. Tong, Multifunctional nanoparticles for drug delivery and molecular imaging. Annu. Rev. Biomed. Eng. 15, 253–282 (2013)CrossRef G. Bao, S. Mitragotri, S. Tong, Multifunctional nanoparticles for drug delivery and molecular imaging. Annu. Rev. Biomed. Eng. 15, 253–282 (2013)CrossRef
165.
Zurück zum Zitat Y. Bao, T. Wen, A.C.S. Samia, A. Khandhar, K.M. Krishnan, Magnetic nanoparticles: material engineering and emerging applications in lithography and biomedicine. J. Mater. Sci. 51, 513–553 (2016)CrossRef Y. Bao, T. Wen, A.C.S. Samia, A. Khandhar, K.M. Krishnan, Magnetic nanoparticles: material engineering and emerging applications in lithography and biomedicine. J. Mater. Sci. 51, 513–553 (2016)CrossRef
166.
Zurück zum Zitat N.A. Frey, S. Peng, K. Cheng, S. Sun, Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem. Soc. Rev. 38, 2532–2542 (2009)CrossRef N.A. Frey, S. Peng, K. Cheng, S. Sun, Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem. Soc. Rev. 38, 2532–2542 (2009)CrossRef
167.
Zurück zum Zitat T. Neuberger, B. Schöpf, H. Hofmann, M. Hofmann, B. Von Rechenberg, Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system. J. Magn. Magn. Mater. 293, 483–496 (2005)CrossRef T. Neuberger, B. Schöpf, H. Hofmann, M. Hofmann, B. Von Rechenberg, Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system. J. Magn. Magn. Mater. 293, 483–496 (2005)CrossRef
168.
Zurück zum Zitat M.F. Kircher, J.K. Willmann, Molecular body imaging: MR imaging, CT, and US. Part I. Principles. Radiology 263, 633–643 (2012)CrossRef M.F. Kircher, J.K. Willmann, Molecular body imaging: MR imaging, CT, and US. Part I. Principles. Radiology 263, 633–643 (2012)CrossRef
169.
Zurück zum Zitat J.K. Willmann, N. van Bruggen, L.M. Dinkelborg, S.S. Gambhir, Molecular imaging in drug development. Nat. Rev. Drug Discov. 7, 591–607 (2008)CrossRef J.K. Willmann, N. van Bruggen, L.M. Dinkelborg, S.S. Gambhir, Molecular imaging in drug development. Nat. Rev. Drug Discov. 7, 591–607 (2008)CrossRef
170.
Zurück zum Zitat N. Lee, T. Hyeon, Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents. Chem. Soc. Rev. 41, 2575–2589 (2012)CrossRef N. Lee, T. Hyeon, Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents. Chem. Soc. Rev. 41, 2575–2589 (2012)CrossRef
171.
Zurück zum Zitat N. Lee, D. Yoo, D. Ling, M.H. Cho, T. Hyeon, J. Cheon, Iron oxide based nanoparticles for multimodal imaging and magnetoresponsive therapy. Chem. Rev. 115, 10637–10689 (2015)CrossRef N. Lee, D. Yoo, D. Ling, M.H. Cho, T. Hyeon, J. Cheon, Iron oxide based nanoparticles for multimodal imaging and magnetoresponsive therapy. Chem. Rev. 115, 10637–10689 (2015)CrossRef
172.
Zurück zum Zitat Z.R. Stephen, F.M. Kievit, M. Zhang, Magnetite nanoparticles for medical MR imaging. Mater. Today 14, 330–338 (2011)CrossRef Z.R. Stephen, F.M. Kievit, M. Zhang, Magnetite nanoparticles for medical MR imaging. Mater. Today 14, 330–338 (2011)CrossRef
173.
Zurück zum Zitat P. Gatehouse, G. Bydder, Magnetic resonance imaging of short T2 components in tissue. Clin. Radiol. 58, 1–19 (2003)CrossRef P. Gatehouse, G. Bydder, Magnetic resonance imaging of short T2 components in tissue. Clin. Radiol. 58, 1–19 (2003)CrossRef
174.
Zurück zum Zitat M.M. Britton, Magnetic resonance imaging of chemistry. Chem. Soc. Rev. 39, 4036–4043 (2010)CrossRef M.M. Britton, Magnetic resonance imaging of chemistry. Chem. Soc. Rev. 39, 4036–4043 (2010)CrossRef
175.
Zurück zum Zitat P. Caravan, C.T. Farrar, L. Frullano, R. Uppal, Influence of molecular parameters and increasing magnetic field strength on relaxivity of gadolinium-and manganese-based T1 contrast agents. Contrast Media Mol. Imaging 4, 89–100 (2009)CrossRef P. Caravan, C.T. Farrar, L. Frullano, R. Uppal, Influence of molecular parameters and increasing magnetic field strength on relaxivity of gadolinium-and manganese-based T1 contrast agents. Contrast Media Mol. Imaging 4, 89–100 (2009)CrossRef
176.
Zurück zum Zitat Y.W. Jun, J.H. Lee, J. Cheon, Chemical design of nanoparticle probes for high‐performance magnetic resonance imaging. Angewandte Chemie International Edition, 47, 5122–5135 (2008) Y.W. Jun, J.H. Lee, J. Cheon, Chemical design of nanoparticle probes for high‐performance magnetic resonance imaging. Angewandte Chemie International Edition, 47, 5122–5135 (2008)
177.
Zurück zum Zitat M.K. Uchiyama, S.H. Toma, S.F. de Paula Rodrigues, A.L.B. Shimada, R.A. Loiola, H.J.C. Rodríguez, P.V. Oliveira, M.S. Luz, S.R. Rabbani, H.E. Toma, Ultrasmall cationic superparamagnetic iron oxide nanoparticles as nontoxic and efficient MRI contrast agent and magnetic-targeting tool. Int. J. Nanomed. 10, 4731–4746 (2015) M.K. Uchiyama, S.H. Toma, S.F. de Paula Rodrigues, A.L.B. Shimada, R.A. Loiola, H.J.C. Rodríguez, P.V. Oliveira, M.S. Luz, S.R. Rabbani, H.E. Toma, Ultrasmall cationic superparamagnetic iron oxide nanoparticles as nontoxic and efficient MRI contrast agent and magnetic-targeting tool. Int. J. Nanomed. 10, 4731–4746 (2015)
178.
Zurück zum Zitat P. Reimer, T. Balzer, Ferucarbotran (Resovist): a new clinically approved RES-specific contrast agent for contrast-enhanced MRI of the liver: properties, clinical development, and applications. Eur. Radiol. 13, 1266–1276 (2003) P. Reimer, T. Balzer, Ferucarbotran (Resovist): a new clinically approved RES-specific contrast agent for contrast-enhanced MRI of the liver: properties, clinical development, and applications. Eur. Radiol. 13, 1266–1276 (2003)
179.
Zurück zum Zitat J.R. McCarthy, R. Weissleder, Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv. Drug Deliv. Rev. 60, 1241–1251 (2008)CrossRef J.R. McCarthy, R. Weissleder, Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv. Drug Deliv. Rev. 60, 1241–1251 (2008)CrossRef
180.
Zurück zum Zitat M. Longmire, P.L. Choyke, H. Kobayashi, Clearance Properties of Nano-Sized Particles and Molecules as Imaging Agents: Considerations and Caveats (2008) M. Longmire, P.L. Choyke, H. Kobayashi, Clearance Properties of Nano-Sized Particles and Molecules as Imaging Agents: Considerations and Caveats (2008)
181.
Zurück zum Zitat E. Taboada, E. Rodríguez, A. Roig, J. Oró, A. Roch, R.N. Muller, Relaxometric and magnetic characterization of ultrasmall iron oxide nanoparticles with high magnetization. Evaluation as potential T1 magnetic resonance imaging contrast agents for molecular imaging. Langmuir 23, 4583–4588 (2007)CrossRef E. Taboada, E. Rodríguez, A. Roig, J. Oró, A. Roch, R.N. Muller, Relaxometric and magnetic characterization of ultrasmall iron oxide nanoparticles with high magnetization. Evaluation as potential T1 magnetic resonance imaging contrast agents for molecular imaging. Langmuir 23, 4583–4588 (2007)CrossRef
182.
Zurück zum Zitat M. Di Marco, C. Sadun, M. Port, I. Guilbert, P. Couvreur, C. Dubernet, Physicochemical characterization of ultrasmall superparamagnetic iron oxide particles (USPIO) for biomedical application as MRI contrast agents. Int. J. Nanomed. 2, 609 (2007) M. Di Marco, C. Sadun, M. Port, I. Guilbert, P. Couvreur, C. Dubernet, Physicochemical characterization of ultrasmall superparamagnetic iron oxide particles (USPIO) for biomedical application as MRI contrast agents. Int. J. Nanomed. 2, 609 (2007)
183.
Zurück zum Zitat D. Artemov, N. Mori, B. Okollie, Z.M. Bhujwalla, MR molecular imaging of the Her-2/neu receptor in breast cancer cells using targeted iron oxide nanoparticles. Magn. Reson. Med. 49, 403–408 (2003)CrossRef D. Artemov, N. Mori, B. Okollie, Z.M. Bhujwalla, MR molecular imaging of the Her-2/neu receptor in breast cancer cells using targeted iron oxide nanoparticles. Magn. Reson. Med. 49, 403–408 (2003)CrossRef
184.
Zurück zum Zitat W. Wu, Z. Wu, T. Yu, C. Jiang, W.-S. Kim, Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci. Technol. Adv. Mater. 16, 023501 (2016)CrossRef W. Wu, Z. Wu, T. Yu, C. Jiang, W.-S. Kim, Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci. Technol. Adv. Mater. 16, 023501 (2016)CrossRef
185.
Zurück zum Zitat J.M. Perez, L. Josephson, R. Weissleder, Use of magnetic nanoparticles as nanosensors to probe for molecular interactions. ChemBioChem 5, 261–264 (2004)CrossRef J.M. Perez, L. Josephson, R. Weissleder, Use of magnetic nanoparticles as nanosensors to probe for molecular interactions. ChemBioChem 5, 261–264 (2004)CrossRef
186.
Zurück zum Zitat R. Jin, B. Lin, D. Li, H. Ai, Superparamagnetic iron oxide nanoparticles for MR imaging and therapy: design considerations and clinical applications. Curr. Opin. Pharmacol. 18, 18–27 (2014)CrossRef R. Jin, B. Lin, D. Li, H. Ai, Superparamagnetic iron oxide nanoparticles for MR imaging and therapy: design considerations and clinical applications. Curr. Opin. Pharmacol. 18, 18–27 (2014)CrossRef
187.
Zurück zum Zitat A. Neuwelt, N. Sidhu, C.-A.A. Hu, G. Mlady, S.C. Eberhardt, L.O. Sillerud, Iron-based superparamagnetic nanoparticle contrast agents for MRI of infection and inflammation. AJR Am. J. Roentgenol. 204, W302–W313 (2015)CrossRef A. Neuwelt, N. Sidhu, C.-A.A. Hu, G. Mlady, S.C. Eberhardt, L.O. Sillerud, Iron-based superparamagnetic nanoparticle contrast agents for MRI of infection and inflammation. AJR Am. J. Roentgenol. 204, W302–W313 (2015)CrossRef
188.
Zurück zum Zitat A. Millon, S. Dickson, A. Klink, D. Izquierdo-Garcia, J. Bini, E. Lancelot, S. Ballet, P. Robert, J.M. de Castro, C. Corot, Monitoring plaque inflammation in atherosclerotic rabbits with an iron oxide (P904) and 18 F-FDG using a combined PET/MR scanner. Atherosclerosis 228, 339–345 (2013)CrossRef A. Millon, S. Dickson, A. Klink, D. Izquierdo-Garcia, J. Bini, E. Lancelot, S. Ballet, P. Robert, J.M. de Castro, C. Corot, Monitoring plaque inflammation in atherosclerotic rabbits with an iron oxide (P904) and 18 F-FDG using a combined PET/MR scanner. Atherosclerosis 228, 339–345 (2013)CrossRef
189.
Zurück zum Zitat M.J. Jacobin-Valat, K. Deramchia, S. Mornet, C.E. Hagemeyer, S. Bonetto, R. Robert, M. Biran, P. Massot, S. Miraux, S. Sanchez, MRI of inducible P-selectin expression in human activated platelets involved in the early stages of atherosclerosis. NMR Biomed. 24, 413–424 (2011) M.J. Jacobin-Valat, K. Deramchia, S. Mornet, C.E. Hagemeyer, S. Bonetto, R. Robert, M. Biran, P. Massot, S. Miraux, S. Sanchez, MRI of inducible P-selectin expression in human activated platelets involved in the early stages of atherosclerosis. NMR Biomed. 24, 413–424 (2011)
190.
Zurück zum Zitat M.A. Busquets, R. Sabaté, J. Estelrich, Potential applications of magnetic particles to detect and treat Alzheimer’s disease. Nanoscale Res. Lett. 9, 1–10 (2014)CrossRef M.A. Busquets, R. Sabaté, J. Estelrich, Potential applications of magnetic particles to detect and treat Alzheimer’s disease. Nanoscale Res. Lett. 9, 1–10 (2014)CrossRef
191.
Zurück zum Zitat M.M. Vellinga, R.D.O. Engberink, A. Seewann, P.J. Pouwels, M.P. Wattjes, S.M. van der Pol, C. Pering, C.H. Polman, H.E. de Vries, J.J. Geurts, Pluriformity of inflammation in multiple sclerosis shown by ultra-small iron oxide particle enhancement. Brain 131, 800–807 (2008)CrossRef M.M. Vellinga, R.D.O. Engberink, A. Seewann, P.J. Pouwels, M.P. Wattjes, S.M. van der Pol, C. Pering, C.H. Polman, H.E. de Vries, J.J. Geurts, Pluriformity of inflammation in multiple sclerosis shown by ultra-small iron oxide particle enhancement. Brain 131, 800–807 (2008)CrossRef
192.
Zurück zum Zitat J. Xie, K. Chen, J. Huang, S. Lee, J. Wang, J. Gao, X. Li, X. Chen, PET/NIRF/MRI triple functional iron oxide nanoparticles. Biomaterials 31, 3016–3022 (2010)CrossRef J. Xie, K. Chen, J. Huang, S. Lee, J. Wang, J. Gao, X. Li, X. Chen, PET/NIRF/MRI triple functional iron oxide nanoparticles. Biomaterials 31, 3016–3022 (2010)CrossRef
193.
Zurück zum Zitat O. Veiseh, C. Sun, J. Gunn, N. Kohler, P. Gabikian, D. Lee, N. Bhattarai, R. Ellenbogen, R. Sze, A. Hallahan, Optical and MRI multifunctional nanoprobe for targeting gliomas. Nano Lett. 5, 1003–1008 (2005)CrossRef O. Veiseh, C. Sun, J. Gunn, N. Kohler, P. Gabikian, D. Lee, N. Bhattarai, R. Ellenbogen, R. Sze, A. Hallahan, Optical and MRI multifunctional nanoprobe for targeting gliomas. Nano Lett. 5, 1003–1008 (2005)CrossRef
194.
Zurück zum Zitat H. Lee, M.K. Yu, S. Park, S. Moon, J.J. Min, Y.Y. Jeong, H.-W. Kang, S. Jon, Thermally cross-linked superparamagnetic iron oxide nanoparticles: synthesis and application as a dual imaging probe for cancer in vivo. J. Am. Chem. Soc. 129, 12739–12745 (2007)CrossRef H. Lee, M.K. Yu, S. Park, S. Moon, J.J. Min, Y.Y. Jeong, H.-W. Kang, S. Jon, Thermally cross-linked superparamagnetic iron oxide nanoparticles: synthesis and application as a dual imaging probe for cancer in vivo. J. Am. Chem. Soc. 129, 12739–12745 (2007)CrossRef
195.
Zurück zum Zitat Y. Wang, X. Xie, X. Wang, G. Ku, K.L. Gill, D.P. O’Neal, G. Stoica, L.V. Wang, Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain. Nano Lett. 4, 1689–1692 (2004)CrossRef Y. Wang, X. Xie, X. Wang, G. Ku, K.L. Gill, D.P. O’Neal, G. Stoica, L.V. Wang, Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain. Nano Lett. 4, 1689–1692 (2004)CrossRef
196.
Zurück zum Zitat M.J. Welch, C.J. Hawker, K.L. Wooley, The advantages of nanoparticles for PET. J. Nucl. Med. 50, 1743–1746 (2009)CrossRef M.J. Welch, C.J. Hawker, K.L. Wooley, The advantages of nanoparticles for PET. J. Nucl. Med. 50, 1743–1746 (2009)CrossRef
197.
Zurück zum Zitat N. Lee, S.H. Choi, T. Hyeon, Nano-Sized CT Contrast Agents. Adv. Mater. 25, 2641–2660 (2013)CrossRef N. Lee, S.H. Choi, T. Hyeon, Nano-Sized CT Contrast Agents. Adv. Mater. 25, 2641–2660 (2013)CrossRef
198.
Zurück zum Zitat S. Narayanan, B.N. Sathy, U. Mony, M. Koyakutty, S.V. Nair, D. Menon, Biocompatible magnetite/gold nanohybrid contrast agents via green chemistry for MRI and CT bioimaging. ACS Appl. Mater. Interfaces 4, 251–260 (2011)CrossRef S. Narayanan, B.N. Sathy, U. Mony, M. Koyakutty, S.V. Nair, D. Menon, Biocompatible magnetite/gold nanohybrid contrast agents via green chemistry for MRI and CT bioimaging. ACS Appl. Mater. Interfaces 4, 251–260 (2011)CrossRef
199.
Zurück zum Zitat J. Liu, W. Zhang, H. Zhang, Z. Yang, T. Li, B. Wang, X. Huo, R. Wang, H. Chen, A multifunctional nanoprobe based on Au–Fe3O4 nanoparticles for multimodal and ultrasensitive detection of cancer cells. Chem. Commun. 49, 4938–4940 (2013)CrossRef J. Liu, W. Zhang, H. Zhang, Z. Yang, T. Li, B. Wang, X. Huo, R. Wang, H. Chen, A multifunctional nanoprobe based on Au–Fe3O4 nanoparticles for multimodal and ultrasensitive detection of cancer cells. Chem. Commun. 49, 4938–4940 (2013)CrossRef
200.
Zurück zum Zitat Z. Liu, T. Lammers, J. Ehling, S. Fokong, J. Bornemann, F. Kiessling, J. Gätjens, Iron oxide nanoparticle-containing microbubble composites as contrast agents for MR and ultrasound dual-modality imaging. Biomaterials 32, 6155–6163 (2011)CrossRef Z. Liu, T. Lammers, J. Ehling, S. Fokong, J. Bornemann, F. Kiessling, J. Gätjens, Iron oxide nanoparticle-containing microbubble composites as contrast agents for MR and ultrasound dual-modality imaging. Biomaterials 32, 6155–6163 (2011)CrossRef
201.
Zurück zum Zitat F. Kiessling, J. Huppert, M. Palmowski, Functional and molecular ultrasound imaging: concepts and contrast agents. Curr. Med. Chem. 16, 627–642 (2009)CrossRef F. Kiessling, J. Huppert, M. Palmowski, Functional and molecular ultrasound imaging: concepts and contrast agents. Curr. Med. Chem. 16, 627–642 (2009)CrossRef
202.
Zurück zum Zitat R. Misra, S. Acharya, S.K. Sahoo, Cancer nanotechnology: application of nanotechnology in cancer therapy. Drug Discov. Today 15, 842–850 (2010)CrossRef R. Misra, S. Acharya, S.K. Sahoo, Cancer nanotechnology: application of nanotechnology in cancer therapy. Drug Discov. Today 15, 842–850 (2010)CrossRef
203.
Zurück zum Zitat U. Ikoba, H. Peng, H. Li, C. Miller, C. Yu, Q. Wang, Nanocarriers in therapy of infectious and inflammatory diseases. Nanoscale 7, 4291–4305 (2015)CrossRef U. Ikoba, H. Peng, H. Li, C. Miller, C. Yu, Q. Wang, Nanocarriers in therapy of infectious and inflammatory diseases. Nanoscale 7, 4291–4305 (2015)CrossRef
204.
Zurück zum Zitat O. Veiseh, B.C. Tang, K.A. Whitehead, D.G. Anderson, R. Langer, Managing diabetes with nanomedicine: challenges and opportunities. Nat. Rev. Drug Discov. 14, 45–57 (2015)CrossRef O. Veiseh, B.C. Tang, K.A. Whitehead, D.G. Anderson, R. Langer, Managing diabetes with nanomedicine: challenges and opportunities. Nat. Rev. Drug Discov. 14, 45–57 (2015)CrossRef
205.
Zurück zum Zitat A.S. Gupta, Nanomedicine approaches in vascular disease: a review, Nanomedicine: Nanotechnology. Biol. Med. 7, 763–779 (2011) A.S. Gupta, Nanomedicine approaches in vascular disease: a review, Nanomedicine: Nanotechnology. Biol. Med. 7, 763–779 (2011)
206.
Zurück zum Zitat S. Roussakow, The history of hyperthermia rise and decline, in Conference Papers in Science, Hindawi Publishing Corporation, 2013 (2013) p. 428027 S. Roussakow, The history of hyperthermia rise and decline, in Conference Papers in Science, Hindawi Publishing Corporation, 2013 (2013) p. 428027
207.
Zurück zum Zitat O.S. Nielsen, M. Horsman, J. Overgaard, A future for hyperthermia in cancer treatment? Eur. J. Cancer 37, 1587–1589 (2001)CrossRef O.S. Nielsen, M. Horsman, J. Overgaard, A future for hyperthermia in cancer treatment? Eur. J. Cancer 37, 1587–1589 (2001)CrossRef
208.
Zurück zum Zitat S. Mornet, S. Vasseur, F. Grasset, P. Veverka, G. Goglio, A. Demourgues, J. Portier, E. Pollert, E. Duguet, Magnetic nanoparticle design for medical applications. Prog. Solid State Chem. 34, 237–247 (2006)CrossRef S. Mornet, S. Vasseur, F. Grasset, P. Veverka, G. Goglio, A. Demourgues, J. Portier, E. Pollert, E. Duguet, Magnetic nanoparticle design for medical applications. Prog. Solid State Chem. 34, 237–247 (2006)CrossRef
209.
Zurück zum Zitat P. Moroz, S. Jones, B. Gray, Magnetically mediated hyperthermia: current status and future directions. Int. J. Hyperth. 18, 267–284 (2002)CrossRef P. Moroz, S. Jones, B. Gray, Magnetically mediated hyperthermia: current status and future directions. Int. J. Hyperth. 18, 267–284 (2002)CrossRef
210.
Zurück zum Zitat A. Jordan, R. Scholz, K. Maier-Hauff, M. Johannsen, P. Wust, J. Nadobny, H. Schirra, H. Schmidt, S. Deger, S. Loening, Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia. J. Magn. Magn. Mater. 225, 118–126 (2001)CrossRef A. Jordan, R. Scholz, K. Maier-Hauff, M. Johannsen, P. Wust, J. Nadobny, H. Schirra, H. Schmidt, S. Deger, S. Loening, Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia. J. Magn. Magn. Mater. 225, 118–126 (2001)CrossRef
211.
Zurück zum Zitat A.E. Deatsch, B.A. Evans, Heating efficiency in magnetic nanoparticle hyperthermia. J. Magn. Magn. Mater. 354, 163–172 (2014)CrossRef A.E. Deatsch, B.A. Evans, Heating efficiency in magnetic nanoparticle hyperthermia. J. Magn. Magn. Mater. 354, 163–172 (2014)CrossRef
212.
Zurück zum Zitat C.S. Kumar, F. Mohammad, Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv. Drug Deliv. Rev. 63, 789–808 (2011)CrossRef C.S. Kumar, F. Mohammad, Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv. Drug Deliv. Rev. 63, 789–808 (2011)CrossRef
213.
Zurück zum Zitat M.F.X. Gnant, E.M. Turner, H.R. Alexander, Effects of hyperthermia and tumour necrosis factor on inflammatory cytokine secretion and procoagulant activity in endothelial cells. Cytokine 12, 339–347 (2000)CrossRef M.F.X. Gnant, E.M. Turner, H.R. Alexander, Effects of hyperthermia and tumour necrosis factor on inflammatory cytokine secretion and procoagulant activity in endothelial cells. Cytokine 12, 339–347 (2000)CrossRef
214.
Zurück zum Zitat B. Hildebrandt, P. Wust, O. Ahlers, A. Dieing, G. Sreenivasa, T. Kerner, R. Felix, H. Riess, The cellular and molecular basis of hyperthermia. Critical Rev. Oncol./Hematol. 43, 33–56 (2002)CrossRef B. Hildebrandt, P. Wust, O. Ahlers, A. Dieing, G. Sreenivasa, T. Kerner, R. Felix, H. Riess, The cellular and molecular basis of hyperthermia. Critical Rev. Oncol./Hematol. 43, 33–56 (2002)CrossRef
215.
Zurück zum Zitat E. Kita, T. Oda, T. Kayano, S. Sato, M. Minagawa, H. Yanagihara, M. Kishimoto, C. Mitsumata, S. Hashimoto, K. Yamada, Ferromagnetic nanoparticles for magnetic hyperthermia and thermoablation therapy. J. Phys. D Appl. Phys. 43, 474011 (2010)CrossRef E. Kita, T. Oda, T. Kayano, S. Sato, M. Minagawa, H. Yanagihara, M. Kishimoto, C. Mitsumata, S. Hashimoto, K. Yamada, Ferromagnetic nanoparticles for magnetic hyperthermia and thermoablation therapy. J. Phys. D Appl. Phys. 43, 474011 (2010)CrossRef
216.
Zurück zum Zitat T.L. Kalber, K.L. Ordidge, P. Southern, M.R. Loebinger, P.G. Kyrtatos, Q.A. Pankhurst, M.F. Lythgoe, S.M. Janes, Hyperthermia treatment of tumors by mesenchymal stem cell-delivered superparamagnetic iron oxide nanoparticles. Int. J. Nanomed. 11, 1973–1983 (2016)CrossRef T.L. Kalber, K.L. Ordidge, P. Southern, M.R. Loebinger, P.G. Kyrtatos, Q.A. Pankhurst, M.F. Lythgoe, S.M. Janes, Hyperthermia treatment of tumors by mesenchymal stem cell-delivered superparamagnetic iron oxide nanoparticles. Int. J. Nanomed. 11, 1973–1983 (2016)CrossRef
217.
Zurück zum Zitat V.P. Torchilin, Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat. Rev. Drug Discov. 13, 813–827 (2014)CrossRef V.P. Torchilin, Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat. Rev. Drug Discov. 13, 813–827 (2014)CrossRef
218.
Zurück zum Zitat M. Hans, A. Lowman, Biodegradable nanoparticles for drug delivery and targeting. Curr. Opin. Solid State Mater. Sci. 6, 319–327 (2002)CrossRef M. Hans, A. Lowman, Biodegradable nanoparticles for drug delivery and targeting. Curr. Opin. Solid State Mater. Sci. 6, 319–327 (2002)CrossRef
219.
Zurück zum Zitat O.C. Farokhzad, R. Langer, Impact of nanotechnology on drug delivery. ACS Nano 3, 16–20 (2009)CrossRef O.C. Farokhzad, R. Langer, Impact of nanotechnology on drug delivery. ACS Nano 3, 16–20 (2009)CrossRef
220.
Zurück zum Zitat S.S. Suri, H. Fenniri, B. Singh, Nanotechnology-based drug delivery systems. J. Occup. Med. Toxicol. 2, 1–6 (2007)CrossRef S.S. Suri, H. Fenniri, B. Singh, Nanotechnology-based drug delivery systems. J. Occup. Med. Toxicol. 2, 1–6 (2007)CrossRef
221.
Zurück zum Zitat H. Maeda, J. Wu, T. Sawa, Y. Matsumura, K. Hori, Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Controlled Release 65, 271–284 (2000)CrossRef H. Maeda, J. Wu, T. Sawa, Y. Matsumura, K. Hori, Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Controlled Release 65, 271–284 (2000)CrossRef
222.
Zurück zum Zitat F. Danhier, O. Feron, V. Préat, To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Controlled Release 148, 135–146 (2010)CrossRef F. Danhier, O. Feron, V. Préat, To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Controlled Release 148, 135–146 (2010)CrossRef
223.
Zurück zum Zitat F. Chen, H. Hong, Y. Zhang, H.F. Valdovinos, S. Shi, G.S. Kwon, C.P. Theuer, T.E. Barnhart, W. Cai, In vivo tumor targeting and image-guided drug delivery with antibody-conjugated, radiolabeled mesoporous silica nanoparticles. ACS Nano 7, 9027–9039 (2013)CrossRef F. Chen, H. Hong, Y. Zhang, H.F. Valdovinos, S. Shi, G.S. Kwon, C.P. Theuer, T.E. Barnhart, W. Cai, In vivo tumor targeting and image-guided drug delivery with antibody-conjugated, radiolabeled mesoporous silica nanoparticles. ACS Nano 7, 9027–9039 (2013)CrossRef
224.
Zurück zum Zitat O.C. Farokhzad, J. Cheng, B.A. Teply, I. Sherifi, S. Jon, P.W. Kantoff, J.P. Richie, R. Langer, Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc. Natl. Acad. Sci. 103, 6315–6320 (2006)CrossRef O.C. Farokhzad, J. Cheng, B.A. Teply, I. Sherifi, S. Jon, P.W. Kantoff, J.P. Richie, R. Langer, Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc. Natl. Acad. Sci. 103, 6315–6320 (2006)CrossRef
225.
Zurück zum Zitat M. Muthiah, I.-K. Park, C.-S. Cho, Surface modification of iron oxide nanoparticles by biocompatible polymers for tissue imaging and targeting. Biotechnol. Adv. 31, 1224–1236 (2013)CrossRef M. Muthiah, I.-K. Park, C.-S. Cho, Surface modification of iron oxide nanoparticles by biocompatible polymers for tissue imaging and targeting. Biotechnol. Adv. 31, 1224–1236 (2013)CrossRef
226.
Zurück zum Zitat B. Chertok, B.A. Moffat, A.E. David, F. Yu, C. Bergemann, B.D. Ross, V.C. Yang, Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors. Biomaterials 29, 487–496 (2008)CrossRef B. Chertok, B.A. Moffat, A.E. David, F. Yu, C. Bergemann, B.D. Ross, V.C. Yang, Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors. Biomaterials 29, 487–496 (2008)CrossRef
227.
Zurück zum Zitat O. Veiseh, J.W. Gunn, M. Zhang, Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv. Drug Deliv. Rev. 62, 284–304 (2010)CrossRef O. Veiseh, J.W. Gunn, M. Zhang, Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv. Drug Deliv. Rev. 62, 284–304 (2010)CrossRef
228.
Zurück zum Zitat A. Zarrin, S. Sadighian, K. Rostamizadeh, O. Firuzi, M. Hamidi, S. Mohammadi-Samani, R. Miri, Design, preparation, and in vitro characterization of a trimodally-targeted nanomagnetic onco-theranostic system for cancer diagnosis and therapy. Int. J. Pharm. 500, 62–76 (2016)CrossRef A. Zarrin, S. Sadighian, K. Rostamizadeh, O. Firuzi, M. Hamidi, S. Mohammadi-Samani, R. Miri, Design, preparation, and in vitro characterization of a trimodally-targeted nanomagnetic onco-theranostic system for cancer diagnosis and therapy. Int. J. Pharm. 500, 62–76 (2016)CrossRef
229.
Zurück zum Zitat B. Polyak, G. Friedman, Magnetic targeting for site-specific drug delivery: applications and clinical potential. Expert Opin. Drug Deliv. 6, 53–70 (2009)CrossRef B. Polyak, G. Friedman, Magnetic targeting for site-specific drug delivery: applications and clinical potential. Expert Opin. Drug Deliv. 6, 53–70 (2009)CrossRef
230.
Zurück zum Zitat C. de las Heras Alarcón, S. Pennadam, C. Alexander, Stimuli responsive polymers for biomedical applications. Chem. Soc. Rev. 34, 276–285 (2005) C. de las Heras Alarcón, S. Pennadam, C. Alexander, Stimuli responsive polymers for biomedical applications. Chem. Soc. Rev. 34, 276–285 (2005)
231.
Zurück zum Zitat J. Chomoucka, J. Drbohlavova, D. Huska, V. Adam, R. Kizek, J. Hubalek, Magnetic nanoparticles and targeted drug delivering. Pharmacol. Res. 62, 144–149 (2010)CrossRef J. Chomoucka, J. Drbohlavova, D. Huska, V. Adam, R. Kizek, J. Hubalek, Magnetic nanoparticles and targeted drug delivering. Pharmacol. Res. 62, 144–149 (2010)CrossRef
232.
Zurück zum Zitat M. Mikhaylova, D.K. Kim, N. Bobrysheva, M. Osmolowsky, V. Semenov, T. Tsakalakos, M. Muhammed, Superparamagnetism of magnetite nanoparticles: dependence on surface modification. Langmuir 20, 2472–2477 (2004)CrossRef M. Mikhaylova, D.K. Kim, N. Bobrysheva, M. Osmolowsky, V. Semenov, T. Tsakalakos, M. Muhammed, Superparamagnetism of magnetite nanoparticles: dependence on surface modification. Langmuir 20, 2472–2477 (2004)CrossRef
233.
Zurück zum Zitat S.K. Yen, P. Padmanabhan, S.T. Selvan, Multifunctional iron oxide nanoparticles for diagnostics, therapy and macromolecule delivery. Theranostics 3, 986–1003 (2013)CrossRef S.K. Yen, P. Padmanabhan, S.T. Selvan, Multifunctional iron oxide nanoparticles for diagnostics, therapy and macromolecule delivery. Theranostics 3, 986–1003 (2013)CrossRef
234.
Zurück zum Zitat L. Zhao, T. Chano, S. Morikawa, Y. Saito, A. Shiino, S. Shimizu, T. Maeda, T. Irie, S. Aonuma, H. Okabe, Hyperbranched polyglycerol-grafted superparamagnetic iron oxide nanoparticles: synthesis, characterization, functionalization, size separation, magnetic properties, and biological applications. Adv. Funct. Mater. 22, 5107–5117 (2012)CrossRef L. Zhao, T. Chano, S. Morikawa, Y. Saito, A. Shiino, S. Shimizu, T. Maeda, T. Irie, S. Aonuma, H. Okabe, Hyperbranched polyglycerol-grafted superparamagnetic iron oxide nanoparticles: synthesis, characterization, functionalization, size separation, magnetic properties, and biological applications. Adv. Funct. Mater. 22, 5107–5117 (2012)CrossRef
235.
Zurück zum Zitat A.A. Moghanjoughi, D. Khoshnevis, A. Zarrabi, A concise review on smart polymers for controlled drug release. Drug Deliv. Transl. Res. 6, 333–340 (2016)CrossRef A.A. Moghanjoughi, D. Khoshnevis, A. Zarrabi, A concise review on smart polymers for controlled drug release. Drug Deliv. Transl. Res. 6, 333–340 (2016)CrossRef
236.
Zurück zum Zitat H. Mousavi, B. Movahedi, A. Zarrabi, M. Jahandar, A multifunctional hierarchically assembled magnetic nanostructure towards cancer nano-theranostics. RSC Adv. 5, 77255–77263 (2015)CrossRef H. Mousavi, B. Movahedi, A. Zarrabi, M. Jahandar, A multifunctional hierarchically assembled magnetic nanostructure towards cancer nano-theranostics. RSC Adv. 5, 77255–77263 (2015)CrossRef
237.
Zurück zum Zitat N. Kamaly, A.D. Miller, Paramagnetic liposome nanoparticles for cellular and tumour imaging. Int. J. Mol. Sci. 11, 1759–1776 (2010)CrossRef N. Kamaly, A.D. Miller, Paramagnetic liposome nanoparticles for cellular and tumour imaging. Int. J. Mol. Sci. 11, 1759–1776 (2010)CrossRef
238.
Zurück zum Zitat N.G. Durmus, E.N. Taylor, K.M. Kummer, T.J. Webster, Enhanced efficacy of superparamagnetic iron oxide nanoparticles against antibiotic-resistant biofilms in the presence of metabolites. Adv. Mater. 25, 5706–5713 (2013)CrossRef N.G. Durmus, E.N. Taylor, K.M. Kummer, T.J. Webster, Enhanced efficacy of superparamagnetic iron oxide nanoparticles against antibiotic-resistant biofilms in the presence of metabolites. Adv. Mater. 25, 5706–5713 (2013)CrossRef
239.
Zurück zum Zitat J.H. Maeng, D.-H. Lee, K.H. Jung, Y.-H. Bae, I.-S. Park, S. Jeong, Y.-S. Jeon, C.-K. Shim, W. Kim, J. Kim, Multifunctional doxorubicin loaded superparamagnetic iron oxide nanoparticles for chemotherapy and magnetic resonance imaging in liver cancer. Biomaterials 31, 4995–5006 (2010)CrossRef J.H. Maeng, D.-H. Lee, K.H. Jung, Y.-H. Bae, I.-S. Park, S. Jeong, Y.-S. Jeon, C.-K. Shim, W. Kim, J. Kim, Multifunctional doxorubicin loaded superparamagnetic iron oxide nanoparticles for chemotherapy and magnetic resonance imaging in liver cancer. Biomaterials 31, 4995–5006 (2010)CrossRef
240.
Zurück zum Zitat F.M. Kievit, F.Y. Wang, C. Fang, H. Mok, K. Wang, J.R. Silber, R.G. Ellenbogen, M. Zhang, Doxorubicin loaded iron oxide nanoparticles overcome multidrug resistance in cancer in vitro. J. Controlled Release 152, 76–83 (2011)CrossRef F.M. Kievit, F.Y. Wang, C. Fang, H. Mok, K. Wang, J.R. Silber, R.G. Ellenbogen, M. Zhang, Doxorubicin loaded iron oxide nanoparticles overcome multidrug resistance in cancer in vitro. J. Controlled Release 152, 76–83 (2011)CrossRef
241.
Zurück zum Zitat O. Mykhaylyk, Y.S. Antequera, D. Vlaskou, C. Plank, Generation of magnetic nonviral gene transfer agents and magnetofection in vitro. Nat. Protoc. 2, 2391–2411 (2007)CrossRef O. Mykhaylyk, Y.S. Antequera, D. Vlaskou, C. Plank, Generation of magnetic nonviral gene transfer agents and magnetofection in vitro. Nat. Protoc. 2, 2391–2411 (2007)CrossRef
242.
Zurück zum Zitat S. Govindarajan, K. Kitaura, M. Takafuji, H. Ihara, K. Varadarajan, A.B. Patel, V. Gopal, Gene delivery into human cancer cells by cationic lipid-mediated magnetofection. Int. J. Pharm. 446, 87–99 (2013)CrossRef S. Govindarajan, K. Kitaura, M. Takafuji, H. Ihara, K. Varadarajan, A.B. Patel, V. Gopal, Gene delivery into human cancer cells by cationic lipid-mediated magnetofection. Int. J. Pharm. 446, 87–99 (2013)CrossRef
243.
Zurück zum Zitat U. Schillinger, T. Brill, C. Rudolph, S. Huth, S. Gersting, F. Krötz, J. Hirschberger, C. Bergemann, C. Plank, Advances in magnetofection—magnetically guided nucleic acid delivery. J. Magn. Magn. Mater. 293, 501–508 (2005)CrossRef U. Schillinger, T. Brill, C. Rudolph, S. Huth, S. Gersting, F. Krötz, J. Hirschberger, C. Bergemann, C. Plank, Advances in magnetofection—magnetically guided nucleic acid delivery. J. Magn. Magn. Mater. 293, 501–508 (2005)CrossRef
244.
Zurück zum Zitat P. Jendelová, V. Herynek, J. DeCroos, K. Glogarová, B. Andersson, M. Hájek, E. Syková, Imaging the fate of implanted bone marrow stromal cells labeled with superparamagnetic nanoparticles. Magn. Reson. Med. 50, 767–776 (2003)CrossRef P. Jendelová, V. Herynek, J. DeCroos, K. Glogarová, B. Andersson, M. Hájek, E. Syková, Imaging the fate of implanted bone marrow stromal cells labeled with superparamagnetic nanoparticles. Magn. Reson. Med. 50, 767–776 (2003)CrossRef
245.
Zurück zum Zitat D.K. Kirui, D.A. Rey, C.A. Batt, Gold hybrid nanoparticles for targeted phototherapy and cancer imaging. Nanotechnology 21, 105105 (2010)CrossRef D.K. Kirui, D.A. Rey, C.A. Batt, Gold hybrid nanoparticles for targeted phototherapy and cancer imaging. Nanotechnology 21, 105105 (2010)CrossRef
246.
Zurück zum Zitat M. Chu, Y. Shao, J. Peng, X. Dai, H. Li, Q. Wu, D. Shi, Near-infrared laser light mediated cancer therapy by photothermal effect of Fe3O4 magnetic nanoparticles. Biomaterials 34, 4078–4088 (2013)CrossRef M. Chu, Y. Shao, J. Peng, X. Dai, H. Li, Q. Wu, D. Shi, Near-infrared laser light mediated cancer therapy by photothermal effect of Fe3O4 magnetic nanoparticles. Biomaterials 34, 4078–4088 (2013)CrossRef
247.
Zurück zum Zitat M. Thandu, V. Rapozzi, L. Xodo, F. Albericio, C. Comuzzi, S. Cavalli, “Clicking” porphyrins to magnetic nanoparticles for photodynamic therapy. ChemPlusChem 79, 90–98 (2014)CrossRef M. Thandu, V. Rapozzi, L. Xodo, F. Albericio, C. Comuzzi, S. Cavalli, “Clicking” porphyrins to magnetic nanoparticles for photodynamic therapy. ChemPlusChem 79, 90–98 (2014)CrossRef
248.
Zurück zum Zitat D.B. Tada, L.L. Vono, E.L. Duarte, R. Itri, P.K. Kiyohara, M.S. Baptista, L.M. Rossi, Methylene blue-containing silica-coated magnetic particles: a potential magnetic carrier for photodynamic therapy. Langmuir 23, 8194–8199 (2007)CrossRef D.B. Tada, L.L. Vono, E.L. Duarte, R. Itri, P.K. Kiyohara, M.S. Baptista, L.M. Rossi, Methylene blue-containing silica-coated magnetic particles: a potential magnetic carrier for photodynamic therapy. Langmuir 23, 8194–8199 (2007)CrossRef
249.
Zurück zum Zitat A.E. Fard, A. Zarepour, A. Zarrabi, A. Shanei, H. Salehi, Synergistic effect of the combination of triethylene-glycol modified Fe3O4 nanoparticles and ultrasound wave on MCF-7 cells. J. Magn. Magn. Mater. 394, 44–49 (2015)CrossRef A.E. Fard, A. Zarepour, A. Zarrabi, A. Shanei, H. Salehi, Synergistic effect of the combination of triethylene-glycol modified Fe3O4 nanoparticles and ultrasound wave on MCF-7 cells. J. Magn. Magn. Mater. 394, 44–49 (2015)CrossRef
250.
Zurück zum Zitat H. Xu, X. Zhang, R. Han, P. Yang, H. Ma, Y. Song, Z. Lu, W. Yin, X. Wu, H. Wang, Nanoparticles in sonodynamic therapy: state of the art review. RSC Advances 6, 50697–50705 (2016)CrossRef H. Xu, X. Zhang, R. Han, P. Yang, H. Ma, Y. Song, Z. Lu, W. Yin, X. Wu, H. Wang, Nanoparticles in sonodynamic therapy: state of the art review. RSC Advances 6, 50697–50705 (2016)CrossRef
251.
Zurück zum Zitat C. Tassa, S.Y. Shaw, R. Weissleder, Dextran-coated iron oxide nanoparticles: a versatile platform for targeted molecular imaging, molecular diagnostics, and therapy. Acc. Chem. Res. 44, 842–852 (2011)CrossRef C. Tassa, S.Y. Shaw, R. Weissleder, Dextran-coated iron oxide nanoparticles: a versatile platform for targeted molecular imaging, molecular diagnostics, and therapy. Acc. Chem. Res. 44, 842–852 (2011)CrossRef
252.
Zurück zum Zitat H.-M. Yang, B.C. Oh, J.H. Kim, T. Ahn, H.-S. Nam, C.W. Park, J.-D. Kim, Multifunctional poly (aspartic acid) nanoparticles containing iron oxide nanocrystals and doxorubicin for simultaneous cancer diagnosis and therapy. Colloids Surf., A 391, 208–215 (2011)CrossRef H.-M. Yang, B.C. Oh, J.H. Kim, T. Ahn, H.-S. Nam, C.W. Park, J.-D. Kim, Multifunctional poly (aspartic acid) nanoparticles containing iron oxide nanocrystals and doxorubicin for simultaneous cancer diagnosis and therapy. Colloids Surf., A 391, 208–215 (2011)CrossRef
253.
Zurück zum Zitat H. Xu, L. Cheng, C. Wang, X. Ma, Y. Li, Z. Liu, Polymer encapsulated upconversion nanoparticle/iron oxide nanocomposites for multimodal imaging and magnetic targeted drug delivery. Biomaterials 32, 9364–9373 (2011)CrossRef H. Xu, L. Cheng, C. Wang, X. Ma, Y. Li, Z. Liu, Polymer encapsulated upconversion nanoparticle/iron oxide nanocomposites for multimodal imaging and magnetic targeted drug delivery. Biomaterials 32, 9364–9373 (2011)CrossRef
254.
Zurück zum Zitat M. Jahandar, A. Zarrabi, M.A. Shokrgozar, H. Mousavi, Synthesis, characterization and application of polyglycerol coated Fe3O4 nanoparticles as a nano-theranostics agent. Mater. Res. Express 2, 125002 (2015)CrossRef M. Jahandar, A. Zarrabi, M.A. Shokrgozar, H. Mousavi, Synthesis, characterization and application of polyglycerol coated Fe3O4 nanoparticles as a nano-theranostics agent. Mater. Res. Express 2, 125002 (2015)CrossRef
255.
Zurück zum Zitat N. Nasongkla, E. Bey, J. Ren, H. Ai, C. Khemtong, J.S. Guthi, S.-F. Chin, A.D. Sherry, D.A. Boothman, J. Gao, Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. Nano Lett. 6, 2427–2430 (2006)CrossRef N. Nasongkla, E. Bey, J. Ren, H. Ai, C. Khemtong, J.S. Guthi, S.-F. Chin, A.D. Sherry, D.A. Boothman, J. Gao, Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. Nano Lett. 6, 2427–2430 (2006)CrossRef
256.
Zurück zum Zitat H. Guo, W. Chen, X. Sun, Y.-N. Liu, J. Li, J. Wang, Theranostic magnetoliposomes coated by carboxymethyl dextran with controlled release by low-frequency alternating magnetic field. Carbohydr. Polym. 118, 209–217 (2015)CrossRef H. Guo, W. Chen, X. Sun, Y.-N. Liu, J. Li, J. Wang, Theranostic magnetoliposomes coated by carboxymethyl dextran with controlled release by low-frequency alternating magnetic field. Carbohydr. Polym. 118, 209–217 (2015)CrossRef
257.
Zurück zum Zitat Q. Quan, J. Xie, H. Gao, M. Yang, F. Zhang, G. Liu, X. Lin, A. Wang, H.S. Eden, S. Lee, HSA coated iron oxide nanoparticles as drug delivery vehicles for cancer therapy. Mol. Pharm. 8, 1669–1676 (2011)CrossRef Q. Quan, J. Xie, H. Gao, M. Yang, F. Zhang, G. Liu, X. Lin, A. Wang, H.S. Eden, S. Lee, HSA coated iron oxide nanoparticles as drug delivery vehicles for cancer therapy. Mol. Pharm. 8, 1669–1676 (2011)CrossRef
258.
Zurück zum Zitat K. Cheng, S. Peng, C. Xu, S. Sun, Porous hollow Fe3O4 nanoparticles for targeted delivery and controlled release of cisplatin. J. Am. Chem. Soc. 131, 10637–10644 (2009)CrossRef K. Cheng, S. Peng, C. Xu, S. Sun, Porous hollow Fe3O4 nanoparticles for targeted delivery and controlled release of cisplatin. J. Am. Chem. Soc. 131, 10637–10644 (2009)CrossRef
259.
Zurück zum Zitat C. Wang, S. Ravi, U.S. Garapati, M. Das, M. Howell, J. Mallela, S. Alwarappan, S.S. Mohapatra, S. Mohapatra, Multifunctional chitosan magnetic-graphene (CMG) nanoparticles: a theranostic platform for tumor-targeted co-delivery of drugs, genes and MRI contrast agents. J. Mater. Chem. B 1, 4396–4405 (2013)CrossRef C. Wang, S. Ravi, U.S. Garapati, M. Das, M. Howell, J. Mallela, S. Alwarappan, S.S. Mohapatra, S. Mohapatra, Multifunctional chitosan magnetic-graphene (CMG) nanoparticles: a theranostic platform for tumor-targeted co-delivery of drugs, genes and MRI contrast agents. J. Mater. Chem. B 1, 4396–4405 (2013)CrossRef
260.
Zurück zum Zitat H. Yang, Y. Li, T. Li, M. Xu, Y. Chen, C. Wu, X. Dang, Y. Liu, Multifunctional core/shell nanoparticles cross-linked polyetherimide-folic acid as efficient Notch-1 siRNA carrier for targeted killing of breast cancer. Sci. Rep. 4, 7072 (2014)CrossRef H. Yang, Y. Li, T. Li, M. Xu, Y. Chen, C. Wu, X. Dang, Y. Liu, Multifunctional core/shell nanoparticles cross-linked polyetherimide-folic acid as efficient Notch-1 siRNA carrier for targeted killing of breast cancer. Sci. Rep. 4, 7072 (2014)CrossRef
261.
Zurück zum Zitat M.K. Jaiswal, M. De, S.S. Chou, S. Vasavada, R. Bleher, P.V. Prasad, D. Bahadur, V.P. Dravid, Thermoresponsive magnetic hydrogels as theranostic nanoconstructs. ACS Appl. Mater. Interfaces 6, 6237–6247 (2014)CrossRef M.K. Jaiswal, M. De, S.S. Chou, S. Vasavada, R. Bleher, P.V. Prasad, D. Bahadur, V.P. Dravid, Thermoresponsive magnetic hydrogels as theranostic nanoconstructs. ACS Appl. Mater. Interfaces 6, 6237–6247 (2014)CrossRef
262.
Zurück zum Zitat M.M. Yallapu, S.F. Othman, E.T. Curtis, B.K. Gupta, M. Jaggi, S.C. Chauhan, Multi-functional magnetic nanoparticles for magnetic resonance imaging and cancer therapy. Biomaterials 32, 1890–1905 (2011)CrossRef M.M. Yallapu, S.F. Othman, E.T. Curtis, B.K. Gupta, M. Jaggi, S.C. Chauhan, Multi-functional magnetic nanoparticles for magnetic resonance imaging and cancer therapy. Biomaterials 32, 1890–1905 (2011)CrossRef
263.
Zurück zum Zitat G.R. Reddy, M.S. Bhojani, P. McConville, J. Moody, B.A. Moffat, D.E. Hall, G. Kim, Y.-E.L. Koo, M.J. Woolliscroft, J.V. Sugai, Vascular targeted nanoparticles for imaging and treatment of brain tumors. Clin. Cancer Res. 12, 6677–6686 (2006)CrossRef G.R. Reddy, M.S. Bhojani, P. McConville, J. Moody, B.A. Moffat, D.E. Hall, G. Kim, Y.-E.L. Koo, M.J. Woolliscroft, J.V. Sugai, Vascular targeted nanoparticles for imaging and treatment of brain tumors. Clin. Cancer Res. 12, 6677–6686 (2006)CrossRef
264.
Zurück zum Zitat K. Yang, L. Hu, X. Ma, S. Ye, L. Cheng, X. Shi, C. Li, Y. Li, Z. Liu, Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles. Adv. Mater. 24, 1868–1872 (2012)CrossRef K. Yang, L. Hu, X. Ma, S. Ye, L. Cheng, X. Shi, C. Li, Y. Li, Z. Liu, Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles. Adv. Mater. 24, 1868–1872 (2012)CrossRef
265.
Zurück zum Zitat Z. Zhou, Y. Sun, J. Shen, J. Wei, C. Yu, B. Kong, W. Liu, H. Yang, S. Yang, W. Wang, Iron/iron oxide core/shell nanoparticles for magnetic targeting MRI and near-infrared photothermal therapy. Biomaterials 35, 7470–7478 (2014)CrossRef Z. Zhou, Y. Sun, J. Shen, J. Wei, C. Yu, B. Kong, W. Liu, H. Yang, S. Yang, W. Wang, Iron/iron oxide core/shell nanoparticles for magnetic targeting MRI and near-infrared photothermal therapy. Biomaterials 35, 7470–7478 (2014)CrossRef
266.
Zurück zum Zitat L. Cheng, K. Yang, Y. Li, X. Zeng, M. Shao, S.-T. Lee, Z. Liu, Multifunctional nanoparticles for upconversion luminescence/MR multimodal imaging and magnetically targeted photothermal therapy. Biomaterials 33, 2215–2222 (2012)CrossRef L. Cheng, K. Yang, Y. Li, X. Zeng, M. Shao, S.-T. Lee, Z. Liu, Multifunctional nanoparticles for upconversion luminescence/MR multimodal imaging and magnetically targeted photothermal therapy. Biomaterials 33, 2215–2222 (2012)CrossRef
267.
Zurück zum Zitat W. Dong, Y. Li, D. Niu, Z. Ma, J. Gu, Y. Chen, W. Zhao, X. Liu, C. Liu, J. Shi, Facile synthesis of monodisperse superparamagnetic Fe3O4 core@hybrid@Au shell nanocomposite for bimodal imaging and photothermal therapy. Adv. Mater. 23, 5392–5397 (2011)CrossRef W. Dong, Y. Li, D. Niu, Z. Ma, J. Gu, Y. Chen, W. Zhao, X. Liu, C. Liu, J. Shi, Facile synthesis of monodisperse superparamagnetic Fe3O4 core@hybrid@Au shell nanocomposite for bimodal imaging and photothermal therapy. Adv. Mater. 23, 5392–5397 (2011)CrossRef
268.
Zurück zum Zitat H.-Y. Huang, S.-H. Hu, S.-Y. Hung, C.-S. Chiang, H.-L. Liu, T.-L. Chiu, H.-Y. Lai, Y.-Y. Chen, S.-Y. Chen, SPIO nanoparticle-stabilized PAA-F127 thermosensitive nanobubbles with MR/US dual-modality imaging and HIFU-triggered drug release for magnetically guided in vivo tumor therapy. J. Controlled Release 172, 118–127 (2013)CrossRef H.-Y. Huang, S.-H. Hu, S.-Y. Hung, C.-S. Chiang, H.-L. Liu, T.-L. Chiu, H.-Y. Lai, Y.-Y. Chen, S.-Y. Chen, SPIO nanoparticle-stabilized PAA-F127 thermosensitive nanobubbles with MR/US dual-modality imaging and HIFU-triggered drug release for magnetically guided in vivo tumor therapy. J. Controlled Release 172, 118–127 (2013)CrossRef
269.
Zurück zum Zitat J. Huang, M. Guo, H. Ke, C. Zong, B. Ren, G. Liu, H. Shen, Y. Ma, X. Wang, H. Zhang, Rational Design and Synthesis of γFe2O3@Au Magnetic Gold Nanoflowers for Efficient Cancer Theranostics. Adv. Mater. 27, 5049–5056 (2015)CrossRef J. Huang, M. Guo, H. Ke, C. Zong, B. Ren, G. Liu, H. Shen, Y. Ma, X. Wang, H. Zhang, Rational Design and Synthesis of γFe2O3@Au Magnetic Gold Nanoflowers for Efficient Cancer Theranostics. Adv. Mater. 27, 5049–5056 (2015)CrossRef
270.
Zurück zum Zitat D. Calle, V. Negri, P. Ballesteros, S. Cerdán, Magnetoliposomes loaded with poly-unsaturated fatty acids as novel theranostic anti-inflammatory formulations. Theranostics (2015) D. Calle, V. Negri, P. Ballesteros, S. Cerdán, Magnetoliposomes loaded with poly-unsaturated fatty acids as novel theranostic anti-inflammatory formulations. Theranostics (2015)
271.
Zurück zum Zitat T. Fu, Q. Kong, H. Sheng, L. Gao, Value of functionalized superparamagnetic iron oxide nanoparticles in the diagnosis and treatment of acute temporal lobe epilepsy on MRI. Neural Plast. 2016, 2412958 (2016) T. Fu, Q. Kong, H. Sheng, L. Gao, Value of functionalized superparamagnetic iron oxide nanoparticles in the diagnosis and treatment of acute temporal lobe epilepsy on MRI. Neural Plast. 2016, 2412958 (2016)
272.
Zurück zum Zitat L. Moraes, A. Vasconcelos-dos-Santos, F.C. Santana, M.A. Godoy, P.H. Rosado-de-Castro, R.L. Azevedo-Pereira, W.M. Cintra, E.L. Gasparetto, M.F. Santiago, R. Mendez-Otero, Neuroprotective effects and magnetic resonance imaging of mesenchymal stem cells labeled with SPION in a rat model of Huntington’s disease. Stem Cell Res. 9, 143–155 (2012)CrossRef L. Moraes, A. Vasconcelos-dos-Santos, F.C. Santana, M.A. Godoy, P.H. Rosado-de-Castro, R.L. Azevedo-Pereira, W.M. Cintra, E.L. Gasparetto, M.F. Santiago, R. Mendez-Otero, Neuroprotective effects and magnetic resonance imaging of mesenchymal stem cells labeled with SPION in a rat model of Huntington’s disease. Stem Cell Res. 9, 143–155 (2012)CrossRef
273.
Zurück zum Zitat P. Wang, M.V. Yigit, Z. Medarova, L. Wei, G. Dai, C. Schuetz, A. Moore, Combined small interfering RNA therapy and in vivo magnetic resonance imaging in islet transplantation. Diabetes 60, 565–571 (2011)CrossRef P. Wang, M.V. Yigit, Z. Medarova, L. Wei, G. Dai, C. Schuetz, A. Moore, Combined small interfering RNA therapy and in vivo magnetic resonance imaging in islet transplantation. Diabetes 60, 565–571 (2011)CrossRef
274.
Zurück zum Zitat N. Ahmed, H. Fessi, A. Elaissari, Theranostic applications of nanoparticles in cancer. Drug Discov. Today 17, 928–934 (2012)CrossRef N. Ahmed, H. Fessi, A. Elaissari, Theranostic applications of nanoparticles in cancer. Drug Discov. Today 17, 928–934 (2012)CrossRef
275.
Zurück zum Zitat C. von Zur, D.Von Muhlen, N. Elverfeldt, I. Bassler, B. Neudorfer, A. Steitz, H. Petri-Fink, C. Hofmann, K. Bode, Peter, Superparamagnetic iron oxide binding and uptake as imaged by magnetic resonance is mediated by the integrin receptor Mac-1 (CD11b/CD18): implications on imaging of atherosclerotic plaques. Atherosclerosis 193, 102–111 (2007)CrossRef C. von Zur, D.Von Muhlen, N. Elverfeldt, I. Bassler, B. Neudorfer, A. Steitz, H. Petri-Fink, C. Hofmann, K. Bode, Peter, Superparamagnetic iron oxide binding and uptake as imaged by magnetic resonance is mediated by the integrin receptor Mac-1 (CD11b/CD18): implications on imaging of atherosclerotic plaques. Atherosclerosis 193, 102–111 (2007)CrossRef
276.
Zurück zum Zitat M. Lundqvist, J. Stigler, G. Elia, I. Lynch, T. Cedervall, K.A. Dawson, Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc. Natl. Acad. Sci. 105, 14265–14270 (2008)CrossRef M. Lundqvist, J. Stigler, G. Elia, I. Lynch, T. Cedervall, K.A. Dawson, Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc. Natl. Acad. Sci. 105, 14265–14270 (2008)CrossRef
277.
Zurück zum Zitat A. Lesniak, A. Salvati, M.J. Santos-Martinez, M.W. Radomski, K.A. Dawson, C. Åberg, Nanoparticle adhesion to the cell membrane and its effect on nanoparticle uptake efficiency. J. Am. Chem. Soc. 135, 1438–1444 (2013)CrossRef A. Lesniak, A. Salvati, M.J. Santos-Martinez, M.W. Radomski, K.A. Dawson, C. Åberg, Nanoparticle adhesion to the cell membrane and its effect on nanoparticle uptake efficiency. J. Am. Chem. Soc. 135, 1438–1444 (2013)CrossRef
278.
Zurück zum Zitat A.K. Gupta, M. Gupta, Cytotoxicity suppression and cellular uptake enhancement of surface modified magnetic nanoparticles. Biomaterials 26, 1565–1573 (2005)CrossRef A.K. Gupta, M. Gupta, Cytotoxicity suppression and cellular uptake enhancement of surface modified magnetic nanoparticles. Biomaterials 26, 1565–1573 (2005)CrossRef
279.
Zurück zum Zitat L.L. Muldoon, M. Sàndor, K.E. Pinkston, E.A. Neuwelt, Imaging, distribution, and toxicity of superparamagnetic iron oxide magnetic resonance nanoparticles in the rat brain and intracerebral tumor. Neurosurgery 57, 785–796 (2005)CrossRef L.L. Muldoon, M. Sàndor, K.E. Pinkston, E.A. Neuwelt, Imaging, distribution, and toxicity of superparamagnetic iron oxide magnetic resonance nanoparticles in the rat brain and intracerebral tumor. Neurosurgery 57, 785–796 (2005)CrossRef
280.
Zurück zum Zitat M. Mahmoudi, A. Simchi, A. Milani, P. Stroeve, Cell toxicity of superparamagnetic iron oxide nanoparticles. J. Colloid Interface Sci. 336, 510–518 (2009)CrossRef M. Mahmoudi, A. Simchi, A. Milani, P. Stroeve, Cell toxicity of superparamagnetic iron oxide nanoparticles. J. Colloid Interface Sci. 336, 510–518 (2009)CrossRef
281.
Zurück zum Zitat F. Dilnawaz, S.K. Sahoo, Therapeutic approaches of magnetic nanoparticles for the central nervous system. Drug Discovery Today 20, 1256–1264 (2015)CrossRef F. Dilnawaz, S.K. Sahoo, Therapeutic approaches of magnetic nanoparticles for the central nervous system. Drug Discovery Today 20, 1256–1264 (2015)CrossRef
282.
Zurück zum Zitat G. Huang, H. Chen, Y. Dong, X. Luo, H. Yu, Z. Moore, E.A. Bey, D.A. Boothman, J. Gao, Superparamagnetic iron oxide nanoparticles: amplifying ROS stress to improve anticancer drug efficacy. Theranostics 3, 116–126 (2013)CrossRef G. Huang, H. Chen, Y. Dong, X. Luo, H. Yu, Z. Moore, E.A. Bey, D.A. Boothman, J. Gao, Superparamagnetic iron oxide nanoparticles: amplifying ROS stress to improve anticancer drug efficacy. Theranostics 3, 116–126 (2013)CrossRef
283.
Zurück zum Zitat L. Zeng, Z. Shen, A. Wu, Magnetic nanomaterials for tumor targeting theranostics. Nanomater. Tumor Targ. Theranostics: A Proact. Clin. Perspect. (2016) 55 L. Zeng, Z. Shen, A. Wu, Magnetic nanomaterials for tumor targeting theranostics. Nanomater. Tumor Targ. Theranostics: A Proact. Clin. Perspect. (2016) 55
Metadaten
Titel
SPIONs as Nano-Theranostics Agents
verfasst von
Atefeh Zarepour
Ali Zarrabi
Arezoo Khosravi
Copyright-Jahr
2017
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-3563-0_1