Skip to main content

2015 | OriginalPaper | Buchkapitel

Thermal Degradation of Bio-nanocomposites

verfasst von : Kieran A. Murray, John A. Killion, Ian Major, Luke M. Geever

Erschienen in: Thermal Degradation of Polymer Blends, Composites and Nanocomposites

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Bio-nanocomposites have attracted a great deal of attention over the last number of years due to the excellent characteristics the material has to offer. With ever increasing demands of environmental controls, more sustainable materials like bio-nanocomposites are required to substitute the various petropolymers utilised nowadays. These bio-based polymers provide exceptional performance and have smart properties that have proven useful to the food packaging industry and a wide range of other applications. This chapter reviews the recent developments of bio-nanocomposites where the related biodegradable polymers include Polylactic acid (PLA), polycaprolactone (PCL), polyhydroxyvalerate (PHV), polyhydroxyalkanoates (PHAs), polyhydroxybutyrate (PHB), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and poly(d,l-lactide) (PDLLA). A concise history outlining the development of bio-nanocomposites materials is explored, while the importance of environmental conditions and in particular the rate of biodegradability is highlighted. Furthermore, this chapter addresses the steps of thermal degradation and the systematic approaches used to overcome these concerns. It discusses the behaviour of various nanoparticles on the thermal stability of biopolymers and other topics related to research challenges, future trends and applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Shah, A.A., Hasan, F., Hameed, A., Ahmed, S.: Biological degradation of plastics: a comprehensive review. Biotechnol. Adv. 26, 246–265 (2008)CrossRef Shah, A.A., Hasan, F., Hameed, A., Ahmed, S.: Biological degradation of plastics: a comprehensive review. Biotechnol. Adv. 26, 246–265 (2008)CrossRef
2.
Zurück zum Zitat Jenck, J.F., Agterberg, F., Droescher, M.J.: Products and processes for a sustainable chemical industry: a review of achievements and prospects. Green Chem. 6, 544–556 (2004)CrossRef Jenck, J.F., Agterberg, F., Droescher, M.J.: Products and processes for a sustainable chemical industry: a review of achievements and prospects. Green Chem. 6, 544–556 (2004)CrossRef
3.
Zurück zum Zitat Kümmerer, K.: Sustainable from the very beginning: rational design of molecules by life cycle engineering as an important approach for green pharmacy and green chemistry. Green Chem. 9, 899–907 (2007)CrossRef Kümmerer, K.: Sustainable from the very beginning: rational design of molecules by life cycle engineering as an important approach for green pharmacy and green chemistry. Green Chem. 9, 899–907 (2007)CrossRef
4.
Zurück zum Zitat Clarinval, A.M., Halleux, J.: Classification of biodegradable polymers, pp. 3–31. CRC Press, Boca Raton (2005) Clarinval, A.M., Halleux, J.: Classification of biodegradable polymers, pp. 3–31. CRC Press, Boca Raton (2005)
5.
Zurück zum Zitat Chandra, R., Rustgi, R.: Biodegradable polymers. Prog. Polym. Sci. 23, 1273–1335 (1998)CrossRef Chandra, R., Rustgi, R.: Biodegradable polymers. Prog. Polym. Sci. 23, 1273–1335 (1998)CrossRef
6.
Zurück zum Zitat Rhim, J.W., Park, H.M., Ha, C.S.: Bio-nanocomposites for food packaging applications. Prog. Polym. Sci. 38, 1629–1652 (2013)CrossRef Rhim, J.W., Park, H.M., Ha, C.S.: Bio-nanocomposites for food packaging applications. Prog. Polym. Sci. 38, 1629–1652 (2013)CrossRef
7.
Zurück zum Zitat Bikiaris, D.N.: Nanocomposites of aliphatic polyesters: an overview of the effect of different nanofillers on enzymatic hydrolysis and biodegradation of polyesters. Polym. Degrad. Stab. 98, 1908–1928 (2013)CrossRef Bikiaris, D.N.: Nanocomposites of aliphatic polyesters: an overview of the effect of different nanofillers on enzymatic hydrolysis and biodegradation of polyesters. Polym. Degrad. Stab. 98, 1908–1928 (2013)CrossRef
8.
Zurück zum Zitat Shimao, M.: Biodegradation of plastics. Curr. Opin. Biotechnol. 12, 242–247 (2001)CrossRef Shimao, M.: Biodegradation of plastics. Curr. Opin. Biotechnol. 12, 242–247 (2001)CrossRef
9.
Zurück zum Zitat Gandini, A.: Polymers from renewable resources: a challenge for the future of macromolecular materials. Macromolecules 41, 9491–9504 (2008)CrossRef Gandini, A.: Polymers from renewable resources: a challenge for the future of macromolecular materials. Macromolecules 41, 9491–9504 (2008)CrossRef
10.
Zurück zum Zitat Koh, H.C., Park, J.S., Jeong, M.A., Hwang, H.Y., Hong, Y.T., Ha, S.Y., et al.: Preparation and gas permeation properties of biodegradable polymer/layered silicate nanocomposite membranes. Desalination 233, 201–209 (2008)CrossRef Koh, H.C., Park, J.S., Jeong, M.A., Hwang, H.Y., Hong, Y.T., Ha, S.Y., et al.: Preparation and gas permeation properties of biodegradable polymer/layered silicate nanocomposite membranes. Desalination 233, 201–209 (2008)CrossRef
11.
Zurück zum Zitat Trznadel, M.: Biodegradable polymer materials. Int Polym Sci Technol. 22, 58–65 (1995) Trznadel, M.: Biodegradable polymer materials. Int Polym Sci Technol. 22, 58–65 (1995)
12.
Zurück zum Zitat Pandey, J.K., Raghunatha R.K., Pratheep K.A., Singh, R.P.: An overview on the degradability of polymer nanocomposites. Polym Degrad Stab. 88, pp. 234−50 (2005) Pandey, J.K., Raghunatha R.K., Pratheep K.A., Singh, R.P.: An overview on the degradability of polymer nanocomposites. Polym Degrad Stab. 88, pp. 234−50 (2005)
13.
Zurück zum Zitat Kumar, A.P., Depan, D., Singh Tomer, N., Singh, R.P.: Nanoscale particles for polymer degradation and stabilization-trends and future perspectives. Prog in Polym Sci (Oxford) 34, 479–515 (2009)CrossRef Kumar, A.P., Depan, D., Singh Tomer, N., Singh, R.P.: Nanoscale particles for polymer degradation and stabilization-trends and future perspectives. Prog in Polym Sci (Oxford) 34, 479–515 (2009)CrossRef
14.
Zurück zum Zitat Chrissafis, K., Bikiaris, D.: Can nanoparticles really enhance thermal stability of polymers? Part I: an overview on thermal decomposition of addition polymers. Thermochim. Acta 523, 1–24 (2011)CrossRef Chrissafis, K., Bikiaris, D.: Can nanoparticles really enhance thermal stability of polymers? Part I: an overview on thermal decomposition of addition polymers. Thermochim. Acta 523, 1–24 (2011)CrossRef
15.
Zurück zum Zitat Herron, N., Thorn, D.L.: Nanoparticles: uses and relationships to molecular cluster compounds. Adv. Mater. 10, 1173–1184 (1998)CrossRef Herron, N., Thorn, D.L.: Nanoparticles: uses and relationships to molecular cluster compounds. Adv. Mater. 10, 1173–1184 (1998)CrossRef
16.
Zurück zum Zitat Carter, L.W., Hendricks, J.G., Bolley, D.S.: Elastomer reinforced with a modified clay. Google patents (1950) Carter, L.W., Hendricks, J.G., Bolley, D.S.: Elastomer reinforced with a modified clay. Google patents (1950)
17.
Zurück zum Zitat Deguchi, R., Nishio, T., Okada, A.: Polyamide composite material and method for preparing the same. Google patents (1992) Deguchi, R., Nishio, T., Okada, A.: Polyamide composite material and method for preparing the same. Google patents (1992)
18.
Zurück zum Zitat Wang, Y., Chen, F.-B., Li, Y.-C., Wu, K.-C.: Melt processing of polypropylene/clay nanocomposites modified with maleated polypropylene compatibilizers. Compos. B Eng. 35, 111–124 (2004)CrossRef Wang, Y., Chen, F.-B., Li, Y.-C., Wu, K.-C.: Melt processing of polypropylene/clay nanocomposites modified with maleated polypropylene compatibilizers. Compos. B Eng. 35, 111–124 (2004)CrossRef
19.
Zurück zum Zitat Hasegawa, N., Kawasumi, M., Kato, M., Usuki, A., Okada, A.: Preparation and mechanical properties of polypropylene-clay hybrids using a maleic anhydride-modified polypropylene oligomer. J. Appl. Polym. Sci. 67, 87–92 (1998)CrossRef Hasegawa, N., Kawasumi, M., Kato, M., Usuki, A., Okada, A.: Preparation and mechanical properties of polypropylene-clay hybrids using a maleic anhydride-modified polypropylene oligomer. J. Appl. Polym. Sci. 67, 87–92 (1998)CrossRef
20.
Zurück zum Zitat Liang, Z.M., Yin, J.: Poly(etherimide)/montmorillonite nanocomposites prepared by melt intercalation. J. Appl. Polym. Sci. 90, 1857–1863 (2003)CrossRef Liang, Z.M., Yin, J.: Poly(etherimide)/montmorillonite nanocomposites prepared by melt intercalation. J. Appl. Polym. Sci. 90, 1857–1863 (2003)CrossRef
21.
Zurück zum Zitat Raquez, J.M., Habibi, Y., Murariu, M., Dubois, P.: Polylactide (PLA)-based nanocomposites. Prog. Polym. Sci. 38, 1504–1542 (2013)CrossRef Raquez, J.M., Habibi, Y., Murariu, M., Dubois, P.: Polylactide (PLA)-based nanocomposites. Prog. Polym. Sci. 38, 1504–1542 (2013)CrossRef
22.
Zurück zum Zitat Bafna, A., Beaucage, G., Mirabella, F., Mehta, S.: 3D hierarchical orientation in polymer–clay nanocomposite films. Polymer 44, 1103–1115 (2003)CrossRef Bafna, A., Beaucage, G., Mirabella, F., Mehta, S.: 3D hierarchical orientation in polymer–clay nanocomposite films. Polymer 44, 1103–1115 (2003)CrossRef
23.
Zurück zum Zitat Alexandre, M., Dubois, P.: Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng. R Reports 28, 1–63 (2000)CrossRef Alexandre, M., Dubois, P.: Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng. R Reports 28, 1–63 (2000)CrossRef
24.
Zurück zum Zitat Giannelis, E.P., Krishnamoorti, R., Manias, E.: Polymer-silicate nanocomposites: model systems for confined polymers and polymer brushes. Adv. Polym. Sci. 138, 108−147 (1999) Giannelis, E.P., Krishnamoorti, R., Manias, E.: Polymer-silicate nanocomposites: model systems for confined polymers and polymer brushes. Adv. Polym. Sci. 138, 108−147 (1999)
25.
Zurück zum Zitat Dennis, H.R., Hunter, D.L., Chang, D., Kim, S., White, J.L., Cho, J.W., et al.: Effect of melt processing conditions on the extent of exfoliation in organoclay-based nanocomposites. Polym. 42, 9513–9522 (2001)CrossRef Dennis, H.R., Hunter, D.L., Chang, D., Kim, S., White, J.L., Cho, J.W., et al.: Effect of melt processing conditions on the extent of exfoliation in organoclay-based nanocomposites. Polym. 42, 9513–9522 (2001)CrossRef
26.
Zurück zum Zitat Sinha Ray, S., Bousmina, M.: Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Prog. Mater Sci. 50, 962–1079 (2005)CrossRef Sinha Ray, S., Bousmina, M.: Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Prog. Mater Sci. 50, 962–1079 (2005)CrossRef
27.
Zurück zum Zitat Sinha Ray, S., Okamoto, M.: Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog. Polym. Sci. 28, 1539–1641 (2003)CrossRef Sinha Ray, S., Okamoto, M.: Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog. Polym. Sci. 28, 1539–1641 (2003)CrossRef
28.
Zurück zum Zitat Chen, J.-S., Poliks, M.D., Ober, C.K., Zhang, Y., Wiesner, U., Giannelis, E.: Study of the interlayer expansion mechanism and thermal–mechanical properties of surface-initiated epoxy nanocomposites. Polymer 43, 4895–4904 (2002)CrossRef Chen, J.-S., Poliks, M.D., Ober, C.K., Zhang, Y., Wiesner, U., Giannelis, E.: Study of the interlayer expansion mechanism and thermal–mechanical properties of surface-initiated epoxy nanocomposites. Polymer 43, 4895–4904 (2002)CrossRef
29.
Zurück zum Zitat Prime, R.B., Bair, H.E., Vyazovkin, S., Gallagher, P.K., Riga, A.: Thermogravimetric analysis (TGA). In: Menczel, D.J., Prime, B.R. (eds.) Thermal Analysis of Polymers, p. 241. Wiley, Hoboken (2009)CrossRef Prime, R.B., Bair, H.E., Vyazovkin, S., Gallagher, P.K., Riga, A.: Thermogravimetric analysis (TGA). In: Menczel, D.J., Prime, B.R. (eds.) Thermal Analysis of Polymers, p. 241. Wiley, Hoboken (2009)CrossRef
30.
Zurück zum Zitat Earnest, C.M., Compositional Analysis by Thermogravimetry: ASTM International (1988) Earnest, C.M., Compositional Analysis by Thermogravimetry: ASTM International (1988)
31.
Zurück zum Zitat Kumar, P.: Development of Bio-nanocomposite Films with Enhance Mechanical and Barrier Properties using Extrusion Processing. North Carolina State University, Raleigh (2009) Kumar, P.: Development of Bio-nanocomposite Films with Enhance Mechanical and Barrier Properties using Extrusion Processing. North Carolina State University, Raleigh (2009)
32.
Zurück zum Zitat Bikiaris, D.: Can nanoparticles really enhance thermal stability of polymers? Part II: An overview on thermal decomposition of polycondensation polymers. Thermochim. Acta 523, 25–45 (2011)CrossRef Bikiaris, D.: Can nanoparticles really enhance thermal stability of polymers? Part II: An overview on thermal decomposition of polycondensation polymers. Thermochim. Acta 523, 25–45 (2011)CrossRef
33.
Zurück zum Zitat Yang, K.K., Wang, X.L., YZ, W.: Progress in nanocomposite of biodegradable polymer. J Ind Eng Chem. 13, 485–500 (2007) Yang, K.K., Wang, X.L., YZ, W.: Progress in nanocomposite of biodegradable polymer. J Ind Eng Chem. 13, 485–500 (2007)
34.
Zurück zum Zitat Mohanty, A.K., Wibowo, A., Misra, M., Drzal, L.T.: Development of renewable resource–based cellulose acetate bioplastic: effect of process engineering on the performance of cellulosic plastics. Polym. Eng. Sci. 43, 1151–1161 (2003)CrossRef Mohanty, A.K., Wibowo, A., Misra, M., Drzal, L.T.: Development of renewable resource–based cellulose acetate bioplastic: effect of process engineering on the performance of cellulosic plastics. Polym. Eng. Sci. 43, 1151–1161 (2003)CrossRef
35.
Zurück zum Zitat Bandyopadhyay, S., Chen, R., Giannelis, E.P.: Biodegradable organic-inorganic hybrids based on poly(L-lactide). Polym. Mater. Sci. Eng. 81, 159–160 (1999) Bandyopadhyay, S., Chen, R., Giannelis, E.P.: Biodegradable organic-inorganic hybrids based on poly(L-lactide). Polym. Mater. Sci. Eng. 81, 159–160 (1999)
36.
Zurück zum Zitat Pluta, M., Galeski, A., Alexandre, M., Paul, M.A., Dubois, P.: Polylactide/montmorillonite nanocomposites and microcomposites prepared by melt blending: structure and some physical properties. J. Appl. Polym. Sci. 86, 1497–1506 (2002)CrossRef Pluta, M., Galeski, A., Alexandre, M., Paul, M.A., Dubois, P.: Polylactide/montmorillonite nanocomposites and microcomposites prepared by melt blending: structure and some physical properties. J. Appl. Polym. Sci. 86, 1497–1506 (2002)CrossRef
37.
Zurück zum Zitat Chen, C.X., Yoon, J.S.: Morphology and thermal properties of poly(L-lactide)/poly(butylene succinate-co-butylene adipate) compounded with twice functionalized clay. J. Polym. Sci. Part B: Polym. Phys. 43, 478–487 (2005)CrossRef Chen, C.X., Yoon, J.S.: Morphology and thermal properties of poly(L-lactide)/poly(butylene succinate-co-butylene adipate) compounded with twice functionalized clay. J. Polym. Sci. Part B: Polym. Phys. 43, 478–487 (2005)CrossRef
38.
Zurück zum Zitat Marras, S.I., Zuburtikudis, I., Panayiotou, C.: Nanostructure vs. microstructure: morphological and thermomechanical characterization of poly(l-lactic acid)/layered silicate hybrids. Eur. Polymer J. 43, 2191–2206 (2007)CrossRef Marras, S.I., Zuburtikudis, I., Panayiotou, C.: Nanostructure vs. microstructure: morphological and thermomechanical characterization of poly(l-lactic acid)/layered silicate hybrids. Eur. Polymer J. 43, 2191–2206 (2007)CrossRef
39.
Zurück zum Zitat Chang, J.H., An, Y.U., Cho, D., Giannelis, E.P.: Poly(lactic acid) nanocomposites: comparison of their properties with montmorillonite and synthetic mica (II). Polymer 44, 3715–3720 (2003)CrossRef Chang, J.H., An, Y.U., Cho, D., Giannelis, E.P.: Poly(lactic acid) nanocomposites: comparison of their properties with montmorillonite and synthetic mica (II). Polymer 44, 3715–3720 (2003)CrossRef
40.
Zurück zum Zitat Chang, J.H., An, Y.U., Sur, G.S.: Poly(lactic acid) nanocomposites with various organoclays. I. Thermomechanical properties, morphology and gas permeability. J. Polym. Sci., Part B: Polym. Phys. 41, 94–103 (2003)CrossRef Chang, J.H., An, Y.U., Sur, G.S.: Poly(lactic acid) nanocomposites with various organoclays. I. Thermomechanical properties, morphology and gas permeability. J. Polym. Sci., Part B: Polym. Phys. 41, 94–103 (2003)CrossRef
41.
Zurück zum Zitat Paul, M.A., Alexandre, M., Degée, P., Calberg, C., Jérôme, R., Dubois, P.: Exfoliated polylactide/clay nanocomposites by in-situ coordination-insertion polymerization. Macromol. Rapid Commun. 24, 561–566 (2003)CrossRef Paul, M.A., Alexandre, M., Degée, P., Calberg, C., Jérôme, R., Dubois, P.: Exfoliated polylactide/clay nanocomposites by in-situ coordination-insertion polymerization. Macromol. Rapid Commun. 24, 561–566 (2003)CrossRef
42.
Zurück zum Zitat Paul, M.A., Alexandre, M., Degée, P., Henrist, C., Rulmont, A., Dubois, P.: New nanocomposite materials based on plasticized poly(L-lactide) and organo-modified montmorillonites: thermal and morphological study. Polymer 44, 443–450 (2003)CrossRef Paul, M.A., Alexandre, M., Degée, P., Henrist, C., Rulmont, A., Dubois, P.: New nanocomposite materials based on plasticized poly(L-lactide) and organo-modified montmorillonites: thermal and morphological study. Polymer 44, 443–450 (2003)CrossRef
43.
Zurück zum Zitat Zhou, Q., Xanthos, M.: Nanosize and microsize clay effects on the kinetics of the thermal degradation of polylactides. Polym. Degrad. Stab. 94, 327–338 (2009)CrossRef Zhou, Q., Xanthos, M.: Nanosize and microsize clay effects on the kinetics of the thermal degradation of polylactides. Polym. Degrad. Stab. 94, 327–338 (2009)CrossRef
44.
Zurück zum Zitat Najafi, N., Heuzey, M.C., Carreau, P.J., Wood-Adams, P.M.: Control of thermal degradation of polylactide (PLA)-clay nanocomposites using chain extenders. Polym. Degrad. Stab. 97, 554–565 (2012)CrossRef Najafi, N., Heuzey, M.C., Carreau, P.J., Wood-Adams, P.M.: Control of thermal degradation of polylactide (PLA)-clay nanocomposites using chain extenders. Polym. Degrad. Stab. 97, 554–565 (2012)CrossRef
45.
Zurück zum Zitat Sivalingam, G., Madras, G.: Thermal degradation of binary physical mixtures and copolymers of poly(ε-caprolactone), poly(D, L-lactide), poly(glycolide). Polym. Degrad. Stab. 84, 393–398 (2004)CrossRef Sivalingam, G., Madras, G.: Thermal degradation of binary physical mixtures and copolymers of poly(ε-caprolactone), poly(D, L-lactide), poly(glycolide). Polym. Degrad. Stab. 84, 393–398 (2004)CrossRef
46.
Zurück zum Zitat Chrissafis, K., Antoniadis, G., Paraskevopoulos, K.M., Vassiliou, A., Bikiaris, D.N.: Comparative study of the effect of different nanoparticles on the mechanical properties and thermal degradation mechanism of in situ prepared poly(ε-caprolactone) nanocomposites. Compos. Sci. Technol. 67, 2165–2174 (2007)CrossRef Chrissafis, K., Antoniadis, G., Paraskevopoulos, K.M., Vassiliou, A., Bikiaris, D.N.: Comparative study of the effect of different nanoparticles on the mechanical properties and thermal degradation mechanism of in situ prepared poly(ε-caprolactone) nanocomposites. Compos. Sci. Technol. 67, 2165–2174 (2007)CrossRef
47.
Zurück zum Zitat Peng, H., Han, Y., Liu, T., Tjiu, W.C., He, C.: Morphology and thermal degradation behavior of highly exfoliated CoAl-layered double hydroxide/polycaprolactone nanocomposites prepared by simple solution intercalation. Thermochim. Acta 502, 1–7 (2010)CrossRef Peng, H., Han, Y., Liu, T., Tjiu, W.C., He, C.: Morphology and thermal degradation behavior of highly exfoliated CoAl-layered double hydroxide/polycaprolactone nanocomposites prepared by simple solution intercalation. Thermochim. Acta 502, 1–7 (2010)CrossRef
48.
Zurück zum Zitat Carrasco, F., Gámez-Pérez, J., Santana, O.O., Maspoch, M.L.: Processing of poly(lactic acid)/organomontmorillonite nanocomposites: microstructure, thermal stability and kinetics of the thermal decomposition. Chem. Eng. J. 178, 451–460 (2011)CrossRef Carrasco, F., Gámez-Pérez, J., Santana, O.O., Maspoch, M.L.: Processing of poly(lactic acid)/organomontmorillonite nanocomposites: microstructure, thermal stability and kinetics of the thermal decomposition. Chem. Eng. J. 178, 451–460 (2011)CrossRef
49.
Zurück zum Zitat Reich, L.: Elements of Polymer Degradation. McGraw-Hill, New York (1971) Reich, L.: Elements of Polymer Degradation. McGraw-Hill, New York (1971)
50.
Zurück zum Zitat Carrasco, F., Pagès, P., Gámez-Pérez, J., Santana, O.O., Maspoch, M.L.: Processing of poly(lactic acid): characterization of chemical structure, thermal stability and mechanical properties. Polym. Degrad. Stab. 95, 116–125 (2010)CrossRef Carrasco, F., Pagès, P., Gámez-Pérez, J., Santana, O.O., Maspoch, M.L.: Processing of poly(lactic acid): characterization of chemical structure, thermal stability and mechanical properties. Polym. Degrad. Stab. 95, 116–125 (2010)CrossRef
51.
Zurück zum Zitat Moreira, F.K.V., Pedro, D.C.A., Glenn, G.M., Marconcini, J.M., Mattoso, L.H.C.: Brucite nanoplates reinforced starch bionanocomposites. Carbohydr. Polym. 92, 1743–1751 (2013)CrossRef Moreira, F.K.V., Pedro, D.C.A., Glenn, G.M., Marconcini, J.M., Mattoso, L.H.C.: Brucite nanoplates reinforced starch bionanocomposites. Carbohydr. Polym. 92, 1743–1751 (2013)CrossRef
52.
Zurück zum Zitat Espino-Pérez, E., Bras, J., Ducruet, V., Guinault, A., Dufresne, A., Domenek, S.: Influence of chemical surface modification of cellulose nanowhiskers on thermal, mechanical, and barrier properties of poly(lactide) based bionanocomposites. Eur. Polymer J. 49, 3144–3154 (2013)CrossRef Espino-Pérez, E., Bras, J., Ducruet, V., Guinault, A., Dufresne, A., Domenek, S.: Influence of chemical surface modification of cellulose nanowhiskers on thermal, mechanical, and barrier properties of poly(lactide) based bionanocomposites. Eur. Polymer J. 49, 3144–3154 (2013)CrossRef
53.
Zurück zum Zitat Araújo, A., Botelho, G., Oliveira, M., Machado, A.V.: Influence of clay organic modifier on the thermal-stability of PLA based nanocomposites. Appl. Clay Sci. 88–89, 144–150 (2014)CrossRef Araújo, A., Botelho, G., Oliveira, M., Machado, A.V.: Influence of clay organic modifier on the thermal-stability of PLA based nanocomposites. Appl. Clay Sci. 88–89, 144–150 (2014)CrossRef
54.
Zurück zum Zitat Hakkarainen, M. Aliphatic Polyesters: abiotic and biotic degradation and degradation products. In: Albertsson, A.-C (ed.) Degradable Aliphatic Polyester, pp. 113–138. Springer, Heidelberg (2002) Hakkarainen, M. Aliphatic Polyesters: abiotic and biotic degradation and degradation products. In: Albertsson, A.-C (ed.) Degradable Aliphatic Polyester, pp. 113–138. Springer, Heidelberg (2002)
55.
Zurück zum Zitat Rosa, D.S., Lotto, N.T., Lopes, D.R., Guedes, C.G.F.: The use of roughness for evaluating the biodegradation of poly-β-(hydroxybutyrate) and poly-β-(hydroxybutyrate-co-β-valerate). Polym. Testing 23, 3–8 (2004)CrossRef Rosa, D.S., Lotto, N.T., Lopes, D.R., Guedes, C.G.F.: The use of roughness for evaluating the biodegradation of poly-β-(hydroxybutyrate) and poly-β-(hydroxybutyrate-co-β-valerate). Polym. Testing 23, 3–8 (2004)CrossRef
56.
Zurück zum Zitat Lotto, N.T., Calil, M.R., Guedes, C.G.F., Rosa, D.S.: The effect of temperature on the biodegradation test. Mater. Sci. Eng. C 24, 659–662 (2004)CrossRef Lotto, N.T., Calil, M.R., Guedes, C.G.F., Rosa, D.S.: The effect of temperature on the biodegradation test. Mater. Sci. Eng. C 24, 659–662 (2004)CrossRef
57.
Zurück zum Zitat Reddy, C.G.: R. Rashmi, Kalia, VC. Polyhydroxyalkanoates: an overview. Bioresour. Technol. 87, 137–146 (2003)CrossRef Reddy, C.G.: R. Rashmi, Kalia, VC. Polyhydroxyalkanoates: an overview. Bioresour. Technol. 87, 137–146 (2003)CrossRef
58.
Zurück zum Zitat de Jong, S.J., Arias, E.R., Rijkers, D.T.S., van Nostrum, C.F., Kettenes-van den Bosch, J.J., Hennink, W.E.: New insights into the hydrolytic degradation of poly(lactic acid): participation of the alcohol terminus. Polymer 42, 2795–2802 (2001) de Jong, S.J., Arias, E.R., Rijkers, D.T.S., van Nostrum, C.F., Kettenes-van den Bosch, J.J., Hennink, W.E.: New insights into the hydrolytic degradation of poly(lactic acid): participation of the alcohol terminus. Polymer 42, 2795–2802 (2001)
59.
Zurück zum Zitat Fukushima, K., Tabuani, D., Dottori, M., Armentano, I., Kenny, J.M., Camino, G.: Effect of temperature and nanoparticle type on hydrolytic degradation of poly(lactic acid) nanocomposites. Polym. Degrad. Stab. 96, 2120–2129 (2011)CrossRef Fukushima, K., Tabuani, D., Dottori, M., Armentano, I., Kenny, J.M., Camino, G.: Effect of temperature and nanoparticle type on hydrolytic degradation of poly(lactic acid) nanocomposites. Polym. Degrad. Stab. 96, 2120–2129 (2011)CrossRef
60.
Zurück zum Zitat Zhou, Q., Xanthos, M.: Nanoclay and crystallinity effects on the hydrolytic degradation of polylactides. Polym. Degrad. Stab. 93, 1450–1459 (2008)CrossRef Zhou, Q., Xanthos, M.: Nanoclay and crystallinity effects on the hydrolytic degradation of polylactides. Polym. Degrad. Stab. 93, 1450–1459 (2008)CrossRef
61.
Zurück zum Zitat Signori, F., Coltelli, M.-B., Bronco, S.: Thermal degradation of poly(lactic acid) (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) and their blends upon melt processing. Polym. Degrad. Stab. 94, 74–82 (2009)CrossRef Signori, F., Coltelli, M.-B., Bronco, S.: Thermal degradation of poly(lactic acid) (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) and their blends upon melt processing. Polym. Degrad. Stab. 94, 74–82 (2009)CrossRef
62.
Zurück zum Zitat Gleadall, A., Pan, J., Kruft, M.-A., Kellomäki, M.: Degradation mechanisms of bioresorbable polyesters. Part 1. Effects of random scission, end scission and autocatalysis. Acta Biomater. 10, 2223–2232 (2014)CrossRef Gleadall, A., Pan, J., Kruft, M.-A., Kellomäki, M.: Degradation mechanisms of bioresorbable polyesters. Part 1. Effects of random scission, end scission and autocatalysis. Acta Biomater. 10, 2223–2232 (2014)CrossRef
63.
Zurück zum Zitat Nieddu, E., Mazzucco, L., Gentile, P., Benko, T., Balbo, V., Mandrile, R., et al.: Preparation and biodegradation of clay composites of PLA. React. Funct. Polym. 69, 371–379 (2009)CrossRef Nieddu, E., Mazzucco, L., Gentile, P., Benko, T., Balbo, V., Mandrile, R., et al.: Preparation and biodegradation of clay composites of PLA. React. Funct. Polym. 69, 371–379 (2009)CrossRef
64.
Zurück zum Zitat Chivrac, F., Pollet, E., Schmutz, M., Avérous, L.: Starch nano-biocomposites based on needle-like sepiolite clays. Carbohydr. Polym. 80, 145–153 (2010)CrossRef Chivrac, F., Pollet, E., Schmutz, M., Avérous, L.: Starch nano-biocomposites based on needle-like sepiolite clays. Carbohydr. Polym. 80, 145–153 (2010)CrossRef
65.
Zurück zum Zitat Bruzaud, S., Bourmaud, A.: Thermal degradation and (nano)mechanical behavior of layered silicate reinforced poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanocomposites. Polym. Testing 26, 652–659 (2007)CrossRef Bruzaud, S., Bourmaud, A.: Thermal degradation and (nano)mechanical behavior of layered silicate reinforced poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanocomposites. Polym. Testing 26, 652–659 (2007)CrossRef
66.
Zurück zum Zitat Ten, E., Turtle, J., Bahr, D., Jiang, L., Wolcott, M.: Thermal and mechanical properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/cellulose nanowhiskers composites. Polymer 51, 2652–2660 (2010)CrossRef Ten, E., Turtle, J., Bahr, D., Jiang, L., Wolcott, M.: Thermal and mechanical properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/cellulose nanowhiskers composites. Polymer 51, 2652–2660 (2010)CrossRef
67.
Zurück zum Zitat Pantoustier, N., Alexandre, M., Degée, P., Calberg, C., Jérôme, R., Henrist, C., et al.: Poly(η-caprolactone) layered silicate nanocomposites: effect of clay surface modifiers on the melt intercalation process. e-Polymers 77 (2001) Pantoustier, N., Alexandre, M., Degée, P., Calberg, C., Jérôme, R., Henrist, C., et al.: Poly(η-caprolactone) layered silicate nanocomposites: effect of clay surface modifiers on the melt intercalation process. e-Polymers 77 (2001)
68.
Zurück zum Zitat Cyras, V.P., Manfredi, L.B., Ton-That, M.-T., Vázquez, A.: Physical and mechanical properties of thermoplastic starch/montmorillonite nanocomposite films. Carbohydr. Polym. 73, 55–63 (2008)CrossRef Cyras, V.P., Manfredi, L.B., Ton-That, M.-T., Vázquez, A.: Physical and mechanical properties of thermoplastic starch/montmorillonite nanocomposite films. Carbohydr. Polym. 73, 55–63 (2008)CrossRef
69.
Zurück zum Zitat Schlemmer, D., Angélica, R.S., Sales, M.J.A.: Morphological and thermomechanical characterization of thermoplastic starch/montmorillonite nanocomposites. Compos. Struct. 92, 2066–2070 (2010)CrossRef Schlemmer, D., Angélica, R.S., Sales, M.J.A.: Morphological and thermomechanical characterization of thermoplastic starch/montmorillonite nanocomposites. Compos. Struct. 92, 2066–2070 (2010)CrossRef
70.
Zurück zum Zitat Luiz de Paula E, Mano V, Pereira FV. : Influence of cellulose nanowhiskers on the hydrolytic degradation behavior of poly (d,l-lactide). Polym Degrad Stab. 96, 1631−1638 (2011) Luiz de Paula E, Mano V, Pereira FV. : Influence of cellulose nanowhiskers on the hydrolytic degradation behavior of poly (d,l-lactide). Polym Degrad Stab. 96, 1631−1638 (2011)
71.
Zurück zum Zitat Hossain, K.Z., Ahmed, I., Parsons, A., Scotchford, C., Walker, G., Thielemans, W., et al.: Physico-chemical and mechanical properties of nanocomposites prepared using cellulose nanowhiskers and poly(lactic acid). J. Mater. Sci. 47, 2675–2686 (2012)CrossRef Hossain, K.Z., Ahmed, I., Parsons, A., Scotchford, C., Walker, G., Thielemans, W., et al.: Physico-chemical and mechanical properties of nanocomposites prepared using cellulose nanowhiskers and poly(lactic acid). J. Mater. Sci. 47, 2675–2686 (2012)CrossRef
72.
Zurück zum Zitat Wang, D., Yu, J., Zhang, J., He, J., Zhang, J.: Transparent bionanocomposites with improved properties from poly (propylene carbonate) (PPC) and cellulose nanowhiskers (CNWs). Compos. Sci. Technol. 85, 83–89 (2013)CrossRef Wang, D., Yu, J., Zhang, J., He, J., Zhang, J.: Transparent bionanocomposites with improved properties from poly (propylene carbonate) (PPC) and cellulose nanowhiskers (CNWs). Compos. Sci. Technol. 85, 83–89 (2013)CrossRef
73.
Zurück zum Zitat Fortunati, E., D’Angelo, F., Martino, S., Orlacchio, A., Kenny, J.M., Armentano, I.: Carbon nanotubes and silver nanoparticles for multifunctional conductive biopolymer composites. Carbon 49, 2370–2379 (2011)CrossRef Fortunati, E., D’Angelo, F., Martino, S., Orlacchio, A., Kenny, J.M., Armentano, I.: Carbon nanotubes and silver nanoparticles for multifunctional conductive biopolymer composites. Carbon 49, 2370–2379 (2011)CrossRef
74.
Zurück zum Zitat Hapuarachchi, T.D., Peijs, T.: Multiwalled carbon nanotubes and sepiolite nanoclays as flame retardants for polylactide and its natural fibre reinforced composites. Compos. A Appl. Sci. Manuf. 41, 954–963 (2010)CrossRef Hapuarachchi, T.D., Peijs, T.: Multiwalled carbon nanotubes and sepiolite nanoclays as flame retardants for polylactide and its natural fibre reinforced composites. Compos. A Appl. Sci. Manuf. 41, 954–963 (2010)CrossRef
75.
Zurück zum Zitat Sadegh-Hassani, F., Mohammadi Nafchi, A.: Preparation and characterization of bionanocomposites films based on potato starch/halloysite nanoclay. Int. J. Biol. Macromol. 67, pp. 458-462 (2014) Sadegh-Hassani, F., Mohammadi Nafchi, A.: Preparation and characterization of bionanocomposites films based on potato starch/halloysite nanoclay. Int. J. Biol. Macromol. 67, pp. 458-462 (2014)
76.
Zurück zum Zitat Ojijo, V., Ray, S.S.: Nano-biocomposites based on synthetic aliphatic polyesters and nanoclay. Prog. Mater. Sci. 62, 1–57 (2014)CrossRef Ojijo, V., Ray, S.S.: Nano-biocomposites based on synthetic aliphatic polyesters and nanoclay. Prog. Mater. Sci. 62, 1–57 (2014)CrossRef
77.
Zurück zum Zitat Nerantzaki, M., Papageorgiou, G.Z., Bikiaris D.N.: Effect of nanofiller’s type on the thermal properties and enzymatic degradation of poly(ε-caprolactone). Polym. Degrad. Stab. 108, 257–268 (2014) Nerantzaki, M., Papageorgiou, G.Z., Bikiaris D.N.: Effect of nanofiller’s type on the thermal properties and enzymatic degradation of poly(ε-caprolactone). Polym. Degrad. Stab. 108, 257–268 (2014)
78.
Zurück zum Zitat Liu, X., Zou, Y., Li, W., Cao, G., Chen, W.: Kinetics of thermo-oxidative and thermal degradation of poly(d, l-lactide) (PDLLA) at processing temperature. Polym. Degrad. Stab. 91, 3259–3265 (2006)CrossRef Liu, X., Zou, Y., Li, W., Cao, G., Chen, W.: Kinetics of thermo-oxidative and thermal degradation of poly(d, l-lactide) (PDLLA) at processing temperature. Polym. Degrad. Stab. 91, 3259–3265 (2006)CrossRef
79.
Zurück zum Zitat Hule, R.A., Pochan, D.J.: Polymer nanocomposites for biomedical applications. MRS Bull. 32, 354–358 (2007)CrossRef Hule, R.A., Pochan, D.J.: Polymer nanocomposites for biomedical applications. MRS Bull. 32, 354–358 (2007)CrossRef
80.
Zurück zum Zitat Bharadwaj, R.K.: Modeling the barrier properties of polymer-layered silicate nanocomposites. Macromolecules 34, 9189–9192 (2001)CrossRef Bharadwaj, R.K.: Modeling the barrier properties of polymer-layered silicate nanocomposites. Macromolecules 34, 9189–9192 (2001)CrossRef
81.
Zurück zum Zitat Sorrentino, A., Gorrasi, G., Vittoria, V.: Potential perspectives of bio-nanocomposites for food packaging applications. Trends Food Sci. Technol. 18, 84–95 (2007)CrossRef Sorrentino, A., Gorrasi, G., Vittoria, V.: Potential perspectives of bio-nanocomposites for food packaging applications. Trends Food Sci. Technol. 18, 84–95 (2007)CrossRef
82.
Zurück zum Zitat Emamifar, A., Kadivar, M., Shahedi, M., Soleimanian-Zad, S.: Evaluation of nanocomposite packaging containing Ag and ZnO on shelf life of fresh orange juice. Innovative Food Sci. Emerg. Technol. 11, 742–748 (2010)CrossRef Emamifar, A., Kadivar, M., Shahedi, M., Soleimanian-Zad, S.: Evaluation of nanocomposite packaging containing Ag and ZnO on shelf life of fresh orange juice. Innovative Food Sci. Emerg. Technol. 11, 742–748 (2010)CrossRef
83.
Zurück zum Zitat Chaudhry, Q., Scotter, M., Blackburn, J., Ross, B., Boxall, A., Castle, L., et al.: Applications and implications of nanotechnologies for the food sector. Food Addit. Contam. Part A Chem. Anal. Control Exposure Risk Asses. 25, 241–258 (2008)CrossRef Chaudhry, Q., Scotter, M., Blackburn, J., Ross, B., Boxall, A., Castle, L., et al.: Applications and implications of nanotechnologies for the food sector. Food Addit. Contam. Part A Chem. Anal. Control Exposure Risk Asses. 25, 241–258 (2008)CrossRef
84.
Zurück zum Zitat Tiwari, A.: Frontiers in bio-nanocomposites. Advanced. Mater. Lett. 2, 377 (2011)CrossRef Tiwari, A.: Frontiers in bio-nanocomposites. Advanced. Mater. Lett. 2, 377 (2011)CrossRef
85.
Zurück zum Zitat Madhavan Nampoothiri, K., Nair, N.R., John, R.P.: An overview of the recent developments in polylactide (PLA) research. Bioresour. Technol. 101, 8493–8501 (2010)CrossRef Madhavan Nampoothiri, K., Nair, N.R., John, R.P.: An overview of the recent developments in polylactide (PLA) research. Bioresour. Technol. 101, 8493–8501 (2010)CrossRef
86.
Zurück zum Zitat Li, H.Y., Chang, C.M., Hsu, K.Y., Liu, Y.L.: Poly(lactide)-functionalized and Fe 3O 4 nanoparticle-decorated multiwalled carbon nanotubes for preparation of electrically-conductive and magnetic poly(lactide) films and electrospun nanofibers. J. Mater. Chem. 22, 4855–4860 (2012)CrossRef Li, H.Y., Chang, C.M., Hsu, K.Y., Liu, Y.L.: Poly(lactide)-functionalized and Fe 3O 4 nanoparticle-decorated multiwalled carbon nanotubes for preparation of electrically-conductive and magnetic poly(lactide) films and electrospun nanofibers. J. Mater. Chem. 22, 4855–4860 (2012)CrossRef
87.
Zurück zum Zitat Murariu, M., Bonnaud, L., Yoann, P., Fontaine, G., Bourbigot, S., Dubois, P.: New trends in polylactide (PLA)-based materials: “Green” PLA-Calcium sulfate (nano) composites tailored with flame retardant properties. Polym. Degrad. Stab. 95, 374–381 (2010)CrossRef Murariu, M., Bonnaud, L., Yoann, P., Fontaine, G., Bourbigot, S., Dubois, P.: New trends in polylactide (PLA)-based materials: “Green” PLA-Calcium sulfate (nano) composites tailored with flame retardant properties. Polym. Degrad. Stab. 95, 374–381 (2010)CrossRef
88.
Zurück zum Zitat Cabedo, L., Feijoo, J.L., Villanueva, M.P., Lagarón, J.M., Giménez, E.: Optimization of biodegradable nanocomposites based on aPLA/PCL blends for food packaging applications. Macromol. Symp. 233, 191–197 (2006)CrossRef Cabedo, L., Feijoo, J.L., Villanueva, M.P., Lagarón, J.M., Giménez, E.: Optimization of biodegradable nanocomposites based on aPLA/PCL blends for food packaging applications. Macromol. Symp. 233, 191–197 (2006)CrossRef
89.
Zurück zum Zitat ReportLinker. Packaging Industry: Market Research Reports, Statistics and Analysis. ReportLinker (2014) ReportLinker. Packaging Industry: Market Research Reports, Statistics and Analysis. ReportLinker (2014)
Metadaten
Titel
Thermal Degradation of Bio-nanocomposites
verfasst von
Kieran A. Murray
John A. Killion
Ian Major
Luke M. Geever
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-03464-5_9

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.