2019 | OriginalPaper | Buchkapitel
Tipp
Weitere Kapitel dieses Buchs durch Wischen aufrufen
Erschienen in:
Advanced Tire Mechanics
Wear is phenomenologically characterized by not only physical factors, such as fracture, but also chemical factors, such as oxidization.
Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten
Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:
Anzeige
(i)
In the case that
l
h >
l/2,
$$\begin{array}{*{20}l} {S_{y} = 0\quad 0 \le x < l_{h} } \hfill \\ {S_{y} = x\tan \alpha - S_{h} \quad l_{h} \le x < x_{h} } \hfill \\ {S_{y} = x\tan \alpha - \mu q_{z} (x)/C_{y}^{\text{down}} \quad x_{h} \le x < l}. \hfill \\ \end{array}$$
(14.190)
$$\begin{array}{*{20}l} {S_{y} = 0\quad 0 \le x < l_{h} } \hfill \\ {S_{y} = x\tan \alpha - S_{h} \quad l_{h} \le x < x_{h} } \hfill \\ {S_{y} = x\tan \alpha - \mu q_{z} (x)/C_{y}^{\text{down}} \quad x_{h} \le x < l}. \hfill \\ \end{array}$$
(14.190)
$$C_{y}^{\text{up}} \tan \alpha \cdot l_{h} = \mu q_{z} (l_{h} ) = 4\mu p_{m} \frac{{l_{h} }}{l}(1 - \frac{{l_{h} }}{l}).$$
(14.191)
$$\zeta_{y} = C_{y}^{\text{up}} l\tan \alpha /(4\mu p_{m} ).$$
(14.192)
$$\begin{array}{*{20}l} {l_{h} = l\left( {1 - \zeta_{y} } \right)\quad 0 \le \zeta_{y} \le 1} \hfill \\ {l_{h} = 0\quad 1 < \zeta_{y} }. \hfill \\ \end{array}$$
(14.193)
$$S_{h} = \tan \alpha \cdot l_{h} = \mu q_{z} (l_{h} )/C_{y}^{\text{up}} = \mu q_{z} (x_{h} )/C_{y}^{\text{down}} .$$
(14.194)
$$q_{z} (x_{h} ) = C_{y}^{\text{down}} /C_{y}^{\text{up}} \cdot q_{z} (l_{h} ) = \rho q_{z} (l_{h} ),$$
(14.195)
$$\rho = C_{y}^{\text{down}} /C_{y}^{\text{up}} \le 1.$$
(14.196)
$$\begin{aligned} E_{y}^{\text{w}} & = \int\limits_{0}^{2\pi r} {\mu q_{z} (x){\text{d}}y} = \int\limits_{{l_{h} }}^{l} {\mu q_{z} (x)\frac{{{\text{d}}y}}{{{\text{d}}x}}{\text{d}}x} = \int\limits_{{l_{h} }}^{{x_{h} }} {\mu q_{z} (x)\tan \alpha {\text{d}}x} \\ & \quad + \int\limits_{{x_{h} }}^{l} {\mu q_{z} (x)\left( {\tan \alpha - \frac{{\mu q_{z}^{\prime } (x)}}{{C_{y}^{\text{down}} }}} \right){\text{d}}x} \\ & = \mu \tan \alpha \int\limits_{{l_{h} }}^{l} {q_{z} (x){\text{d}}x} - \frac{1}{2}\frac{{\mu^{2} }}{{C_{y}^{\text{down}} }}\int\limits_{{x_{h} }}^{l} {\frac{{{\text{d}}q_{z}^{2} (x)}}{{{\text{d}}x}}{\text{d}}x} \\ & = \mu \tan \alpha \int\limits_{{l_{h} }}^{l} {q_{z} (x){\text{d}}x} + \frac{1}{2}\frac{{\mu^{2} }}{{C_{y}^{\text{down}} }}q_{z}^{2} (x_{h} ). \\ \end{aligned}$$
(14.197)
$$\begin{array}{*{20}l} {E_{y}^{\text{w}} = \mu \tan \alpha \int\limits_{{l_{h} }}^{l} {q_{z} (x){\text{d}}x} + \frac{1}{2}\frac{{\mu^{2} }}{{C_{y}^{\text{up}} }}q_{z}^{2} (l_{h} ) - \frac{1}{2}\frac{{\mu^{2} }}{{C_{y}^{\text{up}} }}q_{z}^{2} (l_{h} ) + \frac{1}{2}\rho \frac{{\mu^{2} }}{{C_{y}^{\text{up}} }}q_{z}^{2} (l_{h} )} \hfill \\ { = \left\{ {\mu \tan \alpha \int\limits_{{l_{h} }}^{l} {q_{z} (x){\text{d}}x} + \frac{1}{2}\frac{{\mu^{2} }}{{C_{y}^{\text{up}} }}q_{z}^{2} (l_{h} )} \right\} - \left\{ {\frac{1}{2}\frac{{\mu^{2} }}{{C_{y}^{\text{up}} }}q_{z}^{2} (l_{h} )(1 - \rho )} \right\}}. \hfill \\ \end{array}$$
(14.198)
(ii)
In the case that
l
h ≤
l/2,
where
l
h is given by Eq. (
14.191) and
x
h is given by
$$\begin{array}{*{20}l} {S_{y} = 0\quad 0 \le x < l_{h} } \hfill \\ {S_{y} = x\tan \alpha - \mu q_{z} (x)/C_{y}^{\text{up}} \quad l_{h} \le x < l/2} \hfill \\ {S_{y} = x\tan \alpha - S_{l/2} \quad l/2 \le x < x_{h} } \hfill \\ {S_{y} = x\tan \alpha - \mu q_{z} (x)/C_{y}^{\text{down}} \quad x_{h} \le x < l}, \hfill \\ \end{array}$$
(14.199)
$$S_{l/2} = \mu p_{m} /C_{y}^{\text{up}} = \mu q_{z} (l/2)/C_{y}^{\text{up}} = \mu q_{z} (x_{h} )/C_{y}^{\text{down}} .$$
(14.200)
$$\begin{array}{*{20}l} {S_{y} = 0\quad 0 \le x < l_{h} } \hfill \\ {S_{y} = x\tan \alpha - \mu q_{z} (x)/C_{y}^{\text{up}} \quad l_{h} \le x < l/2} \hfill \\ {S_{y} = x\tan \alpha - S_{l/2} \quad l/2 \le x < x_{h} } \hfill \\ {S_{y} = x\tan \alpha - \mu q_{z} (x)/C_{y}^{\text{down}} \quad x_{h} \le x < l}, \hfill \\ \end{array}$$
(14.199)
$$S_{l/2} = \mu p_{m} /C_{y}^{\text{up}} = \mu q_{z} (l/2)/C_{y}^{\text{up}} = \mu q_{z} (x_{h} )/C_{y}^{\text{down}} .$$
(14.200)
$$q_{z} (x_{h} ) = C_{y}^{\text{down}} /C_{y}^{\text{up}} \cdot q_{z} (l/2) = \rho q_{z} (l/2).$$
(14.201)
$$\begin{aligned} E_{y}^{\text{w}} & = \int\limits_{{l_{h} }}^{l} {\mu q_{z} (x)\frac{{{\text{d}}y}}{{{\text{d}}x}}{\text{d}}x} = \int\limits_{{l_{h} }}^{l/2} {\mu q_{z} (x))\left( {\tan \alpha - \frac{{\mu q_{z}^{\prime } (x)}}{{C_{y}^{\text{up}} }}} \right){\text{d}}x} + \int\limits_{l/2}^{{x_{h} }} {\mu q_{z} (x)\tan \alpha {\text{d}}x} \\ & \quad + \int\limits_{{x_{h} }}^{l} {\mu q_{z} (x)\left( {\tan \alpha - \frac{{\mu q_{z}^{\prime } (x)}}{{C_{y}^{\text{down}} }}} \right){\text{d}}x} = \mu \tan \alpha \int\limits_{{l_{h} }}^{l} {q_{z} (x){\text{d}}x} - \frac{1}{2}\frac{{\mu^{2} }}{{C_{y}^{\text{up}} }}\int\limits_{{l_{h} }}^{l/2} {\frac{{{\text{d}}q_{z}^{2} (x)}}{{{\text{d}}x}}{\text{d}}x} \\ & \quad - \frac{1}{2}\frac{{\mu^{2} }}{{C_{y}^{\text{down}} }}\int\limits_{{x_{h} }}^{l} {\frac{{{\text{d}}q_{z}^{2} (x)}}{{{\text{d}}x}}{\text{d}}x} \\ & = \mu \tan \alpha \int\limits_{{l_{h} }}^{l} {q_{z} (x){\text{d}}x} - \frac{1}{2}\frac{{\mu^{2} }}{{C_{y}^{\text{up}} }}\left\{ {q_{z}^{2} (l/2) - q_{z}^{2} (l_{h} )} \right\} + \frac{1}{2}\frac{{\mu^{2} }}{{C_{y}^{\text{down}} }}\left\{ {q_{z}^{2} (x_{h} )} \right\} \\ & = \mu \tan \alpha \int\limits_{{l_{h} }}^{l} {q_{z} (x){\text{d}}x} + \frac{1}{2}\frac{{\mu^{2} q_{z}^{2} (l_{h} )}}{{C_{y}^{\text{up}} }} - \frac{1}{2}\frac{{\mu^{2} }}{{C_{y}^{\text{up}} }}q_{z}^{2} (l/2) + \frac{1}{2}\frac{{\mu^{2} }}{{C_{y}^{\text{down}} }}\left\{ {q_{z}^{2} (x_{h} )} \right\}. \\ \end{aligned}$$
(14.202)
$$E_{y}^{\text{w}} = \left\{ {\mu \tan \alpha \int\limits_{{l_{h} }}^{l} {q_{z} (x){\text{d}}x} + \frac{1}{2}\frac{{\mu^{2} }}{{C_{y}^{\text{up}} }}q_{z}^{2} (l_{h} )} \right\} - \left\{ {\frac{1}{2}\frac{{\mu^{2} }}{{C_{y}^{\text{up}} }}q_{z}^{2} (l/2)(1 - \rho )} \right\}.$$
(14.203)
$$F_{y} = G\gamma S = G \cdot y/H \cdot ab = \left( {G/H \cdot ab} \right)y,$$
Fig. 14.92
Shear deformation of the tread pattern
×
Equation
(
14.46
)
From Eq. (
11.53), we obtain
$$C_{F\alpha } = \frac{{bl^{2} C_{y} }}{{2\left( {1 + \frac{{b\lambda^{3} l^{3} }}{{12k_{s} }}C_{y} } \right)}} = \frac{1}{{\frac{2}{{bl^{2} C_{y} }} + \frac{{b\lambda^{3} l^{3} }}{{6bl^{2} C_{y} k_{s} }}C_{y} }} = \frac{1}{{\frac{2H}{{bl^{2} G_{y} }} + \frac{{\lambda^{3} l}}{{6k_{s} }}}}.$$
$$C_{F\alpha } = \frac{1}{{\frac{2H}{{bl^{2} G_{y} }} + \root 4 \of {{{\frac{{k_{s}^{3} }}{{4^{3} \left( {EI_{z} } \right)^{3} }}}}\frac{l}{{6k_{s} }}}}} = \frac{1}{{\frac{2H}{{bl^{2} G_{y} }} + \frac{l}{{12\sqrt 2 \root 4 \of {{{\left( {EI_{z} } \right)^{3} k_{s} }}}}}}}.$$
$$\frac{P/2}{A} = G\frac{{d_{1} }}{L/2} \to d_{1} = \frac{PL}{4AG}.$$
Fig. 14.93
Bending and shear deformations of the tread block
×
The reason for the value of 2 in the third term is that when the variable of integration is changed from
L to
α, the integral is taken twice in the integration region from
α
0 −
α
m to
α
0 +
α
m.
$$\begin{aligned} \frac{1}{\pi }\int\limits_{0}^{{\alpha_{0} + \alpha_{m} }} {\frac{{\alpha^{2} }}{{\sqrt {\alpha_{m}^{2} - \left( {\alpha - \alpha_{0} } \right)^{2} } }}{\text{d}}\alpha } & = \frac{3}{2\pi }\alpha_{m} \alpha_{0} \sqrt {1 - \left( {\frac{{\alpha_{0} }}{{\alpha_{m} }}} \right)^{2} } + \frac{1}{2}\left( {\frac{{\alpha_{m}^{2} }}{2} + \alpha_{0}^{2} } \right) \\ & \quad + \frac{1}{\pi }\left( {\frac{{\alpha_{m}^{2} }}{2} + \alpha_{0}^{2} } \right)\sin^{ - 1} \left( {\frac{{\alpha_{0} }}{{\alpha_{m} }}} \right) \\ \frac{1}{\pi }\int\limits_{{\alpha_{0} - \alpha_{m} }}^{0} {\frac{{\alpha^{2} }}{{\sqrt {\alpha_{m}^{2} - \left( {\alpha - \alpha_{0} } \right)^{2} } }}{\text{d}}\alpha } & = \frac{1}{\pi }\int\limits_{0}^{{ - \alpha_{0} + \alpha_{m} }} {\frac{{\alpha^{2} }}{{\sqrt {\alpha_{m}^{2} - \left( {\alpha + \alpha_{0} } \right)^{2} } }}{\text{d}}\alpha } \\ \end{aligned}$$
$$\begin{array}{*{20}l} { \left\langle E^{\text{w}} \right\rangle = \frac{1}{\pi }\int\limits_{{\alpha_{0} - \alpha_{m} }}^{0} {a^{ - } \frac{{\alpha^{2} }}{{\sqrt {\alpha_{m}^{2} - \left( {\alpha - \alpha_{0} } \right)^{2} } }}{\text{d}}\alpha } + \frac{1}{\pi }\int\limits_{0}^{{\alpha_{0} + \alpha_{m} }} {a^{ + } \frac{{\alpha^{2} }}{{\sqrt {\alpha_{m}^{2} - \left( {\alpha - \alpha_{0} } \right)^{2} } }}{\text{d}}\alpha } } \hfill \\ {\quad = \left( {\frac{{\alpha_{m}^{2} }}{2} + \alpha_{0}^{2} } \right)a_{0} + \frac{2}{\pi }\left\{ {\left( {\frac{{\alpha_{m}^{2} }}{2} + \alpha_{0}^{2} } \right)\sin^{ - 1} \left( {\frac{{\alpha_{0} }}{{\alpha_{m} }}} \right) + \frac{3}{2}\alpha_{m} \alpha_{0} \sqrt {1 - \left( {\frac{{\alpha_{0} }}{{\alpha_{m} }}} \right)^{2} } } \right\}b \cdot y} . \hfill \\ \end{array}$$
$$\left\langle E^{\text{w}} \right\rangle \cong \left( {\frac{{\alpha_{m}^{2} }}{2} + \alpha_{0}^{2} } \right)a_{0} + \frac{4}{\pi }\alpha_{m} \alpha_{0} b \cdot y.$$
$$\begin{aligned} & \int\limits_{0}^{{\alpha_{0} + \alpha_{m} }} {\frac{{\alpha^{2} }}{{\sqrt {2\pi } \sigma }}{\text{e}}^{{ - \frac{{\left( {\alpha - \alpha_{0} } \right)^{2} }}{{2\sigma^{2} }}}} {\text{d}}\alpha } \cong \int\limits_{0}^{\infty } {\frac{{\alpha^{2} }}{{\sqrt {2\pi } \sigma }}{\text{e}}^{{ - \frac{{\left( {\alpha - \alpha_{0} } \right)^{2} }}{{2\sigma^{2} }}}} {\text{d}}\alpha = \frac{1}{{\sqrt {2\pi } \sigma }}\int\limits_{{ - \alpha_{0} }}^{\infty } {x^{2} {\text{e}}^{{ - \frac{{x^{2} }}{{2\sigma^{2} }}}} {\text{d}}x} } \\ & + \frac{{2\alpha_{0} }}{{\sqrt {2\pi } \sigma }}\int\limits_{{ - \alpha_{0} }}^{\infty } {x{\text{e}}^{{ - \frac{{x^{2} }}{{2\sigma^{2} }}}} {\text{d}}x} + \frac{{\alpha_{0}^{2} }}{{\sqrt {2\pi } \sigma }}\int\limits_{{ - \alpha_{0} }}^{\infty } {\frac{{x^{2} }}{{\sqrt {2\pi } \sigma }}{\text{e}}^{{ - \frac{{x^{2} }}{{2\sigma^{2} }}}} {\text{d}}x} \\ & = - \frac{{\sigma \alpha_{0} }}{{\sqrt {2\pi } }}{\text{e}}^{{ - \frac{{\alpha_{0}^{2} }}{{2\sigma^{2} }}}} + \frac{{\sigma^{2} }}{2}erfc\left( { - \frac{{\alpha_{0} }}{\sqrt 2 \sigma }} \right) + \frac{{2\sigma \alpha_{0} }}{{\sqrt {2\pi } }}{\text{e}}^{{ - \frac{{\alpha_{0}^{2} }}{{2\sigma^{2} }}}} + \frac{{\alpha_{0}^{2} }}{2}erfc\left( { - \frac{{\alpha_{0} }}{\sqrt 2 \sigma }} \right) \\ & = \frac{{\sigma \alpha_{0} }}{{\sqrt {2\pi } }}{\text{e}}^{{ - \frac{{\alpha_{0}^{2} }}{{2\sigma^{2} }}}} + \frac{{\sigma^{2} + \alpha_{0}^{2} }}{2}erfc\left( { - \frac{{\alpha_{0} }}{\sqrt 2 \sigma }} \right), \\ \end{aligned}$$
$$\begin{array}{*{20}l} {erfc\left( x \right) = 1 - erf(x)} \hfill \\ {erf(x) = \frac{2}{\sqrt \pi }\int\limits_{0}^{x} {{\text{e}}^{{ - t^{2} }} } {\text{d}}t = \frac{2}{\sqrt \pi }\left( {x - \frac{{x^{3} }}{3} + \cdots } \right)} \hfill \\ {erf(x) = - erf( - x)} \hfill \\ \end{array} ,$$
$$\begin{aligned} & \int\limits_{{\alpha_{0} - \alpha_{m} }}^{0} {\frac{{\alpha^{2} }}{{\sqrt {2\pi } \sigma }}{\text{e}}^{{ - \frac{{\left( {\alpha - \alpha_{0} } \right)^{2} }}{{2\sigma^{2} }}}} {\text{d}}\alpha \cong } \int\limits_{ - \infty }^{0} {\frac{{\alpha^{2} }}{{\sqrt {2\pi } \sigma }}{\text{e}}^{{ - \frac{{\left( {\alpha - \alpha_{0} } \right)^{2} }}{{2\sigma^{2} }}}} {\text{d}}\alpha } \\ & = \frac{1}{{\sqrt {2\pi } \sigma }}\int\limits_{{\alpha_{0} }}^{\infty } {x^{2} {\text{e}}^{{ - \frac{{x^{2} }}{{2\sigma^{2} }}}} {\text{d}}x} - \frac{{2\alpha_{0} }}{{\sqrt {2\pi } \sigma }}\int\limits_{{\alpha_{0} }}^{\infty } {x{\text{e}}^{{ - \frac{{x^{2} }}{{2\sigma^{2} }}}} {\text{d}}x} + \frac{{\alpha_{0}^{2} }}{{\sqrt {2\pi } \sigma }}\int\limits_{{\alpha_{0} }}^{\infty } {\frac{{x^{2} }}{{\sqrt {2\pi } \sigma }}{\text{e}}^{{ - \frac{{x^{2} }}{{2\sigma^{2} }}}} {\text{d}}x} \\ & = - \frac{{\sigma \alpha_{0} }}{{\sqrt {2\pi } }}{\text{e}}^{{ - \frac{{\alpha_{0}^{2} }}{{2\sigma^{2} }}}} + \frac{{\sigma^{2} + \alpha_{0}^{2} }}{2}erfc\left( {\frac{{\alpha_{0} }}{\sqrt 2 \sigma }} \right), \\ \end{aligned}$$
$$\begin{aligned} \left\langle {E^{\text{w}} } \right\rangle & = \frac{1}{{L_{0} }}\int\limits_{{\alpha_{0} - \alpha_{m} }}^{{\alpha_{0} + \alpha_{m} }} {a(y)\frac{{\alpha^{2} }}{{\sqrt {2\pi } \sigma }}{\text{e}}^{{ - \frac{{\left( {\alpha - \alpha_{0} } \right)^{2} }}{{2\sigma^{2} }}}} {\text{d}}\alpha } \\ & = \frac{{\sigma^{2} + \alpha_{0}^{2} }}{2}\left\{ {erfc\left( {\frac{{\alpha_{0} }}{\sqrt 2 \sigma }} \right) + erfc\left( { - \frac{{\alpha_{0} }}{\sqrt 2 \sigma }} \right)} \right\}a_{0} \\ & \quad + \left[ {\frac{{2\sigma \alpha_{0} }}{{\sqrt {2\pi } }}{\text{e}}^{{ - \frac{{\alpha_{0}^{2} }}{{2\sigma^{2} }}}} + \frac{{\sigma^{2} + \alpha_{0}^{2} }}{2}\left\{ { - erfc\left( {\frac{{\alpha_{0} }}{\sqrt 2 \sigma }} \right) + erfc\left( { - \frac{{\alpha_{0} }}{\sqrt 2 \sigma }} \right)} \right\}} \right]b \cdot y \\ \end{aligned}$$
$$\begin{aligned} erfc\left( {\frac{{\alpha_{0} }}{\sqrt 2 \sigma }} \right) + erfc\left( { - \frac{{\alpha_{0} }}{\sqrt 2 \sigma }} \right) & = 2 - erf\left( {\frac{{\alpha_{0} }}{\sqrt 2 \sigma }} \right) - erf\left( { - \frac{{\alpha_{0} }}{\sqrt 2 \sigma }} \right) \\ & = 2 - erf\left( {\frac{{\alpha_{0} }}{\sqrt 2 \sigma }} \right) + erf\left( {\frac{{\alpha_{0} }}{\sqrt 2 \sigma }} \right) = 2 \\ \left\{ { - erfc\left( {\frac{{\alpha_{0} }}{\sqrt 2 \sigma }} \right) + erfc\left( { - \frac{{\alpha_{0} }}{\sqrt 2 \sigma }} \right)} \right\} & = erf\left( {\frac{{\alpha_{0} }}{\sqrt 2 \sigma }} \right) - erf\left( { - \frac{{\alpha_{0} }}{\sqrt 2 \sigma }} \right) \\ & = 2erf\left( {\frac{{\alpha_{0} }}{\sqrt 2 \sigma }} \right) \\ \end{aligned}$$
$$\left\langle E^{\text{w}} \right\rangle = \left( {\sigma^{2} + \alpha_{0}^{2} } \right)a_{0} + \left[ {\frac{{\sqrt 2 \sigma \alpha_{0} }}{\sqrt \pi }{\text{e}}^{{ - \frac{{\alpha_{0}^{2} }}{{2\sigma^{2} }}}} + \left( {\sigma^{2} + \alpha_{0}^{2} } \right)erf\left( {\frac{{\alpha_{0} }}{\sqrt 2 \sigma }} \right)} \right]b \cdot y.$$
$$\frac{{\sqrt 2 \sigma \alpha_{0} }}{\sqrt \pi }{\text{e}}^{{ - \frac{{\alpha_{0}^{2} }}{{2\sigma^{2} }}}} + \left( {\sigma^{2} + \alpha_{0}^{2} } \right)erf\left( {\frac{{\alpha_{0} }}{\sqrt 2 \sigma }} \right) = \frac{{\sqrt 2 \sigma \alpha_{0} }}{\sqrt \pi } + \left( {\sigma^{2} + \alpha_{0}^{2} } \right)\frac{2}{\sqrt \pi }\frac{{\alpha_{0} }}{\sqrt 2 \sigma } \cong 2\sqrt {\frac{2}{\pi }} \sigma \alpha_{0} .$$
(i)
The case that 0 ≤
l
h ≤
l:
$$\begin{aligned} E^{{{\text{w}}({\text{braking}})}} & = \int\limits_{{l_{h} }}^{l} {\mu_{d} q_{z} (x)\frac{{{\text{d}}y}}{{{\text{d}}x}}{\text{d}}x} \\ & = \int\limits_{{l_{h} }}^{l} {\mu_{d} q_{z} (x)\left( {\frac{{\sqrt {C_{x}^{2} s^{2} \cos^{2} \alpha + C_{y}^{2} \sin^{2} \alpha } }}{C} - \frac{{\mu_{d} q_{z}^{\prime } (x)}}{C}} \right){\text{d}}x} \\ & = \mu_{d} \frac{{\sqrt {C_{x}^{2} s^{2} \cos^{2} \alpha + C_{y}^{2} \sin^{2} \alpha } }}{C}\int\limits_{{l_{h} }}^{l} {q_{z} (x)dx} - \frac{1}{2}\frac{{\mu_{d}^{2} }}{C}\int\limits_{{l_{h} }}^{l} {\frac{{{\text{d}}q_{z}^{2} (x)}}{{{\text{d}}x}}{\text{d}}x} \\ & = \mu_{d} \frac{{\sqrt {C_{x}^{2} s^{2} \cos^{2} \alpha + C_{y}^{2} \sin^{2} \alpha } }}{C}\int\limits_{{l_{h} }}^{l} {q_{z} dx} - \left. {\frac{1}{2}\frac{{\mu_{d}^{2} }}{C}q_{z}^{2} (x)} \right|_{{l_{h} }}^{l} \\ & = \mu_{d} \frac{{\sqrt {C_{x}^{2} s^{2} \cos^{2} \alpha + C_{y}^{2} \sin^{2} \alpha } }}{C}\int\limits_{{l_{h} }}^{l} {q_{z} dx} + \frac{1}{2}\frac{{\mu_{d}^{2} }}{C}q_{z}^{2} (l_{h} ) \\ & = \frac{{2\mu_{d} p_{m} l}}{3C}\sqrt {C_{x}^{2} s^{2} \cos^{2} \alpha + C_{y}^{2} \sin^{2} \alpha } \left\{ {1 - 3\left( {\frac{{l_{h} }}{l}} \right)^{2} + 2\left( {\frac{{l_{h} }}{l}} \right)^{3} } \right\} \\ & \quad + \frac{{8\mu_{d}^{2} p_{m}^{2} }}{C}\left( {\frac{{l_{h} }}{l}} \right)^{2} \left( {1 - \frac{{l_{h} }}{l}} \right)^{2}. \\ \end{aligned}$$
$$\begin{aligned} E^{{\text{w}}({\text{driving}})} & = \frac{{2\mu_{d} p_{m} l}}{3C}\sqrt {C_{x}^{2} s^{2} + C_{y}^{2} (1 + s)^{2} \tan^{2} \alpha } \left\{ {1 - 3\left( {\frac{{l_{h} }}{l}} \right)^{2} + 2\left( {\frac{{l_{h} }}{l}} \right)^{3} } \right\} \\ & \quad + \frac{{8\mu_{d}^{2} p_{m}^{2} }}{C}\left( {\frac{{l_{h} }}{l}} \right)^{2} \left( {1 - \frac{{l_{h} }}{l}} \right)^{2} . \\ \end{aligned}$$
$$\begin{array}{*{20}l} \begin{aligned} E^{{{\text{w}}({\text{braking}})}} & = \frac{{\mu_{d} F_{z} }}{b}\sqrt {s^{2} \cos^{2} \alpha + \sin^{2} \alpha } \left\{ {1 - 3\left( {\frac{{l_{h} }}{l}} \right)^{2} + 2\left( {\frac{{l_{h} }}{l}} \right)^{3} } \right\} \\ & \quad + \frac{{18\mu_{d}^{2} F_{z}^{2} }}{{Cl^{2} b^{2} }}\left( {\frac{{l_{h} }}{l}} \right)^{2} \left( {1 - \frac{{l_{h} }}{l}} \right)^{2} \\ \end{aligned} \hfill \\ \begin{aligned} E^{{{\text{w}}({\text{driving}})}} & = \frac{{\mu_{d} F_{z} }}{b}\sqrt {s^{2} + (1 + s)^{2} \tan^{2} \alpha } \left\{ {1 - 3\left( {\frac{{l_{h} }}{l}} \right)^{2} + 2\left( {\frac{{l_{h} }}{l}} \right)^{3} } \right\} \\ & \quad + \frac{{18\mu_{d}^{2} F_{z}^{2} }}{{Cl^{2} b^{2} }}\left( {\frac{{l_{h} }}{l}} \right)^{2} \left( {1 - \frac{{l_{h} }}{l}} \right)^{2} \\ \end{aligned} \hfill \\ \end{array}$$
(ii)
In the case that
l
h < 0:
$$\begin{aligned} E^{{{\text{w}}({\text{braking}})}} & = \int\limits_{0}^{l} {\mu_{d} q_{z} (x)\frac{{{\text{d}}S_{y} }}{{{\text{d}}x}}{\text{d}}x} = \frac{{2\mu_{d} p_{m} l}}{3C}\sqrt {C_{x}^{2} s^{2} \cos^{2} \alpha + C_{y}^{2} \sin^{2} \alpha } \\ & = \frac{{\mu_{d} F_{z} }}{bC}\sqrt {C_{x}^{2} s^{2} \cos^{2} \alpha + C_{y}^{2} \sin^{2} \alpha } . \\ \end{aligned}$$
$$\begin{aligned} E^{{{\text{w}}({\text{driving}})}} & = \frac{{2\mu_{d} p_{m} l}}{3C}\sqrt {C_{x}^{2} s^{2} + C_{y}^{2} (1 + s)^{2} \tan^{2} \alpha } \\ & = \frac{{\mu_{d} F_{z} }}{bC}\sqrt {C_{x}^{2} s^{2} + C_{y}^{2} (1 + s)^{2} \tan^{2} \alpha } . \\ \end{aligned}$$
$$\begin{array}{*{20}l} {E^{{{\text{w}}({\text{braking}})}} = \frac{{\mu_{d} F_{z} }}{b}\sqrt {s^{2} \cos^{2} \alpha + \sin^{2} \alpha } } \hfill \\ {E^{{{\text{w}}({\text{driving}})}} = \frac{{\mu_{d} F_{z} }}{b}\sqrt {s^{2} + (1 + s)^{2} \tan^{2} \alpha } } \hfill \\ \end{array} .$$
$$\eta \dot{y} + k_{\text{tread}}\, y = \mu \left( {AVt + B} \right).$$
$$y = \xi {\text{e}}^{{ - \frac{{k_{\text{tread}} }}{\eta }t}} + \frac{\mu }{{k_{\text{tread}} }}\left\{ {AV\left( {t - \frac{\eta }{{k_{\text{tread}} }}} \right) + B} \right\}.$$
$$\begin{aligned} & V_{y} t_{c} = \xi {\text{e}}^{{ - \frac{{k_{\text{tread}} }}{\eta }t_{c} }} + \frac{\mu }{{k_{\text{tread}} }}\left\{ {AV\left( {t_{c} - \frac{\eta }{{k_{\text{tread}} }}} \right) + B} \right\}, \\ & \xi = - \left[ {\frac{\mu }{{k_{\text{tread}} }}\left\{ {AV\left( {t_{c} - \frac{\eta }{{k_{\text{tread}} }}} \right) + B} \right\} - V_{y} t_{c} } \right]{\text{e}}^{{\frac{{k_{\text{tread}} }}{\eta }t_{c} }} . \\ \end{aligned}$$
$$\eta V\sin \alpha + k_{\text{tread}} Vt_{c} \sin \alpha = \mu \left( {AVt_{c} + B} \right).$$
$$\mu A - k_{\text{tread}} \sin \alpha = \left( {\eta V\sin \alpha - \mu B} \right)/(Vt_{c} ).$$
$$\xi = - \left[ {\frac{\mu }{{k_{\text{tread}} }}\left( { - \frac{\eta }{{k_{\text{tread}} }}AV + B} \right) + \frac{1}{{k_{\text{tread}} }}\left( { - \mu B + \eta V\sin \alpha } \right)} \right]{\text{e}}^{{\frac{{k_{\text{tread}} }}{\eta }t_{c} }} = \frac{\eta V}{{k_{\text{tread}} }}\left( {\frac{\mu A}{{k_{\text{tread}} }} - \sin \alpha } \right){\text{e}}^{{\frac{{k_{\text{tread}} }}{\eta }t_{c} }} .$$
$$y = \frac{\mu }{{k_{\text{tread}} }}\left\{ {AV\left( {T + t_{c} - \frac{\eta }{{k_{\text{tread}} }}} \right) + B} \right\} + \frac{\eta V}{{k_{\text{tread}} }}\left( {\frac{\mu }{{k_{\text{tread}} }}A - \sin \alpha } \right){\text{e}}^{{ - \frac{{k_{\text{tread}} }}{\eta }T}} .$$
$$\gamma (x,z) = \frac{z}{h}\left\{ {\frac{{\delta_{y} (x + l_{E} ) - \delta_{y} (x)}}{{l_{E} }}} \right\},$$
$$f(x) = bG\int\limits_{0}^{h} {\gamma (x,z){\text{d}}z} = \frac{bhG}{2}\left\{ {\frac{{\delta_{y} (x + l_{E} ) - \delta_{y} (x)}}{{l_{E} }}} \right\} = \frac{bhG}{{2l_{E} }}{\Delta }\delta_{y} .$$
Fig. 14.94
Local slip model and shear deformation of tread (reproduced from Ref. [
21] with the permission of
JSAE)
×
From the above equation, the intra-shear stiffness
k
2 is obtained as
k
2 =
bhG/(2
l
E), where
b is the width of the block. Meanwhile, the shear stiffness of a block element
\(t_{\text{tread}}^{\prime }\) is expressed as
\(t_{\text{tread}}^{\prime } = bl_{E} G/h\). For a block with dimensions of 20 mm (length) × 20 mm (width) × 8 mm (height), considering that
h = 8 mm,
l
E = 20/3 mm and
b = 20 mm, the relation between the intra-shear stiffness and shear stiffness of a block element is
\(k_{2} = 0.72t_{\text{tread}}^{\prime }\). Therefore, Fujikawa’s assumption of
\(k_{2} = 2t_{\text{tread}}^{\prime }\) may not be appropriate for this block.
Using Eqs. (
14.136), (
14.139) and (
14.140), we obtain
$$\delta = \left( {1 + K_{r} /K_{f} } \right)\beta - \left( {C_{Pf} + C_{\Pr } } \right)/K_{f} .$$
$$U_{0} (t) = U_{0} (t - T) + \bar{k}\beta^{n} P_{0}^{n}$$
$$\begin{array}{*{20}l} {U_{0} (t) = \bar{k}\beta^{n} P_{0}^{n} (t + T)/T} \hfill \\ {U_{0} (t - T) = \bar{k}\beta^{n} P_{0}^{n} t/T}. \hfill \\ \end{array}$$
$$P(t) = P_{0} + p(t),$$
$$p(t) = \eta_{T} \dot{W}_{2} (t) + K_{T} W_{2} (t).$$
$$\begin{array}{*{20}l} {U_{0} (t) + u(t) = U_{0} (t - T) + u(t - T) + \bar{k}\beta^{n} \left\{ {P_{0} + p(t)} \right\}^{n} } \hfill \\ { \cong U_{0} (t - T) + u(t - T) + \bar{k}\beta^{n} P_{0}^{n} (t) + \bar{k}\beta^{n} nP_{0}^{n - 1} (t)p(t)} \hfill \\ { = U_{0} (t - T) + u(t - T) + \bar{k}\beta^{n} P_{0}^{n} (t) + \bar{k}\beta^{n} nP_{0}^{n - 1} (t)\left\{ {\eta_{T} \dot{W}_{2} (t) + K_{T} W_{2} (t)} \right\}}, \hfill \\ \end{array}$$
$$\begin{array}{*{20}l} {U_{0} (t) = U(t - T) + W(t) = U_{0} (t - T) + \bar{k}\beta^{n} P_{0}^{n} (t)} \hfill \\ {W_{2} (t) = X_{0} (t) + x(t) - U_{0} (t - T) - u(t - T) = x(t) - u(t - T)}. \hfill \\ \end{array}$$
$$u(t) = u(t - T) + \bar{k}\beta^{n} P_{0}^{n - 1} n\left[ {\eta_{T} \left\{ {\dot{x}(t) - \dot{u}(t - T)} \right\} + K_{T} \left\{ {x(t) - u(t - T)} \right\}} \right].$$
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
Problem 14.1.
See Footnote 1.
Same as Eq. (
11.4).
Same as Eq. (
11.5).
Note
14.1.
See Footnote 5.
Note
14.2.
See Footnote 7.
Note
14.3.
Note
14.4.
Note
14.5.
Note
14.6.
Note
14.7.
See Footnote 13.
See Footnote 13.
See Footnote 13.
Note
14.8.
Note
14.9.
Same as Eq. (
11.72).
Note
14.10.
Note
14.11.
Note
14.12.
See Footnote 22.
Note
14.13.
1.
Zurück zum Zitat Bridgestone (ed.), Fundamentals and Application of Vehicle Tires (in Japanese) (Tokyo Denki University Press, 2008) Bridgestone (ed.),
Fundamentals and Application of Vehicle Tires (in Japanese) (Tokyo Denki University Press, 2008)
2.
Zurück zum Zitat A. Schallamach, Friction and abrasion of rubber. Wear 1, 384–417 (1957–1958) A. Schallamach, Friction and abrasion of rubber. Wear
1, 384–417 (1957–1958)
3.
Zurück zum Zitat A. Schallamach, Recent advances in knowledge of rubber friction and tire wear. Rubber Chem. Technol. 41, 209–244 (1968) CrossRef A. Schallamach, Recent advances in knowledge of rubber friction and tire wear. Rubber Chem. Technol.
41, 209–244 (1968)
CrossRef
4.
Zurück zum Zitat Y. Uchiyama, Development of the rubber friction and wear (in Japanese). Nippon Gomu Kyokaishi 80(4), 120–127 (2007) CrossRef Y. Uchiyama, Development of the rubber friction and wear (in Japanese). Nippon Gomu Kyokaishi
80(4), 120–127 (2007)
CrossRef
5.
Zurück zum Zitat S. Yamazaki et al., Indoor test procedures for evaluation of tire tread wear and influence of suspension alignment. Tire Sci. Technol. 17(4), 236–273 (1989) CrossRef S. Yamazaki et al., Indoor test procedures for evaluation of tire tread wear and influence of suspension alignment. Tire Sci. Technol.
17(4), 236–273 (1989)
CrossRef
6.
Zurück zum Zitat S. Yamazaki, Influence of drum curvature on tire tread wear in indoor tire wear testing (in Japanese). JARI Res. J. 19(4) (1997) S. Yamazaki, Influence of drum curvature on tire tread wear in indoor tire wear testing (in Japanese). JARI Res. J.
19(4) (1997)
7.
Zurück zum Zitat H. Sakai, Study on wear of tire tread—friction and wear at large slip speed (in Japanese). Nippon Gomu Kyokaishi 68, 251–257 (1995) CrossRef H. Sakai, Study on wear of tire tread—friction and wear at large slip speed (in Japanese). Nippon Gomu Kyokaishi
68, 251–257 (1995)
CrossRef
8.
Zurück zum Zitat O.L. Maitre, et al., Evaluation of Tire Wear Performance, SAE Paper, No. 980256 (1998) O.L. Maitre, et al.,
Evaluation of Tire Wear Performance, SAE Paper, No. 980256 (1998)
9.
Zurück zum Zitat A. Schallamach, D.M. Turner, Wear of slipping wheels. Wear 3, 1–25 (1960) CrossRef A. Schallamach, D.M. Turner, Wear of slipping wheels. Wear
3, 1–25 (1960)
CrossRef
10.
Zurück zum Zitat A.G. Veith, The Driving Severity Number (DSN)—a step toward quantifying treadwear test conditions. Tire Sci. Technol. 14(3), 139–159 (1986) CrossRef A.G. Veith, The Driving Severity Number (DSN)—a step toward quantifying treadwear test conditions. Tire Sci. Technol.
14(3), 139–159 (1986)
CrossRef
11.
Zurück zum Zitat P.S. Pillai, Friction and wear of tires, in Friction, Lubrication, and Wear Technology, ed. By P.J. Blau (ASM Handbook, 1992), vol. 18, pp. 578–581 P.S. Pillai, Friction and wear of tires, in
Friction, Lubrication, and Wear Technology, ed. By P.J. Blau (ASM Handbook, 1992), vol. 18, pp. 578–581
12.
Zurück zum Zitat H. Sakai, Study on wear of tire tread—friction and wear at small slip angle (in Japanese). Nippon Gomu Kyokaishi 68, 39–46 (1995) CrossRef H. Sakai, Study on wear of tire tread—friction and wear at small slip angle (in Japanese). Nippon Gomu Kyokaishi
68, 39–46 (1995)
CrossRef
13.
Zurück zum Zitat A.G. Veith, Accelerated tire wear under controlled conditions-II, Some factors that influence tire wear. Rubber Chem. Technol. 46, 821–842 (1973) CrossRef A.G. Veith, Accelerated tire wear under controlled conditions-II, Some factors that influence tire wear. Rubber Chem. Technol.
46, 821–842 (1973)
CrossRef
14.
Zurück zum Zitat A. Schallamach, The role of hysteresis in tire wear and laboratory abrasion. Rubber Chem. Technol. 33, 857–867 (1960) CrossRef A. Schallamach, The role of hysteresis in tire wear and laboratory abrasion. Rubber Chem. Technol.
33, 857–867 (1960)
CrossRef
15.
Zurück zum Zitat T. Mashita, Recent study on tire wear (in Japanese), in Symposium of Vehicle Dynamics and Tire, JSAE (1983) T. Mashita, Recent study on tire wear (in Japanese), in
Symposium of Vehicle Dynamics and Tire, JSAE (1983)
16.
Zurück zum Zitat M. Togashi, H. Mouri, Evaluation and technology for improvement on tire wear and irregular wear (in Japanese). Nippon Gomu Kyokaishi 69, 739–748 (1996) CrossRef M. Togashi, H. Mouri, Evaluation and technology for improvement on tire wear and irregular wear (in Japanese). Nippon Gomu Kyokaishi
69, 739–748 (1996)
CrossRef
17.
Zurück zum Zitat V.E. Gough, Stiffness of cord and rubber constructions. Rubber Chem. Technol. 41, 988–1021 (1968) CrossRef V.E. Gough, Stiffness of cord and rubber constructions. Rubber Chem. Technol.
41, 988–1021 (1968)
CrossRef
18.
Zurück zum Zitat S.K. Clark (ed.), Mechanics of Pneumatic Tire (U.S. Government Printing Office, 1981) S.K. Clark (ed.),
Mechanics of Pneumatic Tire (U.S. Government Printing Office, 1981)
19.
Zurück zum Zitat B.K. Daniels, A note on Gough stiffness and tread life. Tire Sci. Technol. 5(4), 226–231 (1977) CrossRef B.K. Daniels, A note on Gough stiffness and tread life. Tire Sci. Technol.
5(4), 226–231 (1977)
CrossRef
20.
Zurück zum Zitat H. Sakai, Tire Engineering (in Japanese) (Guranpuri-Shuppan, 1987) H. Sakai,
Tire Engineering (in Japanese) (Guranpuri-Shuppan, 1987)
21.
Zurück zum Zitat T. Fujikawa, S. Ymamazaki, Tire tread slip at actual vehicle speed. Trans. JSAE 26(3), 97–102 (1995) T. Fujikawa, S. Ymamazaki, Tire tread slip at actual vehicle speed. Trans. JSAE
26(3), 97–102 (1995)
22.
Zurück zum Zitat J.J. Lazeration, An investigation of the slip of a tire tread. Tire Sci. Technol. 25(2), 78–95 (1997) CrossRef J.J. Lazeration, An investigation of the slip of a tire tread. Tire Sci. Technol.
25(2), 78–95 (1997)
CrossRef
23.
Zurück zum Zitat T. Fujikawa et al., Tire model to predict treadwear. Tire Sci. Technol. 27(2), 106–125 (1999) CrossRef T. Fujikawa et al., Tire model to predict treadwear. Tire Sci. Technol.
27(2), 106–125 (1999)
CrossRef
24.
Zurück zum Zitat Fujikoshi Corporation, in Technology seminar: Introduction to tribology, Machi-Business News, vol 7 (2005) Fujikoshi Corporation, in
Technology seminar: Introduction to tribology, Machi-Business News, vol 7 (2005)
25.
Zurück zum Zitat T. Hanzaka, Y. Nakajima, Physical Wear Model on Wear Progress of Irregular Wear of Tires (Case of River Wear of Truck & Bus Tires) (FISITA World Automotive Congress, Busan, 2016) T. Hanzaka, Y. Nakajima,
Physical Wear Model on Wear Progress of Irregular Wear of Tires (Case of River Wear of Truck & Bus Tires) (FISITA World Automotive Congress, Busan, 2016)
26.
Zurück zum Zitat S. Yamazaki et al., Indoor test procedures for evaluation of tire treadwear and influence of suspension alignment. Tire Sci. Technol. 17(4), 236–273 (1989) CrossRef S. Yamazaki et al., Indoor test procedures for evaluation of tire treadwear and influence of suspension alignment. Tire Sci. Technol.
17(4), 236–273 (1989)
CrossRef
27.
Zurück zum Zitat S. Yamazaki et al., Influences of toe and camber angie on tire wear (in Japanese). JARI Res. J. 9(12), 473–476 (1987) S. Yamazaki et al., Influences of toe and camber angie on tire wear (in Japanese). JARI Res. J.
9(12), 473–476 (1987)
28.
Zurück zum Zitat S. Kohmura et al., in Estimation Method of Tire Tread Wear on a Vehicle, SAE Paper, No. 910168 (1991) S. Kohmura et al., in
Estimation Method of Tire Tread Wear on a Vehicle, SAE Paper, No. 910168 (1991)
29.
Zurück zum Zitat W.K. Shepherd, Diagonal wear predicted by a simple wear model, in The Tire Pavement Interface, ed. by M.G. Pottinger, T.J. Yager, ASTM STP 929, American Society for Testing and Materials (1986), pp. 159–179 W.K. Shepherd, Diagonal wear predicted by a simple wear model, in
The Tire Pavement Interface, ed. by M.G. Pottinger, T.J. Yager, ASTM STP 929, American Society for Testing and Materials (1986), pp. 159–179
30.
Zurück zum Zitat A. Sueoka et al., Polygonal wear of automobile tires (in Japanese). Trans. JSME (C) 62(600), 3145–3152 (1996) CrossRef A. Sueoka et al., Polygonal wear of automobile tires (in Japanese). Trans. JSME (C)
62(600), 3145–3152 (1996)
CrossRef
31.
Zurück zum Zitat A. Sueoka et al., Polygonal wear of automobile tires. JSME Int. J. (C) 40(2), 209–217 (1997) CrossRef A. Sueoka et al., Polygonal wear of automobile tires. JSME Int. J. (C)
40(2), 209–217 (1997)
CrossRef
32.
Zurück zum Zitat H. Sakai, Friction and wear of tire tread rubber. Tire Sci. Technol. 24(3), 252–275 (1996) CrossRef H. Sakai, Friction and wear of tire tread rubber. Tire Sci. Technol.
24(3), 252–275 (1996)
CrossRef
33.
Zurück zum Zitat C. Wright et al., Laboratory tire wear simulation derived from computer modeling of suspension dynamics. Tire Sci. Technol. 19(3), 122–141 (1991) CrossRef C. Wright et al., Laboratory tire wear simulation derived from computer modeling of suspension dynamics. Tire Sci. Technol.
19(3), 122–141 (1991)
CrossRef
34.
Zurück zum Zitat S. Yamazaki, Evaluation method of friction and wear, and points to consider (in Japanese). Nippon Gomu Kyokaishi 74(1), 12–17 (2001) CrossRef S. Yamazaki, Evaluation method of friction and wear, and points to consider (in Japanese). Nippon Gomu Kyokaishi
74(1), 12–17 (2001)
CrossRef
35.
Zurück zum Zitat D.O. Stalnaker et al., Indoor simulation of tire wear: some case studies. Tire Sci. Technol. 24(2), 94–118 (1996) CrossRef D.O. Stalnaker et al., Indoor simulation of tire wear: some case studies. Tire Sci. Technol.
24(2), 94–118 (1996)
CrossRef
36.
Zurück zum Zitat D.O. Stalnaker, J.L. Turner, Vehicle and course characterization process for indoor tire wear simulation. Tire Sci. Technol. 30(2), 100–121 (2002) CrossRef D.O. Stalnaker, J.L. Turner, Vehicle and course characterization process for indoor tire wear simulation. Tire Sci. Technol.
30(2), 100–121 (2002)
CrossRef
37.
Zurück zum Zitat E.F. Knuth et al., Advances in Indoor Tire Tread Wear Simulation, SAE Paper, No. 2006-01-1447 (2006) E.F. Knuth et al.,
Advances in Indoor Tire Tread Wear Simulation, SAE Paper, No. 2006-01-1447 (2006)
38.
Zurück zum Zitat R. Loh, F. Nohl, in Multiaxial Wheel Transducer, Application and Results, VDI Berichte, No. 741 (1989) R. Loh, F. Nohl, in
Multiaxial Wheel Transducer, Application and Results, VDI Berichte, No. 741 (1989)
39.
Zurück zum Zitat H. Lupker et al., Numerical prediction of car tire wear. Tire Sci. Technol. 32(3), 164–186 (2004) CrossRef H. Lupker et al., Numerical prediction of car tire wear. Tire Sci. Technol.
32(3), 164–186 (2004)
CrossRef
40.
Zurück zum Zitat H. Kobayashi et al., Estimation method of tread wear life (in Japanese). Toyota Tech. Rev. 50(1), 50–55 (2000) H. Kobayashi et al., Estimation method of tread wear life (in Japanese). Toyota Tech. Rev.
50(1), 50–55 (2000)
41.
Zurück zum Zitat D. Zheng, Prediction of tire tread wear with FEM steady state rolling contact simulation. Tire Sci. Technol. 31(3), 189–202 (2003) CrossRef D. Zheng, Prediction of tire tread wear with FEM steady state rolling contact simulation. Tire Sci. Technol.
31(3), 189–202 (2003)
CrossRef
42.
Zurück zum Zitat J.C. Cho, B.C. Jung, Prediction of tread pattern wear by an explicit finite element model. Tire Sci. Technol. 35(4), 276–299 (2007) CrossRef J.C. Cho, B.C. Jung, Prediction of tread pattern wear by an explicit finite element model. Tire Sci. Technol.
35(4), 276–299 (2007)
CrossRef
43.
Zurück zum Zitat S. Yamazaki, Evaluation procedures and properties of tire treadwear (in Japanese). Jidosha Kenkyu 13(4), 116–126 (1991) S. Yamazaki, Evaluation procedures and properties of tire treadwear (in Japanese). Jidosha Kenkyu
13(4), 116–126 (1991)
44.
Zurück zum Zitat T. Fujikawa, S. Yamazaki, Tire tread slip at actual vehicle speed (in Japanese). Jidosha Kenkyu 16(5), 178–181 (1994) T. Fujikawa, S. Yamazaki, Tire tread slip at actual vehicle speed (in Japanese). Jidosha Kenkyu
16(5), 178–181 (1994)
45.
Zurück zum Zitat S. Knisley, A correlation between rolling tire contact friction energy and indoor tread wear. Tire Sci. Technol. 30(2), 83–99 (2002) MathSciNetCrossRef S. Knisley, A correlation between rolling tire contact friction energy and indoor tread wear. Tire Sci. Technol.
30(2), 83–99 (2002)
MathSciNetCrossRef
46.
47.
Zurück zum Zitat A.A. Goldstein, Finite element analysis of a quasi-static rolling tire model for determination of truck tire forces and moments. Tire Sci. Technol. 24(4), 278–293 (1996) CrossRef A.A. Goldstein, Finite element analysis of a quasi-static rolling tire model for determination of truck tire forces and moments. Tire Sci. Technol.
24(4), 278–293 (1996)
CrossRef
48.
Zurück zum Zitat R. Gall et al., Some notes on the finite element analysis of tires. Tire Sci. Technol. 23(3), 175–188 (1995) CrossRef R. Gall et al., Some notes on the finite element analysis of tires. Tire Sci. Technol.
23(3), 175–188 (1995)
CrossRef
49.
Zurück zum Zitat Y. Kaji, in Improvements in Tire Wear Based on 3D Finite Element Analysis, Tire Technology EXPO (2003) Y. Kaji, in
Improvements in Tire Wear Based on 3D Finite Element Analysis, Tire Technology EXPO (2003)
50.
Zurück zum Zitat G. Meschke et al., 3D simulations of automobile tires: material modeling, mesh generation and solution strategies. Tire Sci. Technol. 25(3), 154–176 (1997) CrossRef G. Meschke et al., 3D simulations of automobile tires: material modeling, mesh generation and solution strategies. Tire Sci. Technol.
25(3), 154–176 (1997)
CrossRef
51.
Zurück zum Zitat E. Seta et al., Hydroplaning analysis by FEM and FVM: effect of tire rolling and tire pattern on hydroplaning. Tire Sci. Technol. 28(3), 140–156 (2000) CrossRef E. Seta et al., Hydroplaning analysis by FEM and FVM: effect of tire rolling and tire pattern on hydroplaning. Tire Sci. Technol.
28(3), 140–156 (2000)
CrossRef
52.
Zurück zum Zitat A. Becker, B. Seifert, Simulation of wear with a FE tyre model using a steady state rolling formulation. Contact Mechanics III (1997), pp. 119–128 A. Becker, B. Seifert, Simulation of wear with a FE tyre model using a steady state rolling formulation. Contact Mechanics III (1997), pp. 119–128
53.
Zurück zum Zitat K.R. Smith et al., Prediction of tire profile wear by steady-state FEM. Tire Sci. Technol. 36(4), 290–303 (2008) CrossRef K.R. Smith et al., Prediction of tire profile wear by steady-state FEM. Tire Sci. Technol.
36(4), 290–303 (2008)
CrossRef
54.
Zurück zum Zitat J. Qi et al., Validation of a steady-state transport analysis for rolling treaded tires. Tire Sci. Technol. 35(3), 183–208 (2007) CrossRef J. Qi et al., Validation of a steady-state transport analysis for rolling treaded tires. Tire Sci. Technol.
35(3), 183–208 (2007)
CrossRef
55.
Zurück zum Zitat J. Padovan, I. Zeid, On the development of traveling load finite elements. Comput. Struct. 12, 77–83 (1980) MathSciNetMATHCrossRef J. Padovan, I. Zeid, On the development of traveling load finite elements. Comput. Struct.
12, 77–83 (1980)
MathSciNetMATHCrossRef
56.
Zurück zum Zitat I. Zeid, J. Padovan, Finite element modeling of rolling contact. Comput. Struct. 14, 163–170 (1981) CrossRef I. Zeid, J. Padovan, Finite element modeling of rolling contact. Comput. Struct.
14, 163–170 (1981)
CrossRef
57.
Zurück zum Zitat J. Padovan, O. Paramadilok, Transient and steady state viscoelastic rolling contact. Comput. Struct. 20(1–3), 545–553 (1985) MATHCrossRef J. Padovan, O. Paramadilok, Transient and steady state viscoelastic rolling contact. Comput. Struct.
20(1–3), 545–553 (1985)
MATHCrossRef
58.
Zurück zum Zitat R. Kennedy, J. Padovan, Finite element analysis of a steady-state rotating tire subjected to a point load or ground contact. Tire Sci. Technol. 15(4), 243–260 (1987) CrossRef R. Kennedy, J. Padovan, Finite element analysis of a steady-state rotating tire subjected to a point load or ground contact. Tire Sci. Technol.
15(4), 243–260 (1987)
CrossRef
59.
Zurück zum Zitat J.T. Oden, T.L. Lin, On the general rolling contact problem for finite deformations of a viscoelastic cylinder. Comput. Meth. Appl. Mech. Eng. 57, 297–376 (1986) MathSciNetMATHCrossRef J.T. Oden, T.L. Lin, On the general rolling contact problem for finite deformations of a viscoelastic cylinder. Comput. Meth. Appl. Mech. Eng.
57, 297–376 (1986)
MathSciNetMATHCrossRef
60.
Zurück zum Zitat U. Nackenhorst, On the finite element analysis of steady state rolling contact, in Contact Mechanics-Computational Techniques, ed. by M.H. Aliabadi, C.A. Brebbia (Computational Mechanics Publication, Southampton, Boston, 1993), pp. 53–60 U. Nackenhorst, On the finite element analysis of steady state rolling contact, in
Contact Mechanics-Computational Techniques, ed. by M.H. Aliabadi, C.A. Brebbia (Computational Mechanics Publication, Southampton, Boston, 1993), pp. 53–60
61.
Zurück zum Zitat U. Nackenhorst, The ALE-formulation of bodies in rolling contact—theoretical foundations and finite element approach. Comput. Meth. Appl. Mech. Eng. 193, 4299–4432 (2004) MathSciNetMATHCrossRef U. Nackenhorst, The ALE-formulation of bodies in rolling contact—theoretical foundations and finite element approach. Comput. Meth. Appl. Mech. Eng.
193, 4299–4432 (2004)
MathSciNetMATHCrossRef
62.
Zurück zum Zitat M. Shiraishi et al., Simulation of dynamically rolling tire. Tire Sci. Technol. 28(4), 264–276 (2000) CrossRef M. Shiraishi et al., Simulation of dynamically rolling tire. Tire Sci. Technol.
28(4), 264–276 (2000)
CrossRef
63.
Zurück zum Zitat M. Koishi, Z. Shida, Multi-objective design problem of tire wear and visualization of its pareto solutions. Tire Sci. Technol. 34(3), 170–194 (2006) CrossRef M. Koishi, Z. Shida, Multi-objective design problem of tire wear and visualization of its pareto solutions. Tire Sci. Technol.
34(3), 170–194 (2006)
CrossRef
64.
Zurück zum Zitat J.R. Cho et al., Abrasive wear amount estimate for 3D patterned tire utilizing frictional dynamic rolling analysis. Tribo. Int. 44, 850–858 (2011) CrossRef J.R. Cho et al., Abrasive wear amount estimate for 3D patterned tire utilizing frictional dynamic rolling analysis. Tribo. Int.
44, 850–858 (2011)
CrossRef
65.
Zurück zum Zitat A.R. Savkoor, On the friction of rubber. Wear 8, 222–237 (1965) CrossRef A.R. Savkoor, On the friction of rubber. Wear
8, 222–237 (1965)
CrossRef
66.
Zurück zum Zitat K. Hofstetter et al., Sliding behaviour of simplified tire tread patterns investigated by means of FEM. Comp. Struct. 84, 1151–1163 (2006) CrossRef K. Hofstetter et al., Sliding behaviour of simplified tire tread patterns investigated by means of FEM. Comp. Struct.
84, 1151–1163 (2006)
CrossRef
67.
Zurück zum Zitat A.G. Veith, A review of important factors affecting treadwear. Rubber Chem. Technol. 65, 601–659 (1992) CrossRef A.G. Veith, A review of important factors affecting treadwear. Rubber Chem. Technol.
65, 601–659 (1992)
CrossRef
68.
Zurück zum Zitat A.G. Veith, Tire treadwear—the joint influence of compound properties and environmental factors. Tire Sci. Technol. 23(4), 212–237 (1995) CrossRef A.G. Veith, Tire treadwear—the joint influence of compound properties and environmental factors. Tire Sci. Technol.
23(4), 212–237 (1995)
CrossRef
69.
Zurück zum Zitat T. Fujikawa, Tire tread wear prediction by rubber pad wear test (in Japanese). Nippon Gomu Kyokaishi 71, 154–160 (1998) CrossRef T. Fujikawa, Tire tread wear prediction by rubber pad wear test (in Japanese). Nippon Gomu Kyokaishi
71, 154–160 (1998)
CrossRef
70.
Zurück zum Zitat T. Fujikawa et al., Tire wear caused by mild tread slip. Rubber Chem. Technol. 70, 573–583 (1997) CrossRef T. Fujikawa et al., Tire wear caused by mild tread slip. Rubber Chem. Technol.
70, 573–583 (1997)
CrossRef
71.
Zurück zum Zitat K.A. Grosch, Correlation between road wear of tires and computer road wear simulation using laboratory abrasion data. Rubber Chem. Technol. 77, 791–814 (2002) CrossRef K.A. Grosch, Correlation between road wear of tires and computer road wear simulation using laboratory abrasion data. Rubber Chem. Technol.
77, 791–814 (2002)
CrossRef
72.
Zurück zum Zitat A. Tomita, Technology for improvement on tire irregular wear (in Japanese). Nippon Gomu Kyokaishi 76, 52–57 (2003) CrossRef A. Tomita, Technology for improvement on tire irregular wear (in Japanese). Nippon Gomu Kyokaishi
76, 52–57 (2003)
CrossRef
73.
Zurück zum Zitat K. Kato, K. Kadota, On development of the super-single drive (GMD) tyre, in 7th International Symposium Heavy Vehicle Weights & Dimensions, Delft, Netherlands, 2002 K. Kato, K. Kadota, On development of the super-single drive (GMD) tyre, in
7th International Symposium Heavy Vehicle Weights & Dimensions, Delft, Netherlands, 2002
74.
Zurück zum Zitat N. Wada et al., Effect of filled fibers and their orientations on the wear of short fiber reinforced rubber composites. Nippon Gomu Kyokaishi 66(8), 572–584 (1993) CrossRef N. Wada et al., Effect of filled fibers and their orientations on the wear of short fiber reinforced rubber composites. Nippon Gomu Kyokaishi
66(8), 572–584 (1993)
CrossRef
- Titel
- Wear of Tires
- DOI
- https://doi.org/10.1007/978-981-13-5799-2_14
- Autor:
-
Yukio Nakajima
- Verlag
- Springer Singapore
- Sequenznummer
- 14
- Kapitelnummer
- Chapter 14