Skip to main content
Erschienen in: Wireless Personal Communications 3/2021

08.09.2020

Square Monopole Antenna Application in Localization of Tumors in Three Dimensions by Confocal Microwave Imaging for Breast Cancer Detection: Experimental Measurement

verfasst von: Mojtaba Ahadi, Javad Nourinia, Changiz Ghobadi

Erschienen in: Wireless Personal Communications | Ausgabe 3/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, application of a designed antenna for microwave imaging is evaluated. In previous research, application of an UWB antenna for microwave imaging was investigated. To the best of the author’s knowledge, the designed antenna was the smallest UWB antenna designed at the time of publication, for breast cancer detection. The smaller size antennas can cause more clutter in the image while, on the other hand, make it possible to use more antennas in the array at the same surface. Therefore, the smaller size of the antenna makes microwave imaging more challenging. Simulation results showed successful detection of 10 mm and 5 mm tumors by 16 UWB antennas with the hemispherical arrangement. For signal processing, the Delay-Multiply-and-Sum Algorithm is used for image reconstruction. In this paper results of two experimental microwave imaging is presented. Two tumors at different locations are placed and microwave imaging is performed. The experimental proves that the designed antenna in an array of 16 antennas is capable of detecting the 5 mm tumor in different location.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
7.
Zurück zum Zitat National Research Council. (2005). Saving women’s lives: Strategies for improving breast cancer detection and diagnosis. Washington: National Academies Press. National Research Council. (2005). Saving women’s lives: Strategies for improving breast cancer detection and diagnosis. Washington: National Academies Press.
8.
Zurück zum Zitat Fear, E. C., Meaney, P. M., & Stuchly, M. A. (2003). Microwaves for breast cancer detection? IEEE Potentials, 22(1), 12–18.CrossRef Fear, E. C., Meaney, P. M., & Stuchly, M. A. (2003). Microwaves for breast cancer detection? IEEE Potentials, 22(1), 12–18.CrossRef
9.
Zurück zum Zitat Surowiec, A. J., Stuchly, S. S., Barr, J. R., & Swarup, A. (1988). Dielectric properties of breast carcinoma and the surrounding tissues. IEEE Transactions on Biomedical Engineering, 35(4), 257–263.CrossRef Surowiec, A. J., Stuchly, S. S., Barr, J. R., & Swarup, A. (1988). Dielectric properties of breast carcinoma and the surrounding tissues. IEEE Transactions on Biomedical Engineering, 35(4), 257–263.CrossRef
10.
Zurück zum Zitat Lazebnik, M., et al. (2007). A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries. Physics in Medicine & Biology, 52(10), 2637.CrossRef Lazebnik, M., et al. (2007). A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries. Physics in Medicine & Biology, 52(10), 2637.CrossRef
11.
Zurück zum Zitat E. International. (2009). Guide for assessment of human exposure to electromagnetic fields from multimedia products in accordance with IEC/EN 62311. E. International. (2009). Guide for assessment of human exposure to electromagnetic fields from multimedia products in accordance with IEC/EN 62311.
12.
Zurück zum Zitat Lazebnik, M., et al. (2007). A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries. Physics in Medicine & Biology, 52(20), 6093.CrossRef Lazebnik, M., et al. (2007). A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries. Physics in Medicine & Biology, 52(20), 6093.CrossRef
13.
Zurück zum Zitat Lazebnik, M., Madsen, E. L., Frank, G. R., & Hagness, S. C. (2005). Tissue-mimicking phantom materials for narrowband and ultrawideband microwave applications. Physics in Medicine & Biology, 50(18), 4245.CrossRef Lazebnik, M., Madsen, E. L., Frank, G. R., & Hagness, S. C. (2005). Tissue-mimicking phantom materials for narrowband and ultrawideband microwave applications. Physics in Medicine & Biology, 50(18), 4245.CrossRef
14.
Zurück zum Zitat Ahadi, M., Isa, M. B. M., Saripan, M. I. B., & Hasan, W. Z. W. (2014). Square monopole antenna for microwave imaging, design and characterisation. IET Microwaves, Antennas and Propagation, 9(1), 49–57.CrossRef Ahadi, M., Isa, M. B. M., Saripan, M. I. B., & Hasan, W. Z. W. (2014). Square monopole antenna for microwave imaging, design and characterisation. IET Microwaves, Antennas and Propagation, 9(1), 49–57.CrossRef
15.
Zurück zum Zitat Ahadi, M., Isa, M., Saripan, M. I., & Hasan, W. Z. W. (2015). Three dimensions localization of tumors in confocal microwave imaging for breast cancer detection. Microwave and Optical Technology Letters, 57, 2917–2929.CrossRef Ahadi, M., Isa, M., Saripan, M. I., & Hasan, W. Z. W. (2015). Three dimensions localization of tumors in confocal microwave imaging for breast cancer detection. Microwave and Optical Technology Letters, 57, 2917–2929.CrossRef
16.
Zurück zum Zitat Bocquet, B., et al. (1990). Microwave radiometric imaging at 3 GHz for the exploration of breast tumors. IEEE Transactions on Microwave Theory and Techniques, 38(6), 791–793.CrossRef Bocquet, B., et al. (1990). Microwave radiometric imaging at 3 GHz for the exploration of breast tumors. IEEE Transactions on Microwave Theory and Techniques, 38(6), 791–793.CrossRef
17.
Zurück zum Zitat Stauffer, P. R., et al. (2013). Stable microwave radiometry system for long term monitoring of deep tissue temperature. In Proceedings of SPIE—The International Society for Optical Engineering (vol. 8584). Stauffer, P. R., et al. (2013). Stable microwave radiometry system for long term monitoring of deep tissue temperature. In Proceedings of SPIEThe International Society for Optical Engineering (vol. 8584).
18.
Zurück zum Zitat Rodrigues, D. B., et al. (2014). Design and optimization of an ultra wideband and compact microwave antenna for radiometric monitoring of brain temperature. IEEE Transactions on Biomedical Engineering, 61(7), 2154–2160.CrossRef Rodrigues, D. B., et al. (2014). Design and optimization of an ultra wideband and compact microwave antenna for radiometric monitoring of brain temperature. IEEE Transactions on Biomedical Engineering, 61(7), 2154–2160.CrossRef
19.
Zurück zum Zitat Stauffer, P. R., et al. (2014). Non-invasive measurement of brain temperature with microwave radiometry: Demonstration in a head phantom and clinical case. The Neuroradiology Journal, 27(1), 3–12.CrossRef Stauffer, P. R., et al. (2014). Non-invasive measurement of brain temperature with microwave radiometry: Demonstration in a head phantom and clinical case. The Neuroradiology Journal, 27(1), 3–12.CrossRef
20.
Zurück zum Zitat Scheeler, R., Kuester, E. F., & Popovic, Z. (2014). Sensing depth of microwave radiation for internal body temperature measurement. IEEE Transactions on Antennas and Propagation, 62(3), 1293–1303.MathSciNetCrossRef Scheeler, R., Kuester, E. F., & Popovic, Z. (2014). Sensing depth of microwave radiation for internal body temperature measurement. IEEE Transactions on Antennas and Propagation, 62(3), 1293–1303.MathSciNetCrossRef
21.
Zurück zum Zitat Kruger, R. A., Kopecky, K. K., Aisen, A. M., Reinecke, D. R., Kruger, G. A., & Kiser, W. L., Jr. (1999). Thermoacoustic CT with radio waves: A medical imaging paradigm. Radiology, 211(1), 275–278.CrossRef Kruger, R. A., Kopecky, K. K., Aisen, A. M., Reinecke, D. R., Kruger, G. A., & Kiser, W. L., Jr. (1999). Thermoacoustic CT with radio waves: A medical imaging paradigm. Radiology, 211(1), 275–278.CrossRef
22.
Zurück zum Zitat Roggenbuck, M., Catenacci, J., Walker, R., Hanson, E., Hsieh, J., & Patch, S. K. (2014). Thermoacoustic imaging with VHF signal generation: A new contrast mechanism for cancer imaging over large fields of view. In A. S. El-Baz, L. Saba, & J. Suri (Eds.), Abdomen and thoracic imaging (pp. 523–557). New York: Springer.CrossRef Roggenbuck, M., Catenacci, J., Walker, R., Hanson, E., Hsieh, J., & Patch, S. K. (2014). Thermoacoustic imaging with VHF signal generation: A new contrast mechanism for cancer imaging over large fields of view. In A. S. El-Baz, L. Saba, & J. Suri (Eds.), Abdomen and thoracic imaging (pp. 523–557). New York: Springer.CrossRef
23.
Zurück zum Zitat Hao, X., Xiong, W., Tao, Q., Huan, M., Yexian, Q., & Witte, R. S. (2014). Time-efficient contrast-enhanced thermoacoustic imaging modality for 3-D breast cancer detection using compressive sensing. In General assembly and scientific symposium (URSI GASS), 2014 XXXIth URSI (pp. 1–2). Hao, X., Xiong, W., Tao, Q., Huan, M., Yexian, Q., & Witte, R. S. (2014). Time-efficient contrast-enhanced thermoacoustic imaging modality for 3-D breast cancer detection using compressive sensing. In General assembly and scientific symposium (URSI GASS), 2014 XXXIth URSI (pp. 1–2).
24.
Zurück zum Zitat Wang, X. (2014). Thermoacoustic applications in breast cancer detection and communications. Tucson: The University of Arizona. Wang, X. (2014). Thermoacoustic applications in breast cancer detection and communications. Tucson: The University of Arizona.
25.
Zurück zum Zitat Song, J., Zhao, Z., Wang, J., Zhu, X., Wu, J., Nie, Z., et al. (2014). Evaluation of contrast enhancement by carbon nanotubes for microwave induced thermo-acoustic tomography. IEEE Transactions on Biomedical Engineering, 62(99), 1. Song, J., Zhao, Z., Wang, J., Zhu, X., Wu, J., Nie, Z., et al. (2014). Evaluation of contrast enhancement by carbon nanotubes for microwave induced thermo-acoustic tomography. IEEE Transactions on Biomedical Engineering, 62(99), 1.
26.
Zurück zum Zitat Sheeba, I. R., & Jayanthy, T. (2019). Design and analysis of a flexible softwear antenna for tumor detection in skin and breast model. Wireless Personal Communications, 107(2), 887–905.CrossRef Sheeba, I. R., & Jayanthy, T. (2019). Design and analysis of a flexible softwear antenna for tumor detection in skin and breast model. Wireless Personal Communications, 107(2), 887–905.CrossRef
27.
Zurück zum Zitat Khuda, I. E., Anis, M. I., & Aamir, M. (2017). Numerical modeling of human tissues and scattering parameters for microwave cancer imaging systems. Wireless Personal Communications, 95(2), 331–351.CrossRef Khuda, I. E., Anis, M. I., & Aamir, M. (2017). Numerical modeling of human tissues and scattering parameters for microwave cancer imaging systems. Wireless Personal Communications, 95(2), 331–351.CrossRef
28.
Zurück zum Zitat Khor, W. C., Bialkowski, M. E., Abbosh, A., Seman, N., & Crozier, S. (2007). An ultra wideband microwave imaging system for breast cancer detection. IEICE Transactions on Communications, 90(9), 2376–2381.CrossRef Khor, W. C., Bialkowski, M. E., Abbosh, A., Seman, N., & Crozier, S. (2007). An ultra wideband microwave imaging system for breast cancer detection. IEICE Transactions on Communications, 90(9), 2376–2381.CrossRef
29.
Zurück zum Zitat Amineh, R. K., Ravan, M., Trehan, A., & Nikolova, N. K. (2011). Near-field microwave imaging based on aperture raster scanning with TEM horn antennas. IEEE Transactions on Antennas and Propagation, 59(3), 928–940.CrossRef Amineh, R. K., Ravan, M., Trehan, A., & Nikolova, N. K. (2011). Near-field microwave imaging based on aperture raster scanning with TEM horn antennas. IEEE Transactions on Antennas and Propagation, 59(3), 928–940.CrossRef
30.
Zurück zum Zitat Klemm, M., Craddock, I. J., Leendertz, J. A., Preece, A., & Benjamin, R. (2008). Improved delay-and-sum beamforming algorithm for breast cancer detection. International Journal of Antennas and Propagation, 2008, 7614021–7614029.CrossRef Klemm, M., Craddock, I. J., Leendertz, J. A., Preece, A., & Benjamin, R. (2008). Improved delay-and-sum beamforming algorithm for breast cancer detection. International Journal of Antennas and Propagation, 2008, 7614021–7614029.CrossRef
31.
Zurück zum Zitat Sugitani, T., Kubota, S., Toya, A., Xia, X., & Kikkawa, T. (2013). A compact 4x4 planar UWB antenna array for 3-D breast cancer detection. IEEE Antennas and Wireless Propagation Letters, 12, 733–736.CrossRef Sugitani, T., Kubota, S., Toya, A., Xia, X., & Kikkawa, T. (2013). A compact 4x4 planar UWB antenna array for 3-D breast cancer detection. IEEE Antennas and Wireless Propagation Letters, 12, 733–736.CrossRef
32.
Zurück zum Zitat Caorsi, S., & Lenzi, C. (2017). ANN-based radar approach to detect breast cancers in fibro-glandular tissues: Numerical analysis. International Journal of Microwave and Wireless Technologies, 9(8), 1597–1602.CrossRef Caorsi, S., & Lenzi, C. (2017). ANN-based radar approach to detect breast cancers in fibro-glandular tissues: Numerical analysis. International Journal of Microwave and Wireless Technologies, 9(8), 1597–1602.CrossRef
33.
Zurück zum Zitat Bourqui, J., Sill, J. M., & Fear, E. C. (2012). A prototype system for measuring microwave frequency reflections from the breast. International Journal of Biomedical Imaging, 2012, 12. Bourqui, J., Sill, J. M., & Fear, E. C. (2012). A prototype system for measuring microwave frequency reflections from the breast. International Journal of Biomedical Imaging, 2012, 12.
34.
Zurück zum Zitat Hooi Been, L., Nguyen Thi Tuyet, N., Er-Ping, L., & Nguyen Duc, T. (2008). Confocal microwave imaging for breast cancer detection: Delay-multiply-and-sum image reconstruction algorithm. IEEE Transactions on Biomedical Engineering, 55(6), 1697–1704.CrossRef Hooi Been, L., Nguyen Thi Tuyet, N., Er-Ping, L., & Nguyen Duc, T. (2008). Confocal microwave imaging for breast cancer detection: Delay-multiply-and-sum image reconstruction algorithm. IEEE Transactions on Biomedical Engineering, 55(6), 1697–1704.CrossRef
35.
Zurück zum Zitat Fear, E. C., Li, X., Hagness, S. C., & Stuchly, M. A. (2002). Confocal microwave imaging for breast cancer detection: Localization of tumors in three dimensions. IEEE Transactions on Biomedical Engineering, 49(8), 812–822.CrossRef Fear, E. C., Li, X., Hagness, S. C., & Stuchly, M. A. (2002). Confocal microwave imaging for breast cancer detection: Localization of tumors in three dimensions. IEEE Transactions on Biomedical Engineering, 49(8), 812–822.CrossRef
Metadaten
Titel
Square Monopole Antenna Application in Localization of Tumors in Three Dimensions by Confocal Microwave Imaging for Breast Cancer Detection: Experimental Measurement
verfasst von
Mojtaba Ahadi
Javad Nourinia
Changiz Ghobadi
Publikationsdatum
08.09.2020
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 3/2021
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-07801-5

Weitere Artikel der Ausgabe 3/2021

Wireless Personal Communications 3/2021 Zur Ausgabe

Neuer Inhalt