2011 | OriginalPaper | Buchkapitel
Tipp
Weitere Kapitel dieses Buchs durch Wischen aufrufen
Erschienen in:
Guide to Geometric Algebra in Practice
Conformal transformations are described by rotors in the conformal model of geometric algebra (CGA). In applications there is a need for interpolation of such transformations, especially for the subclass of 3D rigid body motions. This chapter gives explicit formulas for the square root and the logarithm of rotors in 3D CGA. It also classifies the types of conformal transformations and their orbits. To derive the results, we employ a novel polar decomposition for the even subalgebra of 3D CGA and an associated norm-like expression.
Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten
Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:
Anzeige
1.
Dorst, L.: Conformal geometric algebra by extended Vahlen matrices. In: Skala, V., Hildenbrandt, D. (eds.) GraVisMa 2009 Workshop Proceedings, pp. 72–79 (2009)
2.
Dorst, L., Fontijne, D., Mann, S.: Geometric Algebra for Computer Science: An Object Oriented Approach to Geometry, Morgan Kaufmann, San Mateo (2007/2009). See
www.geometricalgebra.net
3.
Hestenes, D., Sobczyk, G.: Clifford Algebra to Geometric Calculus. Reidel, Dordrecht (1984/1999)
4.
Lounesto, P.: Clifford Algebras and Spinors, 2nd edn. Cambridge University Press, Cambridge (2001)
5.
Valkenburg, R., Dorst, L.: Estimating motors from a variety of geometric data in 3D conformal geometric algebra. In: Dorst, L., Lasenby, J. (eds.) Guide to Geometric Algebra in Practice. Springer, London (2011). Chap.
2 in this book
- Titel
- Square Root and Logarithm of Rotors in 3D Conformal Geometric Algebra Using Polar Decomposition
- DOI
- https://doi.org/10.1007/978-0-85729-811-9_5
- Autoren:
-
Leo Dorst
Robert Valkenburg
- Verlag
- Springer London
- Sequenznummer
- 5
- Kapitelnummer
- 5