Skip to main content
Erschienen in: Microsystem Technologies 6/2019

08.10.2018 | Technical Paper

Stability analysis in state space for non-driven MEMS gyro

verfasst von: Zengping Zhang, Dan Chang, Bin Jia

Erschienen in: Microsystem Technologies | Ausgabe 6/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The non-driven MEMS gyro is a new kind of micromechanical vibratory gyro, which has no a driving structure itself. The gyro is installed on a rotating aircraft and utilizes the spinning of the carrier to obtain an angular momentum. When the carrier produces a transverse rotation, a periodic Coriolis force acts on the sensitive mass of the MEMS gyro to sense the transverse input angular velocity of the rotating carrier. In applications, we found that the MEMS gyro is subjected to a high shock when the carrier begins to launch. If the sensitive mass cannot return to balance, the gyro will not work properly. So the stability of the gyro is the key issue on whether it can properly work. In this paper, we have analyzed the stability of the MEMS gyro in details by using Lyapunov stability principle for the first time. Firstly, based on the designed structural principle of the MEMS gyro, by using Euler dynamic equation of a rigid body rotating around a fixed point, we have described the angular vibration of the sensitive mass of the gyro and obtained its motion equation. The motion is the second order system. Then, we have chosen an appropriate state vector and established a state space model in state space for describing the motion of the sensitive mass. In order to research the stability of the designed MEMS gyro by using Lyapunov stability principle, a Lyapunov function needs to be found. Therefore, we have built a quadratic function and proved that its Lyapunov matrix equation has a solution. The matrix solution is symmetric and positive definite. Thus, the found quadratic function is a Lyapunov function. According to Lyapunov stability principle, the designed MEMS gyro is asymptotically stable. Next, utilizing numerical calculation, we have done the simulation of the unit-impulse response. The response curve has shown that the system of the designed MEMS gyro can come back to the balance after 160 ms. Finally, for further verification, the MEMS gyro is fixed on the shock table to test. The shock wave is a half-sine with the strength of 60 g and the impulse width of 80 ms. The tested result has demonstrated that the output signal of the designed MEMS gyro can again come back to zero state position after 150 ms under shock disturbance.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Cao H, Li H, Shao X et al (2018) Sensing mode coupling analysis for dual-mass MEMS gyroscope and bandwidth expansion within wide-temperature range. Mech Syst Sign Process. 98:448–464CrossRef Cao H, Li H, Shao X et al (2018) Sensing mode coupling analysis for dual-mass MEMS gyroscope and bandwidth expansion within wide-temperature range. Mech Syst Sign Process. 98:448–464CrossRef
Zurück zum Zitat Cetin H, Yaralioglu GG (2017) Analysis of vibratory gyroscopes: drive and sense mode resonance shift by coriolis force. IEEE Sens J 17(2):347–358CrossRef Cetin H, Yaralioglu GG (2017) Analysis of vibratory gyroscopes: drive and sense mode resonance shift by coriolis force. IEEE Sens J 17(2):347–358CrossRef
Zurück zum Zitat Cheng YX, Zhang WP, Chen WY et al (2011) Research development of MEMS micro-gyroscopes. Micronanoelectron Technol 5:277–285 Cheng YX, Zhang WP, Chen WY et al (2011) Research development of MEMS micro-gyroscopes. Micronanoelectron Technol 5:277–285
Zurück zum Zitat Chikovani VV, Tsiruk HV (2017) Digital rate MEMS vibratory gyroscope modeling, tuning and simulation results. Computación y Sistemas. 21(1):147–159CrossRef Chikovani VV, Tsiruk HV (2017) Digital rate MEMS vibratory gyroscope modeling, tuning and simulation results. Computación y Sistemas. 21(1):147–159CrossRef
Zurück zum Zitat Chikovani VV, Sushchenko OA, Tsiruk HV (2017) External disturbances rejection by differential single-mass vibratory gyroscope. Acta Polytechnica Hungarica. 14(3SI):251–270 Chikovani VV, Sushchenko OA, Tsiruk HV (2017) External disturbances rejection by differential single-mass vibratory gyroscope. Acta Polytechnica Hungarica. 14(3SI):251–270
Zurück zum Zitat Deppe O, Dorner G, Koenig S et al (2017) MEMS and FOG technologies for tactical and navigation grade inertial sensors-recent improvements and comparison. Sensors. 17(3):567CrossRef Deppe O, Dorner G, Koenig S et al (2017) MEMS and FOG technologies for tactical and navigation grade inertial sensors-recent improvements and comparison. Sensors. 17(3):567CrossRef
Zurück zum Zitat Evstifeev MI, Eliseev DP, Rozentsvein DV et al (2012) Requirements for MEMS gyro shock tests. Gyrosc Navigation 3(1):51–55CrossRef Evstifeev MI, Eliseev DP, Rozentsvein DV et al (2012) Requirements for MEMS gyro shock tests. Gyrosc Navigation 3(1):51–55CrossRef
Zurück zum Zitat Li J, Broas M, Makkonen J et al (2014) Shock impact reliability and failure analysis of a three-axis MEMS gyroscope. J Microelectromech Syst 23(2):347–355CrossRef Li J, Broas M, Makkonen J et al (2014) Shock impact reliability and failure analysis of a three-axis MEMS gyroscope. J Microelectromech Syst 23(2):347–355CrossRef
Zurück zum Zitat Maeda D, Ono K, Giner J et al (2018) MEMS Gyroscope with less than 1-deg/h bias instability variation in temperature range from-40 degrees c to 125 degrees C. IEEE Sens J 18(3):1006–1015 Maeda D, Ono K, Giner J et al (2018) MEMS Gyroscope with less than 1-deg/h bias instability variation in temperature range from-40 degrees c to 125 degrees C. IEEE Sens J 18(3):1006–1015
Zurück zum Zitat Nakakuku T (2017) A stability analysis method for biochemical reaction system with inhibitory feedback loop. Electron Commun Japan 100(8):24–33CrossRef Nakakuku T (2017) A stability analysis method for biochemical reaction system with inhibitory feedback loop. Electron Commun Japan 100(8):24–33CrossRef
Zurück zum Zitat Pakniyat A, Salarieh H, Alasty A (2012) Stability analysis of a new class of MEMS gyroscopes with parametric resonance. Acta Mech 223(6):1169–1185MathSciNetCrossRefMATH Pakniyat A, Salarieh H, Alasty A (2012) Stability analysis of a new class of MEMS gyroscopes with parametric resonance. Acta Mech 223(6):1169–1185MathSciNetCrossRefMATH
Zurück zum Zitat Phillips CL, Nagle HT, Chakrabortty A. Digital control system analysis & design. Pearson Education, London, 2014 Phillips CL, Nagle HT, Chakrabortty A. Digital control system analysis & design. Pearson Education, London, 2014
Zurück zum Zitat Sun J, Zheng Z, Sun J (2018) Stability analysis methods and their applicability to car-following models in conventional and connected environments. Transp Res B Methodol 109:212–237CrossRef Sun J, Zheng Z, Sun J (2018) Stability analysis methods and their applicability to car-following models in conventional and connected environments. Transp Res B Methodol 109:212–237CrossRef
Zurück zum Zitat Tao J, Lin S (2016) Robust model and optimization of anti-impact performance for MEMS ring gyroscope. J Syst Simul 4:4 Tao J, Lin S (2016) Robust model and optimization of anti-impact performance for MEMS ring gyroscope. J Syst Simul 4:4
Zurück zum Zitat Trusov AA, Atikyan G, Rozelle DM, et al. Flat Is not dead: current and future performance of Si-MEMS quad mass gyro (QMG) system [M]. IEEE-ION Position Location and Navigation Symposium, 2014, 252-258 Trusov AA, Atikyan G, Rozelle DM, et al. Flat Is not dead: current and future performance of Si-MEMS quad mass gyro (QMG) system [M]. IEEE-ION Position Location and Navigation Symposium, 2014, 252-258
Zurück zum Zitat Verma P, Pavelyev VS, Volodkin BO et al (2016) Design, simulation, and fabrication of silicon-on-insulator MEMS vibratory decoupled gyroscope. Comput Opt 40(5):668–673CrossRef Verma P, Pavelyev VS, Volodkin BO et al (2016) Design, simulation, and fabrication of silicon-on-insulator MEMS vibratory decoupled gyroscope. Comput Opt 40(5):668–673CrossRef
Zurück zum Zitat Wang JL, Adhikari G, Tsuhiji N, et al. Equivalence between Nyquist and Routh-Hurwitz stability criteria for operational amplifier design. International Symposium on Intelligent Signal Processing and Communication Systems. IEEE, New York, 2018 Wang JL, Adhikari G, Tsuhiji N, et al. Equivalence between Nyquist and Routh-Hurwitz stability criteria for operational amplifier design. International Symposium on Intelligent Signal Processing and Communication Systems. IEEE, New York, 2018
Zurück zum Zitat Wang W, Zhang T, Fan D et al (2014a) Study on frequency stability of a linear-vibration MEMS gyroscope. Microsyst Technol 20(12):2147–2155CrossRef Wang W, Zhang T, Fan D et al (2014a) Study on frequency stability of a linear-vibration MEMS gyroscope. Microsyst Technol 20(12):2147–2155CrossRef
Zurück zum Zitat Wang SL, Liu HT, Teng G et al (2014b) Design method of MEMS IMU in high-g shock. Zhongguo Guanxing Jishu Xuebao/J Chin Inertial Technol 22(3):404–408 Wang SL, Liu HT, Teng G et al (2014b) Design method of MEMS IMU in high-g shock. Zhongguo Guanxing Jishu Xuebao/J Chin Inertial Technol 22(3):404–408
Zurück zum Zitat Wen B, Boroyevich D, Burgos R et al (2016) Inverse nyquist stability criterion for grid-tied inverters. IEEE Trans Power Electron 32(2):1548–1556CrossRef Wen B, Boroyevich D, Burgos R et al (2016) Inverse nyquist stability criterion for grid-tied inverters. IEEE Trans Power Electron 32(2):1548–1556CrossRef
Zurück zum Zitat Wu HM, Yang HG, Yin T et al (2011) Stability analysis of MEMS gyroscope drive loop based on CPPLL/microelectronics and electronics. IEEE, New York, pp 45–48 Wu HM, Yang HG, Yin T et al (2011) Stability analysis of MEMS gyroscope drive loop based on CPPLL/microelectronics and electronics. IEEE, New York, pp 45–48
Zurück zum Zitat Zotov S A, Simon B R, Sharma G, et al. Utilization of mechanical quadrature in silicon MEMS vibratory gyroscope to increase and expand the long term in-run bias stability. International symposium on inertial sensors and systems. IEEE, New York, 2014. pp 1–4 Zotov S A, Simon B R, Sharma G, et al. Utilization of mechanical quadrature in silicon MEMS vibratory gyroscope to increase and expand the long term in-run bias stability. International symposium on inertial sensors and systems. IEEE, New York, 2014. pp 1–4
Metadaten
Titel
Stability analysis in state space for non-driven MEMS gyro
verfasst von
Zengping Zhang
Dan Chang
Bin Jia
Publikationsdatum
08.10.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 6/2019
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-018-4155-0

Weitere Artikel der Ausgabe 6/2019

Microsystem Technologies 6/2019 Zur Ausgabe

Neuer Inhalt