Skip to main content
Erschienen in: Wireless Personal Communications 3/2019

07.05.2019

Stability Analysis of Epidemic Modeling Based on Spatial Correlation for Wireless Sensor Networks

Erschienen in: Wireless Personal Communications | Ausgabe 3/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In wireless sensor networks (WSNs), the main task of each sensor node is to sense the physical activity and then report it to a remote central monitoring sink node. For this, sensor nodes are attached with many sensors having ability to measure the environmental information. To investigate the virus propagation in WSNs, existing epidemiological models are global without consideration of behavior of WSN. Different from existing epidemic models, we propose Correlation-based susceptible-infectious-recovered epidemic model that takes into account of spatial correlation characteristics of a WSN. Firstly, we show that how strongly correlated nodes and less correlated nodes are formed in the a WSN based on sensing range. Using epidemic theory, the differential equations are derived and the stability analysis has been investigated to determine the threshold about spatial correlation based reproduction number for WSNs. Simulation results and comparative studies are presented to varify the numerical results using various parameters such as basic reproduction number, spatial correlation, node density, correlated nodes. Modeling demonstrates the effective virus propagation dynamics with time that can be used to design the prevention mechanisms to control the infections with time. Comparative studies show the significant performance improvement based on spatial correlation of nodes in a WSN.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
2.
Zurück zum Zitat Vuran, M. C., Akan, O. B., & Akyildiz, I. F. (2004). Spatio-temporal correlation: theory and applications for wireless sensor networks. Journal of Computer Networks, 45, 245–259.CrossRefMATH Vuran, M. C., Akan, O. B., & Akyildiz, I. F. (2004). Spatio-temporal correlation: theory and applications for wireless sensor networks. Journal of Computer Networks, 45, 245–259.CrossRefMATH
3.
Zurück zum Zitat Shakya, R. K., Singh, Y. N., & Verma, N. K. (2012). A correlation model for MAC protocols in event-driven wireless sensor networks. In IEEE proceedings on region 10 conference TENCON 2012. Philippines: Cebu City. Shakya, R. K., Singh, Y. N., & Verma, N. K. (2012). A correlation model for MAC protocols in event-driven wireless sensor networks. In IEEE proceedings on region 10 conference TENCON 2012. Philippines: Cebu City.
4.
Zurück zum Zitat Shakya, R. K., Singh, Y .N., & Verma, N. K. (2012). A novel spatial correlation model for wireless sensor network applications. Proceedings 2012 IEEE WOCN 2012 (pp. 1–6). Indore City, MP, India. Shakya, R. K., Singh, Y .N., & Verma, N. K. (2012). A novel spatial correlation model for wireless sensor network applications. Proceedings 2012 IEEE WOCN 2012 (pp. 1–6). Indore City, MP, India.
5.
Zurück zum Zitat Shakya, R. K., Singh, Y. N., & Verma, N. K. (2013). Generic correlation model for wireless sensor network applications. Journal of IET Wireless Sensor Systems, 3(4), 266–276.CrossRef Shakya, R. K., Singh, Y. N., & Verma, N. K. (2013). Generic correlation model for wireless sensor network applications. Journal of IET Wireless Sensor Systems, 3(4), 266–276.CrossRef
6.
Zurück zum Zitat Yan, G., & Eidenbenz, S. (2009). Modeling propagation dynamics of bluetooth worms. IEEE Transactions on Mobile Computing, 8(3), 353–367.CrossRef Yan, G., & Eidenbenz, S. (2009). Modeling propagation dynamics of bluetooth worms. IEEE Transactions on Mobile Computing, 8(3), 353–367.CrossRef
7.
Zurück zum Zitat Chien, E. (2005). Security response: SymbOS.mabir, United States, 2005 (Technical Report). Symantec Corporation USA. Chien, E. (2005). Security response: SymbOS.mabir, United States, 2005 (Technical Report). Symantec Corporation USA.
8.
Zurück zum Zitat Ferrie, P., Szor, P., Stanev, R., & Mouritzen, R.(2007). Security response: SymbOS.Cabir, United States, 2007 (Technical Report ). Symantec Corporation USA. Ferrie, P., Szor, P., Stanev, R., & Mouritzen, R.(2007). Security response: SymbOS.Cabir, United States, 2007 (Technical Report ). Symantec Corporation USA.
9.
Zurück zum Zitat Newman, M. E. (2002). Spread of epidemic disease on networks. Physical Review, 66(1), 016–128.MathSciNet Newman, M. E. (2002). Spread of epidemic disease on networks. Physical Review, 66(1), 016–128.MathSciNet
10.
Zurück zum Zitat Daley, D. J., & Gani, J. (1999). Epidemic modeling: An introduction. New York, NY: Cambridge University Press.CrossRefMATH Daley, D. J., & Gani, J. (1999). Epidemic modeling: An introduction. New York, NY: Cambridge University Press.CrossRefMATH
11.
Zurück zum Zitat Kannan, S., & Saranya, (2016). An enhanced hidden markov dynamic bayesian model for resisting camouflaging worm attack study. Asian Journal of Information Technology, 15(18), 3616–3623. Kannan, S., & Saranya, (2016). An enhanced hidden markov dynamic bayesian model for resisting camouflaging worm attack study. Asian Journal of Information Technology, 15(18), 3616–3623.
13.
Zurück zum Zitat Tang, S., & Li, W. (2011). An epidemic model with adaptive virus spread control for wireless sensor networks. International Journal on Security Networks, 6(4), 201–210.CrossRef Tang, S., & Li, W. (2011). An epidemic model with adaptive virus spread control for wireless sensor networks. International Journal on Security Networks, 6(4), 201–210.CrossRef
16.
Zurück zum Zitat Del Ray, A. M. (2015). Mathematical modeling of the propagation of malware: A review. Journal on Security and Comm. Networks, 8(15), 2561–2579.CrossRef Del Ray, A. M. (2015). Mathematical modeling of the propagation of malware: A review. Journal on Security and Comm. Networks, 8(15), 2561–2579.CrossRef
18.
Zurück zum Zitat Li, Q., Zhang, B., Cui, L., Zhun, F., & Athanasios, V. V. (2014). Epidemics on small worlds of tree-based wireless sensor networks. Journal of Systems Science and Complexity, 27(6), 1095–1120.MathSciNetCrossRefMATH Li, Q., Zhang, B., Cui, L., Zhun, F., & Athanasios, V. V. (2014). Epidemics on small worlds of tree-based wireless sensor networks. Journal of Systems Science and Complexity, 27(6), 1095–1120.MathSciNetCrossRefMATH
20.
Zurück zum Zitat Xiao-Ping, S., & Yu-Rong, S. J. (2011). A malware propagation model in wireless sensor networks with cluster structure of GAF. Journal of Telecommunication Sciences, 27(8), 33–38. Xiao-Ping, S., & Yu-Rong, S. J. (2011). A malware propagation model in wireless sensor networks with cluster structure of GAF. Journal of Telecommunication Sciences, 27(8), 33–38.
22.
Zurück zum Zitat Upadhyay, R. K., & Kumari, S. (2017). Bifurcation analysis of an e-epidemic model in wireless sensor network. International Journal of Computer Mathematics, 95, 1–31.MathSciNet Upadhyay, R. K., & Kumari, S. (2017). Bifurcation analysis of an e-epidemic model in wireless sensor network. International Journal of Computer Mathematics, 95, 1–31.MathSciNet
23.
Zurück zum Zitat Xia, C., Sun, S., Rao, F., Sun, J., Wang, J., & Chen, Z. (2009). SIS model of epidemic spreading on dynamical networks with community. Frontiers of Computer Science in China, (3)(3), 361–365.CrossRef Xia, C., Sun, S., Rao, F., Sun, J., Wang, J., & Chen, Z. (2009). SIS model of epidemic spreading on dynamical networks with community. Frontiers of Computer Science in China, (3)(3), 361–365.CrossRef
24.
Zurück zum Zitat Wiermana, J. C., & Marchette, D. J. (2004). Modeling computer virus prevalence with a susceptible-infected-susceptible model with reintroduction. Computational Statistics and Data Analysis, 45(1), 3–23.MathSciNetCrossRefMATH Wiermana, J. C., & Marchette, D. J. (2004). Modeling computer virus prevalence with a susceptible-infected-susceptible model with reintroduction. Computational Statistics and Data Analysis, 45(1), 3–23.MathSciNetCrossRefMATH
26.
Zurück zum Zitat Mishra, B. K., & Saini, D. K. (2007). SEIRS epidemic model with delay for transmission of malicious objects in computer network. Applied Mathematics and Computation, 188(2), 1476–1482.MathSciNetCrossRefMATH Mishra, B. K., & Saini, D. K. (2007). SEIRS epidemic model with delay for transmission of malicious objects in computer network. Applied Mathematics and Computation, 188(2), 1476–1482.MathSciNetCrossRefMATH
27.
Zurück zum Zitat Gardner M. T., Beard C., & Medhi D. (2017). Using SEIRS epidemic models for IoT Botnets attacks. In 13th international conference on DRCN 2017-design of reliable communication networks (pp. 1–8). Gardner M. T., Beard C., & Medhi D. (2017). Using SEIRS epidemic models for IoT Botnets attacks. In 13th international conference on DRCN 2017-design of reliable communication networks (pp. 1–8).
29.
Zurück zum Zitat Haghighi, M. S., Wen, S., Xiang, Y., Quinn, B., & Zhou, W. (2016). On the race of worms and patches: Modeling the spread of information in wireless sensor networks. IEEE Transactions on Information Forensics and Security, 11(12), 2854–2865.CrossRef Haghighi, M. S., Wen, S., Xiang, Y., Quinn, B., & Zhou, W. (2016). On the race of worms and patches: Modeling the spread of information in wireless sensor networks. IEEE Transactions on Information Forensics and Security, 11(12), 2854–2865.CrossRef
33.
Zurück zum Zitat Ojha, R. P., Srivastava, P. K., & Sanyal, G. (2018). Prevaccination and quarantine approach for defense against worms propagation of malicious objects in wireless sensor networks. International Journal of Information System Modeling and Design (IJISMD), 9(1), 1–20. https://doi.org/10.4018/IJISMD.2018010101.CrossRef Ojha, R. P., Srivastava, P. K., & Sanyal, G. (2018). Prevaccination and quarantine approach for defense against worms propagation of malicious objects in wireless sensor networks. International Journal of Information System Modeling and Design (IJISMD), 9(1), 1–20. https://​doi.​org/​10.​4018/​IJISMD.​2018010101.CrossRef
35.
Zurück zum Zitat Tripathi, R., Singh, Y. N., & Verma, N. (2013). Clustering algorithm for non uniformly distributed nodes in a wireless sensor network. IET Electronics Letter, 44(4), 299–300.CrossRef Tripathi, R., Singh, Y. N., & Verma, N. (2013). Clustering algorithm for non uniformly distributed nodes in a wireless sensor network. IET Electronics Letter, 44(4), 299–300.CrossRef
36.
Zurück zum Zitat Wang, X., & Yingshu, L. (2009). A improved SIR model for analyzing the dynamic of worm propagation in wireless sensor network. Chinese Journal of Electronics, 18(1), 8–12. Wang, X., & Yingshu, L. (2009). A improved SIR model for analyzing the dynamic of worm propagation in wireless sensor network. Chinese Journal of Electronics, 18(1), 8–12.
Metadaten
Titel
Stability Analysis of Epidemic Modeling Based on Spatial Correlation for Wireless Sensor Networks
Publikationsdatum
07.05.2019
Erschienen in
Wireless Personal Communications / Ausgabe 3/2019
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-019-06473-0

Weitere Artikel der Ausgabe 3/2019

Wireless Personal Communications 3/2019 Zur Ausgabe

Neuer Inhalt