Skip to main content

2017 | OriginalPaper | Buchkapitel

10. Stability and Controllability

verfasst von : Quan Quan

Erschienen in: Introduction to Multicopter Design and Control

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Stability and controllability are the basic properties of a dynamical system. Since a multicopter without control feedback is unstable, an autopilot is required to guarantee its stability and further make the multicopter hover automatically without any need for an external intervention.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
A point is an interior point of \(\mathscr {S}\) if there exists an open ball centered at the point which is completely contained in \(\mathscr {S}\).
 
2
\(CH\left( \Omega \right) \) is the convex hull of \(\Omega \), which is defined as the intersection of all convex sets which includes \(\Omega \) in \( \mathbb {R} ^{m}\).
 
Literatur
1.
Zurück zum Zitat Slotine JJE, Li W (1991) Applied nonlinear control. Prentice Hall, New Jersey Slotine JJE, Li W (1991) Applied nonlinear control. Prentice Hall, New Jersey
2.
Zurück zum Zitat Chen CT (1999) Linear system theory and design, 3rd edn. Oxford University Press, New York Chen CT (1999) Linear system theory and design, 3rd edn. Oxford University Press, New York
3.
Zurück zum Zitat Thomas GB, Weir MD, Hass J (2009) Thomas’ calculus, Twelfth edn. Pearson Addison Wesley, Boston Thomas GB, Weir MD, Hass J (2009) Thomas’ calculus, Twelfth edn. Pearson Addison Wesley, Boston
4.
Zurück zum Zitat Kalman RE (1960) On the general theory of control systems. In: Proceedings of the 1st world congress of the international federation of automatic control, pp 481–493 Kalman RE (1960) On the general theory of control systems. In: Proceedings of the 1st world congress of the international federation of automatic control, pp 481–493
5.
Zurück zum Zitat Brammer RF (1972) Controllability in linear autonomous systems with positive controllers. SIAM J Control 10(2):779–805 Brammer RF (1972) Controllability in linear autonomous systems with positive controllers. SIAM J Control 10(2):779–805
6.
Zurück zum Zitat Du GX (2016) Research on the controllability quantification of multirotor systems. Dissertation, Beihang University. (In Chinese) Du GX (2016) Research on the controllability quantification of multirotor systems. Dissertation, Beihang University. (In Chinese)
7.
Zurück zum Zitat Kalman RE, Ho YC, Narendra KS (1962) Controllability of linear dynamical systems. Control Differ Equ 1(2):189–213 Kalman RE, Ho YC, Narendra KS (1962) Controllability of linear dynamical systems. Control Differ Equ 1(2):189–213
8.
Zurück zum Zitat Johnson CD (1969) Optimization of a certain quality of complete controllability and observability for linear dynamical systems. Trans ASME (J Basic Eng) 91:228–238CrossRef Johnson CD (1969) Optimization of a certain quality of complete controllability and observability for linear dynamical systems. Trans ASME (J Basic Eng) 91:228–238CrossRef
9.
Zurück zum Zitat Hadman AMA, Nayfeh AH (1989) Measures of modal controllability and observability for first-and second-order linear system. J Guidance Control Dyn 12(3):421–428MathSciNetCrossRef Hadman AMA, Nayfeh AH (1989) Measures of modal controllability and observability for first-and second-order linear system. J Guidance Control Dyn 12(3):421–428MathSciNetCrossRef
10.
Zurück zum Zitat Viswanathan CN, Longman RW, Likins PW (1984) A degree of controllability definitions: fundamental concepts and application to modal systems. J Guidance Control Dyn 7(2):222–230CrossRefMATH Viswanathan CN, Longman RW, Likins PW (1984) A degree of controllability definitions: fundamental concepts and application to modal systems. J Guidance Control Dyn 7(2):222–230CrossRefMATH
11.
Zurück zum Zitat Du GX, Quan Q (2014) Degree of controllability and its application in aircraft flight control. J Syst Sci Math Sci 34(12):1578–1594 (In Chinese) Du GX, Quan Q (2014) Degree of controllability and its application in aircraft flight control. J Syst Sci Math Sci 34(12):1578–1594 (In Chinese)
12.
Zurück zum Zitat Pachter M, Huang YS (2003) Fault tolerant flight control. J Guidance Control Dyn 26(1):151–160CrossRef Pachter M, Huang YS (2003) Fault tolerant flight control. J Guidance Control Dyn 26(1):151–160CrossRef
13.
Zurück zum Zitat Cieslak J, Henry D, Zolghadri A, Goupil P (2008) Development of an active fault-tolerant flight control strategy. J Guidance Control Dyn 31(1):135–147CrossRef Cieslak J, Henry D, Zolghadri A, Goupil P (2008) Development of an active fault-tolerant flight control strategy. J Guidance Control Dyn 31(1):135–147CrossRef
14.
Zurück zum Zitat Zhang YM, Jiang J (2008) Bibliographical review on reconfigurable fault-tolerant control systems. Annu Rev Control 32(2):229–252 Zhang YM, Jiang J (2008) Bibliographical review on reconfigurable fault-tolerant control systems. Annu Rev Control 32(2):229–252
15.
Zurück zum Zitat Ducard G (2009) Fault-tolerant flight control and guidance systems: practical methods for small unmanned aerial vehicles. Springer, LondonCrossRefMATH Ducard G (2009) Fault-tolerant flight control and guidance systems: practical methods for small unmanned aerial vehicles. Springer, LondonCrossRefMATH
16.
Zurück zum Zitat Du GX, Quan Q, and Cai KY (2013) Additive-state-decomposition-based dynamic inversion stabilized control of a hexacopter subject to unknown propeller damages. In: Proceedings of the 32nd Chinese Control Conference, Xi’an China, July, pp 6231–6236 Du GX, Quan Q, and Cai KY (2013) Additive-state-decomposition-based dynamic inversion stabilized control of a hexacopter subject to unknown propeller damages. In: Proceedings of the 32nd Chinese Control Conference, Xi’an China, July, pp 6231–6236
17.
18.
Zurück zum Zitat Yang Z (2006) Reconfigurability analysis for a class of linear hybrid systems. In: Proceedings of the 6th IFAC SAFEPRO-CESS’06, Beijing, China Yang Z (2006) Reconfigurability analysis for a class of linear hybrid systems. In: Proceedings of the 6th IFAC SAFEPRO-CESS’06, Beijing, China
19.
Zurück zum Zitat Du GX, Quan Q, Cai KY (2015) Controllability analysis and degraded control for a class of hexacopters subject to rotor failures. J Intell Robot Syst 78(1):143–157CrossRef Du GX, Quan Q, Cai KY (2015) Controllability analysis and degraded control for a class of hexacopters subject to rotor failures. J Intell Robot Syst 78(1):143–157CrossRef
20.
Zurück zum Zitat Du GX, Quan Q, Cai KY (2015) Controllability analysis for multirotor helicopter rotor degradation and failure. J Guidance Control Dyn 38(5):978–984CrossRef Du GX, Quan Q, Cai KY (2015) Controllability analysis for multirotor helicopter rotor degradation and failure. J Guidance Control Dyn 38(5):978–984CrossRef
21.
Zurück zum Zitat Schneider T, Ducard G, Rudin K, and Strupler P (2012) Fault-tolerant control allocation for multirotor helicopters using parametric programming. In: International micro air vehicle conference and flight competition, Braunschweig, Germany Schneider T, Ducard G, Rudin K, and Strupler P (2012) Fault-tolerant control allocation for multirotor helicopters using parametric programming. In: International micro air vehicle conference and flight competition, Braunschweig, Germany
22.
Zurück zum Zitat Quan Q, Du GX, Yang B, and Cai KY (2012) A safe landing method for a class of hexacopters subject to one rotor failure. Chinese patent, ZL201210398628.2. (In Chinese) Quan Q, Du GX, Yang B, and Cai KY (2012) A safe landing method for a class of hexacopters subject to one rotor failure. Chinese patent, ZL201210398628.2. (In Chinese)
23.
Zurück zum Zitat Mueller MW, D’Andrea R (2014) Stability and control of a quadrocopter despite the complete loss of one, two, or three propellers. In: IEEE international conference on robotics and automation, Hong Kong, China, pp 45–52 Mueller MW, D’Andrea R (2014) Stability and control of a quadrocopter despite the complete loss of one, two, or three propellers. In: IEEE international conference on robotics and automation, Hong Kong, China, pp 45–52
24.
Zurück zum Zitat Goodwin G, Seron M, Doná J (2005) Constrained control and estimation: an optimisation approach. Springer, LondonCrossRefMATH Goodwin G, Seron M, Doná J (2005) Constrained control and estimation: an optimisation approach. Springer, LondonCrossRefMATH
Metadaten
Titel
Stability and Controllability
verfasst von
Quan Quan
Copyright-Jahr
2017
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-3382-7_10

Neuer Inhalt