Skip to main content
Erschienen in: Journal of Scientific Computing 3/2014

01.12.2014

Stability and Convergence of Modified Du Fort–Frankel Schemes for Solving Time-Fractional Subdiffusion Equations

verfasst von: Hong-lin Liao, Ya-nan Zhang, Ying Zhao, Han-sheng Shi

Erschienen in: Journal of Scientific Computing | Ausgabe 3/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A class of modified Du Fort–Frankel-type schemes is investigated for fractional subdiffusion equations in the Jumarie’s modified Riemann–Liouville form with constant, variable or distributed fractional order. New explicit difference methods are constructed by combining the \(L1\) approximation of the modified fractional derivative with the idea of Du Fort–Frankel scheme, well-known for ordinary diffusion equations. Unconditional stability of the explicit methods is established in the sense of a discrete energy norm. The proposed schemes are shown to be convergent under the time-step (consistency) restriction of the classical Du Fort–Frankel scheme. Numerical examples are included to support our theoretical results.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bagley, R.L., Torvik, P.J.: On the existence of the order domain and the solution of distributed order equations (Parts I, II). Int. J. Appl. Mech. 2(865–882), 965–987 (2000)MathSciNetMATH Bagley, R.L., Torvik, P.J.: On the existence of the order domain and the solution of distributed order equations (Parts I, II). Int. J. Appl. Mech. 2(865–882), 965–987 (2000)MathSciNetMATH
2.
Zurück zum Zitat Brunner, H., Ling, L., Yamamoto, M.: Numerical simulations of 2D fractional subdiffusion problems. J. Comput. Phys. 229, 6613–6622 (2010)MathSciNetCrossRefMATH Brunner, H., Ling, L., Yamamoto, M.: Numerical simulations of 2D fractional subdiffusion problems. J. Comput. Phys. 229, 6613–6622 (2010)MathSciNetCrossRefMATH
3.
Zurück zum Zitat Caputo, M.: Mean fractional-order-derivatives differential equations and filters. Annali dell’Universita di Ferrara 41(1), 73–84 (1995)MathSciNetMATH Caputo, M.: Mean fractional-order-derivatives differential equations and filters. Annali dell’Universita di Ferrara 41(1), 73–84 (1995)MathSciNetMATH
4.
Zurück zum Zitat Caputo, M.: Distributed order differential equations modelling dielectric induction and diffusion. Fract. Calc. Appl. Anal. 4, 421–442 (2001)MathSciNetMATH Caputo, M.: Distributed order differential equations modelling dielectric induction and diffusion. Fract. Calc. Appl. Anal. 4, 421–442 (2001)MathSciNetMATH
5.
Zurück zum Zitat Chechkin, A.V., Gorenflo, R., Sokolov, I.M.: Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations. Phys. Rev. E 66(046129), 1–6 (2002) Chechkin, A.V., Gorenflo, R., Sokolov, I.M.: Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations. Phys. Rev. E 66(046129), 1–6 (2002)
6.
Zurück zum Zitat Chen, C.M., Liu, F., Anh, V., Turner, I.: Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation. SIAM J. Sci. Comput. 32, 1740–1760 (2010)MathSciNetCrossRefMATH Chen, C.M., Liu, F., Anh, V., Turner, I.: Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation. SIAM J. Sci. Comput. 32, 1740–1760 (2010)MathSciNetCrossRefMATH
7.
Zurück zum Zitat Chen, C., Liu, F., Anh, V., Turner, I.: Numerical methods for solving a two-dimensional variable-order anomalous subdiffusion equation. Math. Comput. 81, 345–366 (2011)MathSciNetCrossRef Chen, C., Liu, F., Anh, V., Turner, I.: Numerical methods for solving a two-dimensional variable-order anomalous subdiffusion equation. Math. Comput. 81, 345–366 (2011)MathSciNetCrossRef
8.
Zurück zum Zitat Ciesielski, M., Leszczynski, J.: Numerical simulations of anomalous diffusion. In: Proceedings of the 15th Conference on Computer Methods in Mechanics. Wisla, Polonia. (2003). arXiv:math-ph/0309007v1 Ciesielski, M., Leszczynski, J.: Numerical simulations of anomalous diffusion. In: Proceedings of the 15th Conference on Computer Methods in Mechanics. Wisla, Polonia. (2003). arXiv:math-ph/0309007v1
10.
Zurück zum Zitat Diethelm, K., Ford, N.J.: Numerical solution methods for distributed order differential equations. Fract. Calc. Appl. Anal. 4, 531–542 (2001)MathSciNetMATH Diethelm, K., Ford, N.J.: Numerical solution methods for distributed order differential equations. Fract. Calc. Appl. Anal. 4, 531–542 (2001)MathSciNetMATH
11.
Zurück zum Zitat Diethelm, K., Ford, N.J., Freed, A.D., Luchko, Yu.: Algorithms for the fractional calculus: a selection of numerical methods. Comput. Methods Appl. Mech. Eng. 194, 743–773 (2005)MathSciNetCrossRefMATH Diethelm, K., Ford, N.J., Freed, A.D., Luchko, Yu.: Algorithms for the fractional calculus: a selection of numerical methods. Comput. Methods Appl. Mech. Eng. 194, 743–773 (2005)MathSciNetCrossRefMATH
12.
Zurück zum Zitat Diethelm, K., Ford, N.J.: Numerical analysis for distributed-order differential equations. J. Comput. Appl. Math. 225(1), 96–104 (2009)MathSciNetCrossRefMATH Diethelm, K., Ford, N.J.: Numerical analysis for distributed-order differential equations. J. Comput. Appl. Math. 225(1), 96–104 (2009)MathSciNetCrossRefMATH
13.
Zurück zum Zitat Gorenflo, R., Mainardi, F., et al.: Time-fractional diffusion: a discrete random walk approach. Nonlinear Dyn. 29, 129 (2002)MathSciNetCrossRefMATH Gorenflo, R., Mainardi, F., et al.: Time-fractional diffusion: a discrete random walk approach. Nonlinear Dyn. 29, 129 (2002)MathSciNetCrossRefMATH
14.
Zurück zum Zitat Heymans, N., Podlubny, I.: Physical interpretation of initial conditions for fractional differential equations with Riemann–Liouville fractional derivatives. Rheologica Acta (2005). doi:10.1007/s00397-005-0043-5 Heymans, N., Podlubny, I.: Physical interpretation of initial conditions for fractional differential equations with Riemann–Liouville fractional derivatives. Rheologica Acta (2005). doi:10.​1007/​s00397-005-0043-5
15.
Zurück zum Zitat Hilfer, R. (ed.): Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)MATH Hilfer, R. (ed.): Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)MATH
16.
Zurück zum Zitat Jumarie, G.: Modified Riemann–Liouville derivative and fractional Taylor series of nondifferentiable functions further results. Comput. Math. Appl. 51, 1367–1376 (2006)MathSciNetCrossRefMATH Jumarie, G.: Modified Riemann–Liouville derivative and fractional Taylor series of nondifferentiable functions further results. Comput. Math. Appl. 51, 1367–1376 (2006)MathSciNetCrossRefMATH
17.
Zurück zum Zitat Jumarie, G.: Fractional partial differential equations and modified Riemann–Liouville derivative new methods for solution. J. Appl. Math. Comput. 24, 31–48 (2007)MathSciNetCrossRefMATH Jumarie, G.: Fractional partial differential equations and modified Riemann–Liouville derivative new methods for solution. J. Appl. Math. Comput. 24, 31–48 (2007)MathSciNetCrossRefMATH
18.
Zurück zum Zitat Jumarie, G.: Modeling fractional stochastic systems as non-random fractional dynamics driven by Brownian motions. Appl. Math. Model. 32, 836–859 (2008)MathSciNetCrossRefMATH Jumarie, G.: Modeling fractional stochastic systems as non-random fractional dynamics driven by Brownian motions. Appl. Math. Model. 32, 836–859 (2008)MathSciNetCrossRefMATH
19.
Zurück zum Zitat Jumarie, G.: Table of some basic fractional calculus formulae derived from a modiffed Riemann–Liouville derivative for non-differentiable functions. Appl. Math. Lett. 22, 378–385 (2009)MathSciNetCrossRefMATH Jumarie, G.: Table of some basic fractional calculus formulae derived from a modiffed Riemann–Liouville derivative for non-differentiable functions. Appl. Math. Lett. 22, 378–385 (2009)MathSciNetCrossRefMATH
20.
Zurück zum Zitat Jumarie, G.: Cauchys integral formula via modified Riemann–Liouville derivative for analytic functions of fractional order. Appl. Math. Lett. 23, 1444–1450 (2010)MathSciNetCrossRefMATH Jumarie, G.: Cauchys integral formula via modified Riemann–Liouville derivative for analytic functions of fractional order. Appl. Math. Lett. 23, 1444–1450 (2010)MathSciNetCrossRefMATH
21.
Zurück zum Zitat Langlands, T.A.M., Henry, B.I.: The accuracy and stability of an implicit solution method for the fractional diffusion equation. J. Comput. Phys. 205, 719–736 (2005)MathSciNetCrossRefMATH Langlands, T.A.M., Henry, B.I.: The accuracy and stability of an implicit solution method for the fractional diffusion equation. J. Comput. Phys. 205, 719–736 (2005)MathSciNetCrossRefMATH
22.
23.
Zurück zum Zitat Lin, Y., Li, X., Xu, C.: Finite difference/spectral approximations for the fractional cable equation. Math. Comput. 80, 1369–1396 (2011)MathSciNetCrossRefMATH Lin, Y., Li, X., Xu, C.: Finite difference/spectral approximations for the fractional cable equation. Math. Comput. 80, 1369–1396 (2011)MathSciNetCrossRefMATH
24.
25.
Zurück zum Zitat Murillo, J.Q., Yuste, S.B.: On three explicit difference schemes for fractional diffusion and diffusion-wave equations. Phys. Scr. T 136, 014025 (2009)CrossRef Murillo, J.Q., Yuste, S.B.: On three explicit difference schemes for fractional diffusion and diffusion-wave equations. Phys. Scr. T 136, 014025 (2009)CrossRef
26.
Zurück zum Zitat Murillo, J.Q., Yuste, S.B.: On an explicit difference method for fractional diffusion and diffusion-wave equations. In: Proceedings of the ASME 2009 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference. San Diego, California, (2009) Murillo, J.Q., Yuste, S.B.: On an explicit difference method for fractional diffusion and diffusion-wave equations. In: Proceedings of the ASME 2009 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference. San Diego, California, (2009)
27.
Zurück zum Zitat Mustapha, K., AlMutawa, J.: A finite difference method for an anomalous sub-diffusion equation, theory and applications. Numer. Algorithm 61, 525–543 (2012)MathSciNetCrossRefMATH Mustapha, K., AlMutawa, J.: A finite difference method for an anomalous sub-diffusion equation, theory and applications. Numer. Algorithm 61, 525–543 (2012)MathSciNetCrossRefMATH
28.
Zurück zum Zitat Mustapha, K., McLean, W.: Discontinuous Galerkin method for an evolution equation with a memory term of positive type. Math. Comput. 78, 1975–1995 (2009)MathSciNetCrossRefMATH Mustapha, K., McLean, W.: Discontinuous Galerkin method for an evolution equation with a memory term of positive type. Math. Comput. 78, 1975–1995 (2009)MathSciNetCrossRefMATH
29.
Zurück zum Zitat Mustapha, K., McLean, W.: Superconvergence of a discontinuous Galerkin method for fractional diffusion and wave equations. SIAM J. Numer. Anal. 51, 491–515 (2013)MathSciNetCrossRefMATH Mustapha, K., McLean, W.: Superconvergence of a discontinuous Galerkin method for fractional diffusion and wave equations. SIAM J. Numer. Anal. 51, 491–515 (2013)MathSciNetCrossRefMATH
31.
Zurück zum Zitat Oldham, K., Spanier, J.: The fractional calculus: theory and applications of differentiation and integration to arbitrary order. In: Mathematics in Science and Engineering, vol. 111. Academic Press, New York (1974) Oldham, K., Spanier, J.: The fractional calculus: theory and applications of differentiation and integration to arbitrary order. In: Mathematics in Science and Engineering, vol. 111. Academic Press, New York (1974)
32.
Zurück zum Zitat Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)MATH Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)MATH
34.
Zurück zum Zitat Shen, S., Liu, F., Chen, J., Turner, I., Anh, V.: Numerical techniques for the variable order time fractional diffusion equation. Appl. Math. Comput. 218(22), 10861–10870 (2012)MathSciNetCrossRefMATH Shen, S., Liu, F., Chen, J., Turner, I., Anh, V.: Numerical techniques for the variable order time fractional diffusion equation. Appl. Math. Comput. 218(22), 10861–10870 (2012)MathSciNetCrossRefMATH
35.
Zurück zum Zitat Sokolov, I.M., Chechkin, A.V., Klafter, J.: Distributed-order fractional kinetics. Acta Physica Polonica 35, 1323–1341 (2004) Sokolov, I.M., Chechkin, A.V., Klafter, J.: Distributed-order fractional kinetics. Acta Physica Polonica 35, 1323–1341 (2004)
36.
Zurück zum Zitat Sun, H., Chen, W., Chen, Y.: Variable-order fractional differential operators in anomalous diffusion modeling. Phys. A 388, 4586–4592 (2009)CrossRef Sun, H., Chen, W., Chen, Y.: Variable-order fractional differential operators in anomalous diffusion modeling. Phys. A 388, 4586–4592 (2009)CrossRef
37.
Zurück zum Zitat Sun, H., Chen, W., Li, C., Chen, Y.: Finite difference schemes for variable-order time fractional diffusion equation. Int. J. Bifurc. Chaos 22(4), 1250085 (2012)MathSciNetCrossRef Sun, H., Chen, W., Li, C., Chen, Y.: Finite difference schemes for variable-order time fractional diffusion equation. Int. J. Bifurc. Chaos 22(4), 1250085 (2012)MathSciNetCrossRef
38.
Zurück zum Zitat Umarov, S., Steinberg, S.: Random walk model sassociated with distributed fractional order differential equations. Lect. Notes Monogr. Ser. 51, 117–127 (2006)MathSciNetCrossRef Umarov, S., Steinberg, S.: Random walk model sassociated with distributed fractional order differential equations. Lect. Notes Monogr. Ser. 51, 117–127 (2006)MathSciNetCrossRef
39.
Zurück zum Zitat Yuste, S.B., Acedo, L.: An explicit finite difference method and a new Neumann-type stability analysis for fractional diffusion equations. SIAM J. Numer. Anal. 42(5), 1862–1874 (2005)MathSciNetCrossRefMATH Yuste, S.B., Acedo, L.: An explicit finite difference method and a new Neumann-type stability analysis for fractional diffusion equations. SIAM J. Numer. Anal. 42(5), 1862–1874 (2005)MathSciNetCrossRefMATH
40.
Zurück zum Zitat Yuste, S.B.: Weighted average finite difference methods for fractional diffusion equations. J. Comput. Phys. 216(1), 264–274 (2006)MathSciNetCrossRefMATH Yuste, S.B.: Weighted average finite difference methods for fractional diffusion equations. J. Comput. Phys. 216(1), 264–274 (2006)MathSciNetCrossRefMATH
41.
Zurück zum Zitat Zhang, Y.N., Sun, Z.Z., Wu, H.W.: Error estimates of Crank–Nicolson-type difference schemes for the sub-diffusion equation. SIAM J. Numer. Anal. 49, 2302–2322 (2011)MathSciNetCrossRefMATH Zhang, Y.N., Sun, Z.Z., Wu, H.W.: Error estimates of Crank–Nicolson-type difference schemes for the sub-diffusion equation. SIAM J. Numer. Anal. 49, 2302–2322 (2011)MathSciNetCrossRefMATH
42.
Zurück zum Zitat Zhang, Y.N., Sun, Z.Z., Zhao, X.: Compact alternating direction implicit schemes for the two-dimensional fractional diffusion-wave equation. SIAM J. Numer. Anal. 50, 1535–1555 (2012)MathSciNetCrossRefMATH Zhang, Y.N., Sun, Z.Z., Zhao, X.: Compact alternating direction implicit schemes for the two-dimensional fractional diffusion-wave equation. SIAM J. Numer. Anal. 50, 1535–1555 (2012)MathSciNetCrossRefMATH
43.
Zurück zum Zitat Zhuang, P., Liu, F., Anh, V., Turner, I.: Numerical method for the variable-order fractional advection-diffusion equation with a nonlinear source term. SIAM J. Numer. Anal. 47, 1760–1781 (2009)MathSciNetCrossRefMATH Zhuang, P., Liu, F., Anh, V., Turner, I.: Numerical method for the variable-order fractional advection-diffusion equation with a nonlinear source term. SIAM J. Numer. Anal. 47, 1760–1781 (2009)MathSciNetCrossRefMATH
Metadaten
Titel
Stability and Convergence of Modified Du Fort–Frankel Schemes for Solving Time-Fractional Subdiffusion Equations
verfasst von
Hong-lin Liao
Ya-nan Zhang
Ying Zhao
Han-sheng Shi
Publikationsdatum
01.12.2014
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 3/2014
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-014-9841-1

Weitere Artikel der Ausgabe 3/2014

Journal of Scientific Computing 3/2014 Zur Ausgabe