Skip to main content
Erschienen in: Meccanica 4-5/2018

09.10.2017

Stability of natural convection in a vertical non-Newtonian fluid layer with an imposed magnetic field

verfasst von: B. M. Shankar, Jai Kumar, I. S. Shivakumara, K. R. Raghunatha

Erschienen in: Meccanica | Ausgabe 4-5/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A numerical study has been conducted to analyze the influence of a uniform horizontal magnetic field on the stability of buoyancy driven parallel shear flow in a differentially heated vertical layer of an electrically conducting couple stress fluid; a type of non-Newtonian fluid. Within the framework of linear stability theory, the resulting complex generalized eigenvalue problem is solved numerically using the Chebyshev collocation method with QZ algorithm. The critical Grashof number \(G_{c}\) and the corresponding wave number \(\alpha_{c}\) and wave speed \(c_{c}\) are computed for a wide range of couple stress parameter \(\varLambda_{c}\), Prandtl number \(Pr\) and Hartmann number \(M\). It is found that the value of \(Pr\) at which the instability switches over from stationary to travelling-wave mode increases with increasing \(M\) and decreasing \(\varLambda_{c}\). The effect of magnetic field is to delay the onset of instability while an opposite kind of behavior is observed with increasing \(\varLambda_{c}\). The streamlines presented herein demonstrate the development of complex dynamics at the transition mode.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Vest CM, Arpaci VS (1969) Stability of natural convection in a vertical slot. J Fluid Mech 36:1–15ADSCrossRefMATH Vest CM, Arpaci VS (1969) Stability of natural convection in a vertical slot. J Fluid Mech 36:1–15ADSCrossRefMATH
2.
Zurück zum Zitat Korpela SA, Gözüm D, Baxi CB (1973) On the stability of the conduction regime of natural convection in a vertical slot. Int J Heat Mass Transf 16:1683–1690CrossRef Korpela SA, Gözüm D, Baxi CB (1973) On the stability of the conduction regime of natural convection in a vertical slot. Int J Heat Mass Transf 16:1683–1690CrossRef
3.
Zurück zum Zitat Bergholz RF (1978) Instability of steady natural convection in a vertical fluid layer. J Fluid Mech 84:743–768ADSCrossRef Bergholz RF (1978) Instability of steady natural convection in a vertical fluid layer. J Fluid Mech 84:743–768ADSCrossRef
4.
Zurück zum Zitat McBain GD, Armfield SW (2004) Natural convection in a vertical slot: accurate solution of the linear stability equations. ANZIAM J 45:92–105MathSciNetCrossRefMATH McBain GD, Armfield SW (2004) Natural convection in a vertical slot: accurate solution of the linear stability equations. ANZIAM J 45:92–105MathSciNetCrossRefMATH
5.
Zurück zum Zitat Takashima M, Hamabata H (1984) The stability of natural convection in a vertical layer of dielectric fluid in the presence of a horizontal ac electric field. J Phys Soc Jap 53:1728–1736ADSCrossRef Takashima M, Hamabata H (1984) The stability of natural convection in a vertical layer of dielectric fluid in the presence of a horizontal ac electric field. J Phys Soc Jap 53:1728–1736ADSCrossRef
6.
Zurück zum Zitat Shankar BM, Kumar J, Shivakumara IS, Naveen Kumar SB (2016) Effect of horizontal AC electric field on the stability of natural convection in a vertical dielectric fluid layer. J Appl Fluid Mech 9:3073–3086 Shankar BM, Kumar J, Shivakumara IS, Naveen Kumar SB (2016) Effect of horizontal AC electric field on the stability of natural convection in a vertical dielectric fluid layer. J Appl Fluid Mech 9:3073–3086
7.
Zurück zum Zitat Shankar BM, Kumar J, Shivakumara IS (2015) Effect of horizontal alternating current electric field on the stability of natural convection in a dielectric fluid saturated vertical porous layer. J Heat Transf 137:042501CrossRef Shankar BM, Kumar J, Shivakumara IS (2015) Effect of horizontal alternating current electric field on the stability of natural convection in a dielectric fluid saturated vertical porous layer. J Heat Transf 137:042501CrossRef
8.
Zurück zum Zitat Takashima M (1994) The stability of natural convection in a vertical layer of electrically conducting fluid in the presence of a transverse magnetic fluid. Fluid Dyn Res 14:121–134ADSCrossRef Takashima M (1994) The stability of natural convection in a vertical layer of electrically conducting fluid in the presence of a transverse magnetic fluid. Fluid Dyn Res 14:121–134ADSCrossRef
9.
Zurück zum Zitat Belyaev AV, Smorodin BL (2010) The stability of ferrofluid flow in a vertical layer subject to lateral heating and horizontal magnetic field. J Magn Magn Mater 322:2596–2606ADSCrossRef Belyaev AV, Smorodin BL (2010) The stability of ferrofluid flow in a vertical layer subject to lateral heating and horizontal magnetic field. J Magn Magn Mater 322:2596–2606ADSCrossRef
10.
Zurück zum Zitat Shankar BM, Kumar J, Shivakumara IS (2017) Magnetohydrodynamic stability of natural convection in a vertical porous slab. J Magn Magn Mater 421:152–164ADSCrossRef Shankar BM, Kumar J, Shivakumara IS (2017) Magnetohydrodynamic stability of natural convection in a vertical porous slab. J Magn Magn Mater 421:152–164ADSCrossRef
11.
Zurück zum Zitat Gözüm D, Arpaci VS (1974) Natural convection of viscoelastic fluids in a vertical slot. J Fluid Mech 64:439–448ADSCrossRefMATH Gözüm D, Arpaci VS (1974) Natural convection of viscoelastic fluids in a vertical slot. J Fluid Mech 64:439–448ADSCrossRefMATH
12.
Zurück zum Zitat Takashima M (1993) The stability of natural convection in a vertical layer of viscoelastic liquid. Fluid Dyn Res 11:139–152ADSCrossRef Takashima M (1993) The stability of natural convection in a vertical layer of viscoelastic liquid. Fluid Dyn Res 11:139–152ADSCrossRef
13.
Zurück zum Zitat Shankar BM, Shivakumara IS (2017) On the stability of natural convection in a porous vertical slab saturated with an Oldroyd-B fluid. Theor Comput Fluid Dyn 31:221–231CrossRef Shankar BM, Shivakumara IS (2017) On the stability of natural convection in a porous vertical slab saturated with an Oldroyd-B fluid. Theor Comput Fluid Dyn 31:221–231CrossRef
14.
Zurück zum Zitat Shankar BM, Shivakumara IS (2017) Effect of local thermal nonequilibrium on the stability of natural convection in an Oldroyd-B fluid saturated vertical porous layer. ASME J Heat Transf 139:041001–041010CrossRef Shankar BM, Shivakumara IS (2017) Effect of local thermal nonequilibrium on the stability of natural convection in an Oldroyd-B fluid saturated vertical porous layer. ASME J Heat Transf 139:041001–041010CrossRef
15.
16.
Zurück zum Zitat Ariman TT, Sylvester ND (1973) Microcontinuum fluid mechanics: a review. Int J Eng Sci 11:905–930CrossRefMATH Ariman TT, Sylvester ND (1973) Microcontinuum fluid mechanics: a review. Int J Eng Sci 11:905–930CrossRefMATH
17.
Zurück zum Zitat Ariman TT, Sylvester ND (1974) Applications of microcontinuum fluid mechanics. Int J Eng Sci 12:273–293CrossRefMATH Ariman TT, Sylvester ND (1974) Applications of microcontinuum fluid mechanics. Int J Eng Sci 12:273–293CrossRefMATH
18.
Zurück zum Zitat Kh S (2008) Mekheimer, Effect of the induced magnetic field on peristaltic flow of a couple stress fluid. Phys Lett A 372:4271–4278CrossRef Kh S (2008) Mekheimer, Effect of the induced magnetic field on peristaltic flow of a couple stress fluid. Phys Lett A 372:4271–4278CrossRef
19.
Zurück zum Zitat Jain JK, Stokes VK (1972) Effects of couple stresses on the stability of plane Poiseuille flow. Phys Fluids 15:977–980ADSCrossRefMATH Jain JK, Stokes VK (1972) Effects of couple stresses on the stability of plane Poiseuille flow. Phys Fluids 15:977–980ADSCrossRefMATH
20.
Zurück zum Zitat Ahmadi G (1979) Stability of a cosserat fluid layer heated from below. Acta Mech 31:243–252CrossRefMATH Ahmadi G (1979) Stability of a cosserat fluid layer heated from below. Acta Mech 31:243–252CrossRefMATH
21.
Zurück zum Zitat Shankar BM, Kumar J, Shivakumara IS (2014) Stability of natural convection in a vertical couple stress fluid layer. Int J Heat Mass Transf 78:447–459CrossRef Shankar BM, Kumar J, Shivakumara IS (2014) Stability of natural convection in a vertical couple stress fluid layer. Int J Heat Mass Transf 78:447–459CrossRef
22.
Zurück zum Zitat Shankar BM, Kumar J, Shivakumara IS (2016) Stability of natural convection in a vertical dielectric couple stress fluid layer in the presence of a horizontal ac electric field. Appl Math Model 40:5462–5481MathSciNetCrossRef Shankar BM, Kumar J, Shivakumara IS (2016) Stability of natural convection in a vertical dielectric couple stress fluid layer in the presence of a horizontal ac electric field. Appl Math Model 40:5462–5481MathSciNetCrossRef
23.
Zurück zum Zitat Stokes VK (1968) Effects of couple stresses in fluids on hydromagnetic channel flows. Phys Fluids 11:1131–1133ADSCrossRef Stokes VK (1968) Effects of couple stresses in fluids on hydromagnetic channel flows. Phys Fluids 11:1131–1133ADSCrossRef
24.
Zurück zum Zitat Kaddeche S, Henry D, Benhadid H (2003) Magnetic stabilization of the buoyant convection between infinite horizontal walls with a horizontal temperature gradient. J Fluid Mech 480:185–216ADSMathSciNetCrossRefMATH Kaddeche S, Henry D, Benhadid H (2003) Magnetic stabilization of the buoyant convection between infinite horizontal walls with a horizontal temperature gradient. J Fluid Mech 480:185–216ADSMathSciNetCrossRefMATH
25.
Zurück zum Zitat Moler CB, Stewart GW (1973) An algorithm for generalized matrix eigenvalue problems. SIAM (Soc Indian Appl Math) J Numer Anal 10:241–256MathSciNetCrossRefMATH Moler CB, Stewart GW (1973) An algorithm for generalized matrix eigenvalue problems. SIAM (Soc Indian Appl Math) J Numer Anal 10:241–256MathSciNetCrossRefMATH
Metadaten
Titel
Stability of natural convection in a vertical non-Newtonian fluid layer with an imposed magnetic field
verfasst von
B. M. Shankar
Jai Kumar
I. S. Shivakumara
K. R. Raghunatha
Publikationsdatum
09.10.2017
Verlag
Springer Netherlands
Erschienen in
Meccanica / Ausgabe 4-5/2018
Print ISSN: 0025-6455
Elektronische ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-017-0770-6

Weitere Artikel der Ausgabe 4-5/2018

Meccanica 4-5/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.