Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.06.2015 | Regular Paper | Ausgabe 3/2015

Knowledge and Information Systems 3/2015

Stabilized sparse ordinal regression for medical risk stratification

Zeitschrift:
Knowledge and Information Systems > Ausgabe 3/2015
Autoren:
Truyen Tran, Dinh Phung, Wei Luo, Svetha Venkatesh

Abstract

The recent wide adoption of electronic medical records (EMRs) presents great opportunities and challenges for data mining. The EMR data are largely temporal, often noisy, irregular and high dimensional. This paper constructs a novel ordinal regression framework for predicting medical risk stratification from EMR. First, a conceptual view of EMR as a temporal image is constructed to extract a diverse set of features. Second, ordinal modeling is applied for predicting cumulative or progressive risk. The challenges are building a transparent predictive model that works with a large number of weakly predictive features, and at the same time, is stable against resampling variations. Our solution employs sparsity methods that are stabilized through domain-specific feature interaction networks. We introduces two indices that measure the model stability against data resampling. Feature networks are used to generate two multivariate Gaussian priors with sparse precision matrices (the Laplacian and Random Walk). We apply the framework on a large short-term suicide risk prediction problem and demonstrate that our methods outperform clinicians to a large margin, discover suicide risk factors that conform with mental health knowledge, and produce models with enhanced stability.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe​​​​​​​




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 3/2015

Knowledge and Information Systems 3/2015 Zur Ausgabe

Premium Partner

    Bildnachweise