Skip to main content
Erschienen in: Intelligent Service Robotics 3/2018

18.05.2018 | Original Research Paper

Stable haptic rendering in interactive virtual control laboratory

verfasst von: Saeed Amirkhani, Behnoosh Bahadorian, Ali Nahvi, Ali Chaibakhsh

Erschienen in: Intelligent Service Robotics | Ausgabe 3/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Stable control of haptic interfaces is one of the most important challenges in haptic simulations, because any instability of a haptic interface can cause it to get far from the realistic sense. In this paper, the control strategies employed for a stable haptic rendering in an interactive virtual control laboratory are presented. In this interactive virtual laboratory, there are different scenarios to teach the control concepts, in which a haptic interface is used in the two cases of force control and position control. In this regard, two control strategies are employed to avoid instability. An energy-compensating controller is utilized to remove energy leakage. Besides, a fuzzy impedance control is used along with the energy-compensating controller for the position control scenarios. The results obtained indicate the proposed approaches practically guarantee the stability of the haptic interface for an educational application in practice.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Salisbury K, Conti F, Barbagli F (2004) Haptic rendering: introductory concepts. IEEE Comput Graph Appl 24(2):24–32CrossRef Salisbury K, Conti F, Barbagli F (2004) Haptic rendering: introductory concepts. IEEE Comput Graph Appl 24(2):24–32CrossRef
2.
Zurück zum Zitat Zhou M, Tse S, Derevianko A, Jones D, Schwaitzberg S, Cao C (2012) Effect of haptic feedback in laparoscopic surgery skill acquisition. Surg Endosc 26(4):1128–1134CrossRef Zhou M, Tse S, Derevianko A, Jones D, Schwaitzberg S, Cao C (2012) Effect of haptic feedback in laparoscopic surgery skill acquisition. Surg Endosc 26(4):1128–1134CrossRef
3.
Zurück zum Zitat Shen X, Hamam A, Malric F, Nourian S, Naim R, Georganas ND (2007) Immersive haptic eye tele-surgery training simulation. In: 3DTV conference, 2007, IEEE, pp 1–4 Shen X, Hamam A, Malric F, Nourian S, Naim R, Georganas ND (2007) Immersive haptic eye tele-surgery training simulation. In: 3DTV conference, 2007, IEEE, pp 1–4
4.
Zurück zum Zitat Wang D, Zhang Y, Wang Y, Lee Y-S, Lu P, Wang Y (2005) Cutting on triangle mesh: local model-based haptic display for dental preparation surgery simulation. IEEE Trans Vis Comput Graph 11(6):671–683CrossRef Wang D, Zhang Y, Wang Y, Lee Y-S, Lu P, Wang Y (2005) Cutting on triangle mesh: local model-based haptic display for dental preparation surgery simulation. IEEE Trans Vis Comput Graph 11(6):671–683CrossRef
5.
Zurück zum Zitat Seidi E, Amirkhani S, Nahvi A (2015). A neuro-fuzzy model of soft tissue in haptic simulator for training diagnosis of breast cancer. In: 2015 3rd RSI international conference on robotics and mechatronics (ICROM), IEEE, pp 359–364 Seidi E, Amirkhani S, Nahvi A (2015). A neuro-fuzzy model of soft tissue in haptic simulator for training diagnosis of breast cancer. In: 2015 3rd RSI international conference on robotics and mechatronics (ICROM), IEEE, pp 359–364
6.
Zurück zum Zitat Han I, Black JB (2011) Incorporating haptic feedback in simulation for learning physics. Comput Educ 57(4):2281–2290CrossRef Han I, Black JB (2011) Incorporating haptic feedback in simulation for learning physics. Comput Educ 57(4):2281–2290CrossRef
7.
Zurück zum Zitat Sato M, Liu X, Murayama J, Akahane K, Isshiki M (2008) A haptic virtual environment for molecular chemistry education. Trans Ed I:28–39 Sato M, Liu X, Murayama J, Akahane K, Isshiki M (2008) A haptic virtual environment for molecular chemistry education. Trans Ed I:28–39
8.
Zurück zum Zitat Clark JE, Provancher WR, Mitiguy P (2005) Theory, simulation, and hardware: Lab design for an integrated system dynamics education. In: ASME 2005 international mechanical engineering congress and exposition, American society of mechanical engineers, pp 147–153 Clark JE, Provancher WR, Mitiguy P (2005) Theory, simulation, and hardware: Lab design for an integrated system dynamics education. In: ASME 2005 international mechanical engineering congress and exposition, American society of mechanical engineers, pp 147–153
9.
Zurück zum Zitat Lopes D, Vaz de Carvalho C (2015) Simulation and haptic devices in engineering education. Elektron Elektrotech 102(6):159–162 Lopes D, Vaz de Carvalho C (2015) Simulation and haptic devices in engineering education. Elektron Elektrotech 102(6):159–162
10.
Zurück zum Zitat Amirkhani S, Nahvi A (2016) Design and implementation of an interactive virtual control laboratory using haptic interface for undergraduate engineering students. Comput Appl Eng Educ 24(4):508–518CrossRef Amirkhani S, Nahvi A (2016) Design and implementation of an interactive virtual control laboratory using haptic interface for undergraduate engineering students. Comput Appl Eng Educ 24(4):508–518CrossRef
11.
Zurück zum Zitat Diolaiti N, Niemeyer G, Barbagli F, Salisbury JK (2006) Stability of haptic rendering: discretization, quantization, time delay, and coulomb effects. IEEE Trans Robot 22(2):256–268CrossRef Diolaiti N, Niemeyer G, Barbagli F, Salisbury JK (2006) Stability of haptic rendering: discretization, quantization, time delay, and coulomb effects. IEEE Trans Robot 22(2):256–268CrossRef
12.
Zurück zum Zitat Lee K, Lee DY (2009) Adjusting output-limiter for stable haptic rendering in virtual environments. IEEE Trans Control Syst Technol 17(4):768–779CrossRef Lee K, Lee DY (2009) Adjusting output-limiter for stable haptic rendering in virtual environments. IEEE Trans Control Syst Technol 17(4):768–779CrossRef
13.
Zurück zum Zitat Kim JP, Baek SY, Ryu J (2011) A force bounding approach for stable haptic interaction. In: World Haptics conference (WHC), 2011 IEEE, IEEE, pp 397–402 Kim JP, Baek SY, Ryu J (2011) A force bounding approach for stable haptic interaction. In: World Haptics conference (WHC), 2011 IEEE, IEEE, pp 397–402
14.
Zurück zum Zitat Kim J-P, Ryu J (2010) Robustly stable haptic interaction control using an energy-bounding algorithm. Int J Robot Res 29(6):666–679CrossRef Kim J-P, Ryu J (2010) Robustly stable haptic interaction control using an energy-bounding algorithm. Int J Robot Res 29(6):666–679CrossRef
15.
Zurück zum Zitat Kim S, Kim J-P, Ryu J (2014) Adaptive energy-bounding approach for robustly stable interaction control of impedance-controlled industrial robot with uncertain environments. IEEE/ASME Trans Mechatron 19(4):1195–1205CrossRef Kim S, Kim J-P, Ryu J (2014) Adaptive energy-bounding approach for robustly stable interaction control of impedance-controlled industrial robot with uncertain environments. IEEE/ASME Trans Mechatron 19(4):1195–1205CrossRef
16.
Zurück zum Zitat Ryu J-H, Yoon M-Y (2014) Memory-based passivation approach for stable haptic interaction. IEEE/ASME Trans Mechatron 19(4):1424–1435CrossRef Ryu J-H, Yoon M-Y (2014) Memory-based passivation approach for stable haptic interaction. IEEE/ASME Trans Mechatron 19(4):1424–1435CrossRef
17.
Zurück zum Zitat Jafari A, Ryu J-H (2015) 6-dof extension of memory-based passivation approach for stable haptic interaction. Intell Serv Robot 8(1):23–34CrossRef Jafari A, Ryu J-H (2015) 6-dof extension of memory-based passivation approach for stable haptic interaction. Intell Serv Robot 8(1):23–34CrossRef
18.
Zurück zum Zitat Lu X, Song A (2008) Stable haptic rendering with detailed energy-compensating control. Comput Graph 32(5):561–567MathSciNetCrossRef Lu X, Song A (2008) Stable haptic rendering with detailed energy-compensating control. Comput Graph 32(5):561–567MathSciNetCrossRef
19.
Zurück zum Zitat Merlet JP (2006) Structural synthesis and architectures. Parallel Robots 1:19–94 Merlet JP (2006) Structural synthesis and architectures. Parallel Robots 1:19–94
20.
Zurück zum Zitat Codourey A, Clavel R, Burckhardt C (1991) Control algorithm and controller for the direct drive delta robot. In: The IFAC Symposium on robot control, pp 169–177 Codourey A, Clavel R, Burckhardt C (1991) Control algorithm and controller for the direct drive delta robot. In: The IFAC Symposium on robot control, pp 169–177
21.
Zurück zum Zitat Miller K, Clavel R (1992) The lagrange-based model of delta-4 robot dynamics. Robotersysteme 8(1):49–54 Miller K, Clavel R (1992) The lagrange-based model of delta-4 robot dynamics. Robotersysteme 8(1):49–54
22.
Zurück zum Zitat Zhang C-D, Song S-M (1993) An efficient method for inverse dynamics of manipulators based on the virtual work principle. J Robot Syst 10(5):605–627CrossRefMATH Zhang C-D, Song S-M (1993) An efficient method for inverse dynamics of manipulators based on the virtual work principle. J Robot Syst 10(5):605–627CrossRefMATH
23.
Zurück zum Zitat Martin S, Hillier N (2009) Characterisation of the novint falcon haptic device for application as a robot manipulator. In: Australasian conference on robotics and automation (ACRA), Citeseer, pp 291–292 Martin S, Hillier N (2009) Characterisation of the novint falcon haptic device for application as a robot manipulator. In: Australasian conference on robotics and automation (ACRA), Citeseer, pp 291–292
24.
Zurück zum Zitat Ellis RE, Sarkar N, Jenkins MA (1997) Numerical methods for the force reflection of contact. J Dyn Syst Meas Control 119(4):768–774CrossRefMATH Ellis RE, Sarkar N, Jenkins MA (1997) Numerical methods for the force reflection of contact. J Dyn Syst Meas Control 119(4):768–774CrossRefMATH
25.
Zurück zum Zitat Hannaford B, Ryu J-H (2002) Time-domain passivity control of haptic interfaces. IEEE Trans Robot Autom 18(1):1–10CrossRef Hannaford B, Ryu J-H (2002) Time-domain passivity control of haptic interfaces. IEEE Trans Robot Autom 18(1):1–10CrossRef
26.
Zurück zum Zitat Part S (1985) Impedance control: an approach to manipulation. J Dyn Syst Meas Control 107:17CrossRef Part S (1985) Impedance control: an approach to manipulation. J Dyn Syst Meas Control 107:17CrossRef
27.
Zurück zum Zitat Janabi-Sharifi F, Hayward V, Chen C-S (2000) Discrete-time adaptive windowing for velocity estimation. IEEE Trans Control Syst Technol 8(6):1003–1009CrossRef Janabi-Sharifi F, Hayward V, Chen C-S (2000) Discrete-time adaptive windowing for velocity estimation. IEEE Trans Control Syst Technol 8(6):1003–1009CrossRef
Metadaten
Titel
Stable haptic rendering in interactive virtual control laboratory
verfasst von
Saeed Amirkhani
Behnoosh Bahadorian
Ali Nahvi
Ali Chaibakhsh
Publikationsdatum
18.05.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Intelligent Service Robotics / Ausgabe 3/2018
Print ISSN: 1861-2776
Elektronische ISSN: 1861-2784
DOI
https://doi.org/10.1007/s11370-018-0252-2

Weitere Artikel der Ausgabe 3/2018

Intelligent Service Robotics 3/2018 Zur Ausgabe

Neuer Inhalt