Skip to main content

2015 | OriginalPaper | Buchkapitel

2. Stable Maps and Morse Descriptions of an Apparent Contour

verfasst von : Giovanni Bellettini, Valentina Beorchia, Maurizio Paolini, Franco Pasquarelli

Erschienen in: Shape Reconstruction from Apparent Contours

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this chapter we recall the notion of stable map between two manifolds.1 It is convenient to introduce the terminology in arbitrary dimension, and in a rather abstract setting.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
See [23, 25, 26], the books [9, 10, 18, 24], the references quoted in [27], and also [1, 17].
 
2
The map \(\mathcal{F}\) keeps the orientation: for instance, when n = 2, a positively oriented Jordan curve in \(\mathbb{R}^{2}\) is mapped through \(\mathcal{F}\) into a positively oriented Jordan curve.
 
3
In the terminology of Thom, Morse functions are called correct, and Morse functions with distinct critical values are called excellent [6].
 
4
Not quite, since \(\mathbb{R}\) is not closed. However we require functions to behave “nicely” outside some interval [a, b], e.g. by forcing them to have constant nonzero derivative.
 
5
In this book a knot is a \(\mathcal{C}^{\infty }\) embedding of \(\mathbb{S}^{1}\) in \(\mathbb{R}^{3}\), hence in particular a tame knot in the usual terminology; see, for instance, [8, p. 5].
 
6
Therefore, each of these curves is the embedded image of \(\mathbb{S}^{1}\) into \(\mathcal{X}\).
 
7
We warn the reader that these cusps, belonging to the source manifold \(\mathcal{X}\), should not be confused with the cusps of an apparent contour, which lie in the target manifold \(\mathcal{Y}\).
 
8
Sometimes called the cone on a figure-eight curve.
 
9
See, for instance, [10, Chapter II, Proposition 5.8].
 
10
See [23] and [10, p. 162].
 
11
M is an abstract manifold, not necessarily oriented or connected. We shall be mostly interested (for instance, in Sect. 3.​2) in the case when M can be embedded in \(\mathbb{R}^{3}\), which gives, in particular, an orientation to \(M\).
 
12
Locally, each cusp of the apparent contour is diffeomorphic to the simple (or ordinary, see, for instance, [3, p. 115]) cusp, which has the form \(\{(x_{1},x_{2}): x_{2}^{2} = x_{1}^{3}\}\) or equivalently, in a parametric form, \((t^{2},t^{3})\) for a real parameter t in a neighbourhood of the origin.
 
13
The component is, sometimes, called “irreducible” (with cusps and double points); see, e.g., [22].
 
14
Compare, for instance, with Chaps. 1 (Fig. 1.​3) and 4. We specify below and in Definition 4.​1.​1 what is a closed arc, a nonstandard feature in graph theory.
 
15
In [12, Theorem 1] the author gives necessary and sufficient conditions for the factorization of an excellent map (see Example 2.1.8) through an immersion and a projection.
 
16
The notion of positive and negative cusps of Definition 2.2.12 (see, e.g., [21]) is different from the notion considered in Chap. 8 (compare Definition 8.​1.​2 and Remark 8.​1.​3).
 
17
The first property means that H admits an extension of class \(\mathcal{C}^{\infty }\) on an open set of \(\mathbb{R}^{n+1}\) containing \(\mathbb{R}^{n} \times [0, 1]\).
 
18
Consistently, we set h t (⋅ ) = h(⋅ , t).
 
19
We recall that, if V is a \(\mathcal{C}^{\infty }\) orientable n-dimensional manifold without boundary, and if Diff+(V ) denotes the group of positive diffeomorphisms of V endowed with the \(\mathcal{C}^{\infty }(V,V )\) topology, then the orbits coincide with the connected components; see [7, p. 1]. If \(V = \mathbb{S}^{2}\), then the connected component of the identity coincides with the arcwise connected component of the identity (see [6, p. 1]).
 
20
Actually, even {0} could not be left fixed by \(\tilde{h}_{t}\).
 
21
Making use of (2.4), we define R(⋅ , t) as follows. Let us identify \(\mathbb{S}^{2}\) with the unit sphere in \(\mathbb{R}^{3}\) and endow it with parallels and meridians with the north pole identified with and \(0 \in \mathbb{S}^{2}\) identified with the south pole. The stereographic projection from the north pole to the tangent plane at the south pole provides an identification of points of \(\mathbb{R}^{2}\) with points of \(\mathbb{S}^{2}\setminus \{\infty \}\) (we employ a scale reduction of a factor \(2\) on the stereographic projection so that the equator is mapped onto the unit circle of \(\mathbb{R}^{2}\)). Suppose first that \(\tilde{h}_{t}(0)\) is not the south pole. Let P(t) be the intersection between the equator of \(\mathbb{S}^{2}\) and the meridian passing through (the poles and) \(\tilde{h}_{t}(0)\). Let r(t) be the line (in \(\mathbb{R}^{3}\)) joining p(t) to q(t), where p(t) [respectively q(t)] is the point on the equator having the longitude of P(t) plus (respectively minus) π∕2. Then R(⋅ , t) is the (smallest) rotation around r(t) sending \(\tilde{h}_{t}(0)\) into the origin. This is a rotation of angle given by the latitude of \(\tilde{h}_{t}(0)\) plus π∕2, clearly this rotation takes the above-mentioned meridian into itself. If \(\tilde{h}_{t}(0)\) is the south pole, we define \(R(\cdot,t):=\mathrm{ id}_{\mathbb{S}^{2}}(\cdot )\). Then, \(R(\cdot,t) \in \mathrm{ Diff}^{+}(\mathbb{S}^{2})\), and R is of class \(\mathcal{C}^{\infty }\) and satisfies the required properties.
 
22
This task is similar to describing a prime knot in knot theory by means of notations like the one introduced by Dowker-Thistletwaite [16, p. 7], see also the combinatorial description of knotted surfaces in [4, pp. 21,22].
 
23
See [11] for the definition of stratifications and stratified maps. Compare also with Chap. 6, Definition 6.​2.​3.
 
24
See, e.g., [4].
 
25
Notice that \(\mathfrak{m}\) can be thought of as an element of \(\mathrm{Diff}_{\mathrm{c}}(\mathbb{R}^{2})\).
 
Literatur
1.
Zurück zum Zitat Arnold, V.I., Goryunov, V.V., Lyashko, O.V., Vassiliev, V.A.: In: V.I. Arnold (ed.) Dynamical Systems VIII. Singularity Theory. II. Applications. Springer, Berlin (1993) Arnold, V.I., Goryunov, V.V., Lyashko, O.V., Vassiliev, V.A.: In: V.I. Arnold (ed.) Dynamical Systems VIII. Singularity Theory. II. Applications. Springer, Berlin (1993)
2.
Zurück zum Zitat Audin, M., Damian, M.: Théorie de Morse et Homologie de Floer. EDP Sciences. CNRS Editions, Paris (2010)MATH Audin, M., Damian, M.: Théorie de Morse et Homologie de Floer. EDP Sciences. CNRS Editions, Paris (2010)MATH
3.
Zurück zum Zitat Bruce, J.W., Giblin, P.J.: Curves and Singularities. A Geometrical Introduction to Singularity Theory, 2nd edn. Cambridge University Press, Cambridge (1992) Bruce, J.W., Giblin, P.J.: Curves and Singularities. A Geometrical Introduction to Singularity Theory, 2nd edn. Cambridge University Press, Cambridge (1992)
4.
Zurück zum Zitat Carter, J.S., Kamada, S., Saito, M.: Surfaces in 4-Space. Encyclopaedia of Mathematical Sciences, vol. 142. Springer, Berlin (2004) Carter, J.S., Kamada, S., Saito, M.: Surfaces in 4-Space. Encyclopaedia of Mathematical Sciences, vol. 142. Springer, Berlin (2004)
5.
Zurück zum Zitat Cerf, J.: La Théorie de Smale sur le h-cobordisme des variétés, 1961/1962 Séminaire Henri Cartan, 1961/62, Exp. 11–13 23 pp. Secrétariat Mathématique, Paris Cerf, J.: La Théorie de Smale sur le h-cobordisme des variétés, 1961/1962 Séminaire Henri Cartan, 1961/62, Exp. 11–13 23 pp. Secrétariat Mathématique, Paris
6.
Zurück zum Zitat Cerf, J.: Sur le difféomorphismes de la sphère de dimension trois (\(\Gamma _{4} = 0\)). Lecture Notes in Mathematics, vol. 53. Springer, Berlin (1968) Cerf, J.: Sur le difféomorphismes de la sphère de dimension trois (\(\Gamma _{4} = 0\)). Lecture Notes in Mathematics, vol. 53. Springer, Berlin (1968)
7.
Zurück zum Zitat Cerf, J.: La stratification naturelle des espace de fonctions différentiables réelles et le théorème de la pseudo-isotopie. Publ. Math. Inst. Hautes Études Sci. 5–170 (1970) Cerf, J.: La stratification naturelle des espace de fonctions différentiables réelles et le théorème de la pseudo-isotopie. Publ. Math. Inst. Hautes Études Sci. 5–170 (1970)
8.
Zurück zum Zitat Crowell, R,H., Fox, R.H.: Introduction to Knot Theory. Springer, New York (1977) Crowell, R,H., Fox, R.H.: Introduction to Knot Theory. Springer, New York (1977)
9.
Zurück zum Zitat Gibson, C.G.: Singular Points of Smooth Mappings. Research Notes in Mathematics. Pitman, London (1978) Gibson, C.G.: Singular Points of Smooth Mappings. Research Notes in Mathematics. Pitman, London (1978)
10.
Zurück zum Zitat Golubitsky, M, Guillemin, V.: Stable Mappings and Their Singularities. Graduate Texts in Mathematics, vol. 14. Springer, New York (1974) Golubitsky, M, Guillemin, V.: Stable Mappings and Their Singularities. Graduate Texts in Mathematics, vol. 14. Springer, New York (1974)
11.
12.
Zurück zum Zitat Haefliger, A.: Quelques remarques sur les applications différentiables d’une surface dans le plan. Ann. Inst. Fourier. Grenoble 10, 47–60 (1960)CrossRefMATHMathSciNet Haefliger, A.: Quelques remarques sur les applications différentiables d’une surface dans le plan. Ann. Inst. Fourier. Grenoble 10, 47–60 (1960)CrossRefMATHMathSciNet
13.
Zurück zum Zitat Hatcher, A.: Algebraic Topology Online Book. Cambridge University Press, Cambridge (2002) Hatcher, A.: Algebraic Topology Online Book. Cambridge University Press, Cambridge (2002)
15.
Zurück zum Zitat Kriegl, A., Michor, P.W.: The Convenient Setting of Global Analysis. Mathematical Surveys and Monographs, vol. 53. American Mathematical Society, Providence (1997) Kriegl, A., Michor, P.W.: The Convenient Setting of Global Analysis. Mathematical Surveys and Monographs, vol. 53. American Mathematical Society, Providence (1997)
16.
17.
Zurück zum Zitat Lu, Y.C.: Singularity Theory and an Introduction to Catastrophe Theory. Universitext. Springer, New York (1976)CrossRefMATH Lu, Y.C.: Singularity Theory and an Introduction to Catastrophe Theory. Universitext. Springer, New York (1976)CrossRefMATH
18.
Zurück zum Zitat Martinet, J.: Singularités des Fonctions et Applications Differentiables. Pontificia Universidade de Rio de Janeiro, Rio de Janeiro (1974) Martinet, J.: Singularités des Fonctions et Applications Differentiables. Pontificia Universidade de Rio de Janeiro, Rio de Janeiro (1974)
20.
22.
Zurück zum Zitat Pignoni, R.: Curves and surfaces in real projective spaces: an approach to generic projections. Banach Center Publ. 88, 335–351 (1988)MathSciNet Pignoni, R.: Curves and surfaces in real projective spaces: an approach to generic projections. Banach Center Publ. 88, 335–351 (1988)MathSciNet
24.
Zurück zum Zitat Thom, R.: Stabilité Structurelle et Morphogénèse. W.A. Benjamin, Inc., Reading (1972) Thom, R.: Stabilité Structurelle et Morphogénèse. W.A. Benjamin, Inc., Reading (1972)
25.
Zurück zum Zitat Whitney, H.: On singularities of mappings of Euclidean spaces. I. Mappings of the plane into the plane. Ann. Math. 62, 374–410 (1955)MATHMathSciNet Whitney, H.: On singularities of mappings of Euclidean spaces. I. Mappings of the plane into the plane. Ann. Math. 62, 374–410 (1955)MATHMathSciNet
26.
Zurück zum Zitat Whitney, H.: Singularities of mappings of Euclidean spaces. Sympos. Internac. Topologica Algebrica Mexico 62, 285–301 (1958)MathSciNet Whitney, H.: Singularities of mappings of Euclidean spaces. Sympos. Internac. Topologica Algebrica Mexico 62, 285–301 (1958)MathSciNet
27.
Zurück zum Zitat Wilson, L.C.: Equivalence of stable mappings between two-dimensional manifolds. J. Differ. Geom. 11, 1–14 (1976)MATH Wilson, L.C.: Equivalence of stable mappings between two-dimensional manifolds. J. Differ. Geom. 11, 1–14 (1976)MATH
Metadaten
Titel
Stable Maps and Morse Descriptions of an Apparent Contour
verfasst von
Giovanni Bellettini
Valentina Beorchia
Maurizio Paolini
Franco Pasquarelli
Copyright-Jahr
2015
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-45191-5_2